Abstract

Bismuth-substituted iron garnets are considered to be the most promising magneto-optical materials because of their excellent optical transparency and very high magneto-optical figures of merit in the near-infrared spectral region. However, the practical application of garnets in the visible and short-wavelength infrared parts of spectrum is currently limited, due to their very high optical absorption (especially in sputtered films) in these spectral regions. In this paper, we identify the likely source of excess absorption observed in sputtered garnet films in comparison with epitaxial layers and demonstrate (Bi,Dy)3(Fe,Ga)5O12: Bi2O3 composites possessing record MO quality in the visible region.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. B. Scott and D. E. Lacklison, “Magnetooptic Properties and Applications of Bismuth Substituted Iron Garnets,” IEEE Trans. Magn. 12(4), 292–311, 292–311 (1976).
    [CrossRef]
  2. A. K. Zvezdin and V. A. Kotov, in Modern Magnetooptics and Magnetooptical Materials (Institute of Physics Publishing, Bristol and Philadelphia, ISBN 075030362X, 1997).
  3. T. Okuda, N. Koshizuka, K. Hayashi, T. Takahashi, H. Kotani, and H. Yamamoto, “Epitaxial growth of Bi-substituted yttrium iron garnet films by ion beam sputtering,” Advances in Magneto-Optics, Proc. Int. Symp. Magneto-Optics, J. Magn. Soc. Jpn., 11, Supplement S1, 179–182 (1987).
  4. J.-P. Krumme, V. Doormann, B. Strocka, and P. Willich, “Selected-area sputter epitaxy of iron-garnet films,” J. Appl. Phys. 60(6), 2065–2068 (1986).
    [CrossRef]
  5. T. Okuda, T. Katayama, K. Satoh, T. Oikawa, H. Yamamoto, and N. Koshizuka, in Proceedings of the 5th Symposium on Magnetism and Magnetic Materials, Taipei, Taiwan, Ed. by H.L. Huang and P.C. Kuo (World Scientific, Singapore, 1990), p. 61.
  6. T. Okuda, T. Katayama, K. Satoh, T. Oikawa, H. Yamamoto, and N. Koshizuka, “Preparation of polycrystalline Bi3Fe5O12 garnet films,” J. Appl. Phys. 69(8), 4580–4582 (1991).
    [CrossRef]
  7. P. Hansen, W. Tolksdorf, K. Witter, and J. M. Robertson, “Recent advances of bismuth garnet materials research for bubble and magneto-optical applications,” IEEE Trans. Magn. 20(5), 1099–1104 (1984).
    [CrossRef]
  8. R. Ramesh, B.M. Simion and G. Thomas, “Epitaxial Magnetic Garnet Heterostructures,” J. Phys. IV France 7, C1–695 – C1–698 (1997).
  9. B. Teggart, R. Atkinson, and I. W. Salter, “Enhancement of the polar Kerr effect in bismuth-substituted DyGa iron garnet thin films,” J. Phys. D Appl. Phys. 31(19), 2442–2446 (1998).
    [CrossRef]
  10. M. Inoue, K. Arai, T. Fuji, and M. Abe, “One-dimensional magnetophotonic crystals,” J. Appl. Phys. 85(8), 5768 (1999).
    [CrossRef]
  11. Y. H. Kim, J. S. Kim, S. I. Kim, and M. Levy, “Epitaxial Growth and Properties of Bi-Substituted Yttrium-Iron-Garnet Films Grown on (111) Gadolinium-Gallium-Garnet Substrates by Using rf Magnetron Sputtering,” J. Korean Phys. Soc. 43(3), 400–405 (2003).
  12. S. Kahl and A. M. Grishin, “Enhanced Faraday rotation in all-garnet magneto-optical photonic crystal,” Appl. Phys. Lett. 84(9), 1438 (2004).
    [CrossRef]
  13. S. I. Khartsev and A. M. Grishin, “[Bi3Fe5O12/Gd3Ga5O12]m magneto-optical photonic crystals,” Appl. Phys. Lett. 87, 122504 (2005).
    [CrossRef]
  14. S. I. Khartsev and A. M. Grishin, “Heteroepitaxial Bi3Fe5O12/La3Ga5O12 films for magneto-optical photonic crystals,” Appl. Phys. Lett. 86, 141108 (2005).
    [CrossRef]
  15. R. Lux, A. Heinrich, S. Leitenmeier, T. Körner, M. Herbort, and B. Stritzker, “Pulsed-laser deposition and growth studies of Bi3Fe5O12 thin films,” J. Appl. Phys. 100(11), 113511 (2006).
    [CrossRef]
  16. V. I. Belotelov, L. L. Doskolovich, A. K. Zvezdin, “Extraordinary magnetooptical effects and transmission through the metal-dielectric plasmonic systems,” Phys. Rev. Lett. 98, 77401(1–4) (2007).
  17. M. Vasiliev, K. E. Alameh, V. A. Kotov, and Y. T. Lee, “Nanostructured Engineered Materials With High Magneto-Optic Performance for Integrated Photonics Applications,” in Proc. IEEE PhotonicsGlobal@Singapore, 2008 (IPGC 2008), ISBN 9781424439010, http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=4781410&isnumber=4781297 .
  18. M. Vasiliev, P. C. Wo, K. Alameh, P. Munroe, Z. Xie, V. A. Kotov, and V. I. Burkov, “Microstructural characterization of sputtered garnet materials and all-garnet magnetic heterostructures: establishing the technology for magnetic photonic crystal fabrication,” J. Phys. D Appl. Phys. 42(13), 135003 (2009).
    [CrossRef]
  19. P. C. Wo, P. R. Munroe, M. Vasiliev, Z. H. Xie, K. Alameh, and V. Kotov, “A novel technique for microstructure characterization of garnet films,” Opt. Mater. in press., doi:.
  20. V. I. Belotelov and A. K. Zvezdin, “Magneto-optical properties of photonic crystals,” J. Opt. Soc. Am. B 22(1), 286 (2005).
    [CrossRef]
  21. V. Goossens, J. Wielant, S. Van Gils, R. Finsy, and H. Terryn, “Optical properties of thin iron oxide films on steel,” Surf. Interface Anal. 38(4), 489–493 (2006).
    [CrossRef]
  22. F. Ilievski, T. Tepper, and C. A. Ross, “Optical and Magnetic properties of γ- Iron Oxide Made by Reactive Pulsed Laser Deposition,” IEEE Trans. Magn. 39(5), 3172–3174 (2003).
    [CrossRef]
  23. T. Hirano, H. Hotaka, E. Komuro, T. Namikawa, and Y. Yamazaki, “Magnetic and magneto-optical properties of Ca-doped Bi:YIG sputtered films,” IEEE Trans. Magn. 28(5), 3237–3239 (1992).
    [CrossRef]
  24. S. J. Zhang, X. Y. Guo, F. P. Zhang, C. L. Xu, F. L. Shi, H. W. Zhang, Z. Y. Zhong, and B. J. Guo, “Effects of rapid recurrent annealing on structure and magneto-optical properties of garnet films,” J. Appl. Phys. 73(10), 6832–6834 (1993).
    [CrossRef]
  25. H. S. Kim, Y. H. Lee, and S. S. Lee, “Grain Size Control of Bi-substituted Garnet Films Crystallized by Multi-Step Rapid Thermal Annealing for Magneto-Optical Disks,” Jpn. J. Appl. Phys. 32, L1804–L1807 (1993).
    [CrossRef]

2009

M. Vasiliev, P. C. Wo, K. Alameh, P. Munroe, Z. Xie, V. A. Kotov, and V. I. Burkov, “Microstructural characterization of sputtered garnet materials and all-garnet magnetic heterostructures: establishing the technology for magnetic photonic crystal fabrication,” J. Phys. D Appl. Phys. 42(13), 135003 (2009).
[CrossRef]

2006

V. Goossens, J. Wielant, S. Van Gils, R. Finsy, and H. Terryn, “Optical properties of thin iron oxide films on steel,” Surf. Interface Anal. 38(4), 489–493 (2006).
[CrossRef]

R. Lux, A. Heinrich, S. Leitenmeier, T. Körner, M. Herbort, and B. Stritzker, “Pulsed-laser deposition and growth studies of Bi3Fe5O12 thin films,” J. Appl. Phys. 100(11), 113511 (2006).
[CrossRef]

2005

V. I. Belotelov and A. K. Zvezdin, “Magneto-optical properties of photonic crystals,” J. Opt. Soc. Am. B 22(1), 286 (2005).
[CrossRef]

S. I. Khartsev and A. M. Grishin, “[Bi3Fe5O12/Gd3Ga5O12]m magneto-optical photonic crystals,” Appl. Phys. Lett. 87, 122504 (2005).
[CrossRef]

S. I. Khartsev and A. M. Grishin, “Heteroepitaxial Bi3Fe5O12/La3Ga5O12 films for magneto-optical photonic crystals,” Appl. Phys. Lett. 86, 141108 (2005).
[CrossRef]

2004

S. Kahl and A. M. Grishin, “Enhanced Faraday rotation in all-garnet magneto-optical photonic crystal,” Appl. Phys. Lett. 84(9), 1438 (2004).
[CrossRef]

2003

Y. H. Kim, J. S. Kim, S. I. Kim, and M. Levy, “Epitaxial Growth and Properties of Bi-Substituted Yttrium-Iron-Garnet Films Grown on (111) Gadolinium-Gallium-Garnet Substrates by Using rf Magnetron Sputtering,” J. Korean Phys. Soc. 43(3), 400–405 (2003).

F. Ilievski, T. Tepper, and C. A. Ross, “Optical and Magnetic properties of γ- Iron Oxide Made by Reactive Pulsed Laser Deposition,” IEEE Trans. Magn. 39(5), 3172–3174 (2003).
[CrossRef]

1999

M. Inoue, K. Arai, T. Fuji, and M. Abe, “One-dimensional magnetophotonic crystals,” J. Appl. Phys. 85(8), 5768 (1999).
[CrossRef]

1998

B. Teggart, R. Atkinson, and I. W. Salter, “Enhancement of the polar Kerr effect in bismuth-substituted DyGa iron garnet thin films,” J. Phys. D Appl. Phys. 31(19), 2442–2446 (1998).
[CrossRef]

1993

S. J. Zhang, X. Y. Guo, F. P. Zhang, C. L. Xu, F. L. Shi, H. W. Zhang, Z. Y. Zhong, and B. J. Guo, “Effects of rapid recurrent annealing on structure and magneto-optical properties of garnet films,” J. Appl. Phys. 73(10), 6832–6834 (1993).
[CrossRef]

H. S. Kim, Y. H. Lee, and S. S. Lee, “Grain Size Control of Bi-substituted Garnet Films Crystallized by Multi-Step Rapid Thermal Annealing for Magneto-Optical Disks,” Jpn. J. Appl. Phys. 32, L1804–L1807 (1993).
[CrossRef]

1992

T. Hirano, H. Hotaka, E. Komuro, T. Namikawa, and Y. Yamazaki, “Magnetic and magneto-optical properties of Ca-doped Bi:YIG sputtered films,” IEEE Trans. Magn. 28(5), 3237–3239 (1992).
[CrossRef]

1991

T. Okuda, T. Katayama, K. Satoh, T. Oikawa, H. Yamamoto, and N. Koshizuka, “Preparation of polycrystalline Bi3Fe5O12 garnet films,” J. Appl. Phys. 69(8), 4580–4582 (1991).
[CrossRef]

1986

J.-P. Krumme, V. Doormann, B. Strocka, and P. Willich, “Selected-area sputter epitaxy of iron-garnet films,” J. Appl. Phys. 60(6), 2065–2068 (1986).
[CrossRef]

1984

P. Hansen, W. Tolksdorf, K. Witter, and J. M. Robertson, “Recent advances of bismuth garnet materials research for bubble and magneto-optical applications,” IEEE Trans. Magn. 20(5), 1099–1104 (1984).
[CrossRef]

1976

G. B. Scott and D. E. Lacklison, “Magnetooptic Properties and Applications of Bismuth Substituted Iron Garnets,” IEEE Trans. Magn. 12(4), 292–311, 292–311 (1976).
[CrossRef]

Abe, M.

M. Inoue, K. Arai, T. Fuji, and M. Abe, “One-dimensional magnetophotonic crystals,” J. Appl. Phys. 85(8), 5768 (1999).
[CrossRef]

Alameh, K.

M. Vasiliev, P. C. Wo, K. Alameh, P. Munroe, Z. Xie, V. A. Kotov, and V. I. Burkov, “Microstructural characterization of sputtered garnet materials and all-garnet magnetic heterostructures: establishing the technology for magnetic photonic crystal fabrication,” J. Phys. D Appl. Phys. 42(13), 135003 (2009).
[CrossRef]

P. C. Wo, P. R. Munroe, M. Vasiliev, Z. H. Xie, K. Alameh, and V. Kotov, “A novel technique for microstructure characterization of garnet films,” Opt. Mater. in press., doi:.

Arai, K.

M. Inoue, K. Arai, T. Fuji, and M. Abe, “One-dimensional magnetophotonic crystals,” J. Appl. Phys. 85(8), 5768 (1999).
[CrossRef]

Atkinson, R.

B. Teggart, R. Atkinson, and I. W. Salter, “Enhancement of the polar Kerr effect in bismuth-substituted DyGa iron garnet thin films,” J. Phys. D Appl. Phys. 31(19), 2442–2446 (1998).
[CrossRef]

Belotelov, V. I.

Burkov, V. I.

M. Vasiliev, P. C. Wo, K. Alameh, P. Munroe, Z. Xie, V. A. Kotov, and V. I. Burkov, “Microstructural characterization of sputtered garnet materials and all-garnet magnetic heterostructures: establishing the technology for magnetic photonic crystal fabrication,” J. Phys. D Appl. Phys. 42(13), 135003 (2009).
[CrossRef]

Doormann, V.

J.-P. Krumme, V. Doormann, B. Strocka, and P. Willich, “Selected-area sputter epitaxy of iron-garnet films,” J. Appl. Phys. 60(6), 2065–2068 (1986).
[CrossRef]

Finsy, R.

V. Goossens, J. Wielant, S. Van Gils, R. Finsy, and H. Terryn, “Optical properties of thin iron oxide films on steel,” Surf. Interface Anal. 38(4), 489–493 (2006).
[CrossRef]

Fuji, T.

M. Inoue, K. Arai, T. Fuji, and M. Abe, “One-dimensional magnetophotonic crystals,” J. Appl. Phys. 85(8), 5768 (1999).
[CrossRef]

Goossens, V.

V. Goossens, J. Wielant, S. Van Gils, R. Finsy, and H. Terryn, “Optical properties of thin iron oxide films on steel,” Surf. Interface Anal. 38(4), 489–493 (2006).
[CrossRef]

Grishin, A. M.

S. I. Khartsev and A. M. Grishin, “[Bi3Fe5O12/Gd3Ga5O12]m magneto-optical photonic crystals,” Appl. Phys. Lett. 87, 122504 (2005).
[CrossRef]

S. I. Khartsev and A. M. Grishin, “Heteroepitaxial Bi3Fe5O12/La3Ga5O12 films for magneto-optical photonic crystals,” Appl. Phys. Lett. 86, 141108 (2005).
[CrossRef]

S. Kahl and A. M. Grishin, “Enhanced Faraday rotation in all-garnet magneto-optical photonic crystal,” Appl. Phys. Lett. 84(9), 1438 (2004).
[CrossRef]

Guo, B. J.

S. J. Zhang, X. Y. Guo, F. P. Zhang, C. L. Xu, F. L. Shi, H. W. Zhang, Z. Y. Zhong, and B. J. Guo, “Effects of rapid recurrent annealing on structure and magneto-optical properties of garnet films,” J. Appl. Phys. 73(10), 6832–6834 (1993).
[CrossRef]

Guo, X. Y.

S. J. Zhang, X. Y. Guo, F. P. Zhang, C. L. Xu, F. L. Shi, H. W. Zhang, Z. Y. Zhong, and B. J. Guo, “Effects of rapid recurrent annealing on structure and magneto-optical properties of garnet films,” J. Appl. Phys. 73(10), 6832–6834 (1993).
[CrossRef]

Hansen, P.

P. Hansen, W. Tolksdorf, K. Witter, and J. M. Robertson, “Recent advances of bismuth garnet materials research for bubble and magneto-optical applications,” IEEE Trans. Magn. 20(5), 1099–1104 (1984).
[CrossRef]

Heinrich, A.

R. Lux, A. Heinrich, S. Leitenmeier, T. Körner, M. Herbort, and B. Stritzker, “Pulsed-laser deposition and growth studies of Bi3Fe5O12 thin films,” J. Appl. Phys. 100(11), 113511 (2006).
[CrossRef]

Herbort, M.

R. Lux, A. Heinrich, S. Leitenmeier, T. Körner, M. Herbort, and B. Stritzker, “Pulsed-laser deposition and growth studies of Bi3Fe5O12 thin films,” J. Appl. Phys. 100(11), 113511 (2006).
[CrossRef]

Hirano, T.

T. Hirano, H. Hotaka, E. Komuro, T. Namikawa, and Y. Yamazaki, “Magnetic and magneto-optical properties of Ca-doped Bi:YIG sputtered films,” IEEE Trans. Magn. 28(5), 3237–3239 (1992).
[CrossRef]

Hotaka, H.

T. Hirano, H. Hotaka, E. Komuro, T. Namikawa, and Y. Yamazaki, “Magnetic and magneto-optical properties of Ca-doped Bi:YIG sputtered films,” IEEE Trans. Magn. 28(5), 3237–3239 (1992).
[CrossRef]

Ilievski, F.

F. Ilievski, T. Tepper, and C. A. Ross, “Optical and Magnetic properties of γ- Iron Oxide Made by Reactive Pulsed Laser Deposition,” IEEE Trans. Magn. 39(5), 3172–3174 (2003).
[CrossRef]

Inoue, M.

M. Inoue, K. Arai, T. Fuji, and M. Abe, “One-dimensional magnetophotonic crystals,” J. Appl. Phys. 85(8), 5768 (1999).
[CrossRef]

Kahl, S.

S. Kahl and A. M. Grishin, “Enhanced Faraday rotation in all-garnet magneto-optical photonic crystal,” Appl. Phys. Lett. 84(9), 1438 (2004).
[CrossRef]

Katayama, T.

T. Okuda, T. Katayama, K. Satoh, T. Oikawa, H. Yamamoto, and N. Koshizuka, “Preparation of polycrystalline Bi3Fe5O12 garnet films,” J. Appl. Phys. 69(8), 4580–4582 (1991).
[CrossRef]

Khartsev, S. I.

S. I. Khartsev and A. M. Grishin, “[Bi3Fe5O12/Gd3Ga5O12]m magneto-optical photonic crystals,” Appl. Phys. Lett. 87, 122504 (2005).
[CrossRef]

S. I. Khartsev and A. M. Grishin, “Heteroepitaxial Bi3Fe5O12/La3Ga5O12 films for magneto-optical photonic crystals,” Appl. Phys. Lett. 86, 141108 (2005).
[CrossRef]

Kim, H. S.

H. S. Kim, Y. H. Lee, and S. S. Lee, “Grain Size Control of Bi-substituted Garnet Films Crystallized by Multi-Step Rapid Thermal Annealing for Magneto-Optical Disks,” Jpn. J. Appl. Phys. 32, L1804–L1807 (1993).
[CrossRef]

Kim, J. S.

Y. H. Kim, J. S. Kim, S. I. Kim, and M. Levy, “Epitaxial Growth and Properties of Bi-Substituted Yttrium-Iron-Garnet Films Grown on (111) Gadolinium-Gallium-Garnet Substrates by Using rf Magnetron Sputtering,” J. Korean Phys. Soc. 43(3), 400–405 (2003).

Kim, S. I.

Y. H. Kim, J. S. Kim, S. I. Kim, and M. Levy, “Epitaxial Growth and Properties of Bi-Substituted Yttrium-Iron-Garnet Films Grown on (111) Gadolinium-Gallium-Garnet Substrates by Using rf Magnetron Sputtering,” J. Korean Phys. Soc. 43(3), 400–405 (2003).

Kim, Y. H.

Y. H. Kim, J. S. Kim, S. I. Kim, and M. Levy, “Epitaxial Growth and Properties of Bi-Substituted Yttrium-Iron-Garnet Films Grown on (111) Gadolinium-Gallium-Garnet Substrates by Using rf Magnetron Sputtering,” J. Korean Phys. Soc. 43(3), 400–405 (2003).

Komuro, E.

T. Hirano, H. Hotaka, E. Komuro, T. Namikawa, and Y. Yamazaki, “Magnetic and magneto-optical properties of Ca-doped Bi:YIG sputtered films,” IEEE Trans. Magn. 28(5), 3237–3239 (1992).
[CrossRef]

Körner, T.

R. Lux, A. Heinrich, S. Leitenmeier, T. Körner, M. Herbort, and B. Stritzker, “Pulsed-laser deposition and growth studies of Bi3Fe5O12 thin films,” J. Appl. Phys. 100(11), 113511 (2006).
[CrossRef]

Koshizuka, N.

T. Okuda, T. Katayama, K. Satoh, T. Oikawa, H. Yamamoto, and N. Koshizuka, “Preparation of polycrystalline Bi3Fe5O12 garnet films,” J. Appl. Phys. 69(8), 4580–4582 (1991).
[CrossRef]

Kotov, V.

P. C. Wo, P. R. Munroe, M. Vasiliev, Z. H. Xie, K. Alameh, and V. Kotov, “A novel technique for microstructure characterization of garnet films,” Opt. Mater. in press., doi:.

Kotov, V. A.

M. Vasiliev, P. C. Wo, K. Alameh, P. Munroe, Z. Xie, V. A. Kotov, and V. I. Burkov, “Microstructural characterization of sputtered garnet materials and all-garnet magnetic heterostructures: establishing the technology for magnetic photonic crystal fabrication,” J. Phys. D Appl. Phys. 42(13), 135003 (2009).
[CrossRef]

Krumme, J.-P.

J.-P. Krumme, V. Doormann, B. Strocka, and P. Willich, “Selected-area sputter epitaxy of iron-garnet films,” J. Appl. Phys. 60(6), 2065–2068 (1986).
[CrossRef]

Lacklison, D. E.

G. B. Scott and D. E. Lacklison, “Magnetooptic Properties and Applications of Bismuth Substituted Iron Garnets,” IEEE Trans. Magn. 12(4), 292–311, 292–311 (1976).
[CrossRef]

Lee, S. S.

H. S. Kim, Y. H. Lee, and S. S. Lee, “Grain Size Control of Bi-substituted Garnet Films Crystallized by Multi-Step Rapid Thermal Annealing for Magneto-Optical Disks,” Jpn. J. Appl. Phys. 32, L1804–L1807 (1993).
[CrossRef]

Lee, Y. H.

H. S. Kim, Y. H. Lee, and S. S. Lee, “Grain Size Control of Bi-substituted Garnet Films Crystallized by Multi-Step Rapid Thermal Annealing for Magneto-Optical Disks,” Jpn. J. Appl. Phys. 32, L1804–L1807 (1993).
[CrossRef]

Leitenmeier, S.

R. Lux, A. Heinrich, S. Leitenmeier, T. Körner, M. Herbort, and B. Stritzker, “Pulsed-laser deposition and growth studies of Bi3Fe5O12 thin films,” J. Appl. Phys. 100(11), 113511 (2006).
[CrossRef]

Levy, M.

Y. H. Kim, J. S. Kim, S. I. Kim, and M. Levy, “Epitaxial Growth and Properties of Bi-Substituted Yttrium-Iron-Garnet Films Grown on (111) Gadolinium-Gallium-Garnet Substrates by Using rf Magnetron Sputtering,” J. Korean Phys. Soc. 43(3), 400–405 (2003).

Lux, R.

R. Lux, A. Heinrich, S. Leitenmeier, T. Körner, M. Herbort, and B. Stritzker, “Pulsed-laser deposition and growth studies of Bi3Fe5O12 thin films,” J. Appl. Phys. 100(11), 113511 (2006).
[CrossRef]

Munroe, P.

M. Vasiliev, P. C. Wo, K. Alameh, P. Munroe, Z. Xie, V. A. Kotov, and V. I. Burkov, “Microstructural characterization of sputtered garnet materials and all-garnet magnetic heterostructures: establishing the technology for magnetic photonic crystal fabrication,” J. Phys. D Appl. Phys. 42(13), 135003 (2009).
[CrossRef]

Munroe, P. R.

P. C. Wo, P. R. Munroe, M. Vasiliev, Z. H. Xie, K. Alameh, and V. Kotov, “A novel technique for microstructure characterization of garnet films,” Opt. Mater. in press., doi:.

Namikawa, T.

T. Hirano, H. Hotaka, E. Komuro, T. Namikawa, and Y. Yamazaki, “Magnetic and magneto-optical properties of Ca-doped Bi:YIG sputtered films,” IEEE Trans. Magn. 28(5), 3237–3239 (1992).
[CrossRef]

Oikawa, T.

T. Okuda, T. Katayama, K. Satoh, T. Oikawa, H. Yamamoto, and N. Koshizuka, “Preparation of polycrystalline Bi3Fe5O12 garnet films,” J. Appl. Phys. 69(8), 4580–4582 (1991).
[CrossRef]

Okuda, T.

T. Okuda, T. Katayama, K. Satoh, T. Oikawa, H. Yamamoto, and N. Koshizuka, “Preparation of polycrystalline Bi3Fe5O12 garnet films,” J. Appl. Phys. 69(8), 4580–4582 (1991).
[CrossRef]

Robertson, J. M.

P. Hansen, W. Tolksdorf, K. Witter, and J. M. Robertson, “Recent advances of bismuth garnet materials research for bubble and magneto-optical applications,” IEEE Trans. Magn. 20(5), 1099–1104 (1984).
[CrossRef]

Ross, C. A.

F. Ilievski, T. Tepper, and C. A. Ross, “Optical and Magnetic properties of γ- Iron Oxide Made by Reactive Pulsed Laser Deposition,” IEEE Trans. Magn. 39(5), 3172–3174 (2003).
[CrossRef]

Salter, I. W.

B. Teggart, R. Atkinson, and I. W. Salter, “Enhancement of the polar Kerr effect in bismuth-substituted DyGa iron garnet thin films,” J. Phys. D Appl. Phys. 31(19), 2442–2446 (1998).
[CrossRef]

Satoh, K.

T. Okuda, T. Katayama, K. Satoh, T. Oikawa, H. Yamamoto, and N. Koshizuka, “Preparation of polycrystalline Bi3Fe5O12 garnet films,” J. Appl. Phys. 69(8), 4580–4582 (1991).
[CrossRef]

Scott, G. B.

G. B. Scott and D. E. Lacklison, “Magnetooptic Properties and Applications of Bismuth Substituted Iron Garnets,” IEEE Trans. Magn. 12(4), 292–311, 292–311 (1976).
[CrossRef]

Shi, F. L.

S. J. Zhang, X. Y. Guo, F. P. Zhang, C. L. Xu, F. L. Shi, H. W. Zhang, Z. Y. Zhong, and B. J. Guo, “Effects of rapid recurrent annealing on structure and magneto-optical properties of garnet films,” J. Appl. Phys. 73(10), 6832–6834 (1993).
[CrossRef]

Stritzker, B.

R. Lux, A. Heinrich, S. Leitenmeier, T. Körner, M. Herbort, and B. Stritzker, “Pulsed-laser deposition and growth studies of Bi3Fe5O12 thin films,” J. Appl. Phys. 100(11), 113511 (2006).
[CrossRef]

Strocka, B.

J.-P. Krumme, V. Doormann, B. Strocka, and P. Willich, “Selected-area sputter epitaxy of iron-garnet films,” J. Appl. Phys. 60(6), 2065–2068 (1986).
[CrossRef]

Teggart, B.

B. Teggart, R. Atkinson, and I. W. Salter, “Enhancement of the polar Kerr effect in bismuth-substituted DyGa iron garnet thin films,” J. Phys. D Appl. Phys. 31(19), 2442–2446 (1998).
[CrossRef]

Tepper, T.

F. Ilievski, T. Tepper, and C. A. Ross, “Optical and Magnetic properties of γ- Iron Oxide Made by Reactive Pulsed Laser Deposition,” IEEE Trans. Magn. 39(5), 3172–3174 (2003).
[CrossRef]

Terryn, H.

V. Goossens, J. Wielant, S. Van Gils, R. Finsy, and H. Terryn, “Optical properties of thin iron oxide films on steel,” Surf. Interface Anal. 38(4), 489–493 (2006).
[CrossRef]

Tolksdorf, W.

P. Hansen, W. Tolksdorf, K. Witter, and J. M. Robertson, “Recent advances of bismuth garnet materials research for bubble and magneto-optical applications,” IEEE Trans. Magn. 20(5), 1099–1104 (1984).
[CrossRef]

Van Gils, S.

V. Goossens, J. Wielant, S. Van Gils, R. Finsy, and H. Terryn, “Optical properties of thin iron oxide films on steel,” Surf. Interface Anal. 38(4), 489–493 (2006).
[CrossRef]

Vasiliev, M.

M. Vasiliev, P. C. Wo, K. Alameh, P. Munroe, Z. Xie, V. A. Kotov, and V. I. Burkov, “Microstructural characterization of sputtered garnet materials and all-garnet magnetic heterostructures: establishing the technology for magnetic photonic crystal fabrication,” J. Phys. D Appl. Phys. 42(13), 135003 (2009).
[CrossRef]

P. C. Wo, P. R. Munroe, M. Vasiliev, Z. H. Xie, K. Alameh, and V. Kotov, “A novel technique for microstructure characterization of garnet films,” Opt. Mater. in press., doi:.

Wielant, J.

V. Goossens, J. Wielant, S. Van Gils, R. Finsy, and H. Terryn, “Optical properties of thin iron oxide films on steel,” Surf. Interface Anal. 38(4), 489–493 (2006).
[CrossRef]

Willich, P.

J.-P. Krumme, V. Doormann, B. Strocka, and P. Willich, “Selected-area sputter epitaxy of iron-garnet films,” J. Appl. Phys. 60(6), 2065–2068 (1986).
[CrossRef]

Witter, K.

P. Hansen, W. Tolksdorf, K. Witter, and J. M. Robertson, “Recent advances of bismuth garnet materials research for bubble and magneto-optical applications,” IEEE Trans. Magn. 20(5), 1099–1104 (1984).
[CrossRef]

Wo, P. C.

M. Vasiliev, P. C. Wo, K. Alameh, P. Munroe, Z. Xie, V. A. Kotov, and V. I. Burkov, “Microstructural characterization of sputtered garnet materials and all-garnet magnetic heterostructures: establishing the technology for magnetic photonic crystal fabrication,” J. Phys. D Appl. Phys. 42(13), 135003 (2009).
[CrossRef]

P. C. Wo, P. R. Munroe, M. Vasiliev, Z. H. Xie, K. Alameh, and V. Kotov, “A novel technique for microstructure characterization of garnet films,” Opt. Mater. in press., doi:.

Xie, Z.

M. Vasiliev, P. C. Wo, K. Alameh, P. Munroe, Z. Xie, V. A. Kotov, and V. I. Burkov, “Microstructural characterization of sputtered garnet materials and all-garnet magnetic heterostructures: establishing the technology for magnetic photonic crystal fabrication,” J. Phys. D Appl. Phys. 42(13), 135003 (2009).
[CrossRef]

Xie, Z. H.

P. C. Wo, P. R. Munroe, M. Vasiliev, Z. H. Xie, K. Alameh, and V. Kotov, “A novel technique for microstructure characterization of garnet films,” Opt. Mater. in press., doi:.

Xu, C. L.

S. J. Zhang, X. Y. Guo, F. P. Zhang, C. L. Xu, F. L. Shi, H. W. Zhang, Z. Y. Zhong, and B. J. Guo, “Effects of rapid recurrent annealing on structure and magneto-optical properties of garnet films,” J. Appl. Phys. 73(10), 6832–6834 (1993).
[CrossRef]

Yamamoto, H.

T. Okuda, T. Katayama, K. Satoh, T. Oikawa, H. Yamamoto, and N. Koshizuka, “Preparation of polycrystalline Bi3Fe5O12 garnet films,” J. Appl. Phys. 69(8), 4580–4582 (1991).
[CrossRef]

Yamazaki, Y.

T. Hirano, H. Hotaka, E. Komuro, T. Namikawa, and Y. Yamazaki, “Magnetic and magneto-optical properties of Ca-doped Bi:YIG sputtered films,” IEEE Trans. Magn. 28(5), 3237–3239 (1992).
[CrossRef]

Zhang, F. P.

S. J. Zhang, X. Y. Guo, F. P. Zhang, C. L. Xu, F. L. Shi, H. W. Zhang, Z. Y. Zhong, and B. J. Guo, “Effects of rapid recurrent annealing on structure and magneto-optical properties of garnet films,” J. Appl. Phys. 73(10), 6832–6834 (1993).
[CrossRef]

Zhang, H. W.

S. J. Zhang, X. Y. Guo, F. P. Zhang, C. L. Xu, F. L. Shi, H. W. Zhang, Z. Y. Zhong, and B. J. Guo, “Effects of rapid recurrent annealing on structure and magneto-optical properties of garnet films,” J. Appl. Phys. 73(10), 6832–6834 (1993).
[CrossRef]

Zhang, S. J.

S. J. Zhang, X. Y. Guo, F. P. Zhang, C. L. Xu, F. L. Shi, H. W. Zhang, Z. Y. Zhong, and B. J. Guo, “Effects of rapid recurrent annealing on structure and magneto-optical properties of garnet films,” J. Appl. Phys. 73(10), 6832–6834 (1993).
[CrossRef]

Zhong, Z. Y.

S. J. Zhang, X. Y. Guo, F. P. Zhang, C. L. Xu, F. L. Shi, H. W. Zhang, Z. Y. Zhong, and B. J. Guo, “Effects of rapid recurrent annealing on structure and magneto-optical properties of garnet films,” J. Appl. Phys. 73(10), 6832–6834 (1993).
[CrossRef]

Zvezdin, A. K.

Appl. Phys. Lett.

S. Kahl and A. M. Grishin, “Enhanced Faraday rotation in all-garnet magneto-optical photonic crystal,” Appl. Phys. Lett. 84(9), 1438 (2004).
[CrossRef]

S. I. Khartsev and A. M. Grishin, “[Bi3Fe5O12/Gd3Ga5O12]m magneto-optical photonic crystals,” Appl. Phys. Lett. 87, 122504 (2005).
[CrossRef]

S. I. Khartsev and A. M. Grishin, “Heteroepitaxial Bi3Fe5O12/La3Ga5O12 films for magneto-optical photonic crystals,” Appl. Phys. Lett. 86, 141108 (2005).
[CrossRef]

IEEE Trans. Magn.

G. B. Scott and D. E. Lacklison, “Magnetooptic Properties and Applications of Bismuth Substituted Iron Garnets,” IEEE Trans. Magn. 12(4), 292–311, 292–311 (1976).
[CrossRef]

P. Hansen, W. Tolksdorf, K. Witter, and J. M. Robertson, “Recent advances of bismuth garnet materials research for bubble and magneto-optical applications,” IEEE Trans. Magn. 20(5), 1099–1104 (1984).
[CrossRef]

F. Ilievski, T. Tepper, and C. A. Ross, “Optical and Magnetic properties of γ- Iron Oxide Made by Reactive Pulsed Laser Deposition,” IEEE Trans. Magn. 39(5), 3172–3174 (2003).
[CrossRef]

T. Hirano, H. Hotaka, E. Komuro, T. Namikawa, and Y. Yamazaki, “Magnetic and magneto-optical properties of Ca-doped Bi:YIG sputtered films,” IEEE Trans. Magn. 28(5), 3237–3239 (1992).
[CrossRef]

J. Appl. Phys.

S. J. Zhang, X. Y. Guo, F. P. Zhang, C. L. Xu, F. L. Shi, H. W. Zhang, Z. Y. Zhong, and B. J. Guo, “Effects of rapid recurrent annealing on structure and magneto-optical properties of garnet films,” J. Appl. Phys. 73(10), 6832–6834 (1993).
[CrossRef]

T. Okuda, T. Katayama, K. Satoh, T. Oikawa, H. Yamamoto, and N. Koshizuka, “Preparation of polycrystalline Bi3Fe5O12 garnet films,” J. Appl. Phys. 69(8), 4580–4582 (1991).
[CrossRef]

J.-P. Krumme, V. Doormann, B. Strocka, and P. Willich, “Selected-area sputter epitaxy of iron-garnet films,” J. Appl. Phys. 60(6), 2065–2068 (1986).
[CrossRef]

R. Lux, A. Heinrich, S. Leitenmeier, T. Körner, M. Herbort, and B. Stritzker, “Pulsed-laser deposition and growth studies of Bi3Fe5O12 thin films,” J. Appl. Phys. 100(11), 113511 (2006).
[CrossRef]

M. Inoue, K. Arai, T. Fuji, and M. Abe, “One-dimensional magnetophotonic crystals,” J. Appl. Phys. 85(8), 5768 (1999).
[CrossRef]

J. Korean Phys. Soc.

Y. H. Kim, J. S. Kim, S. I. Kim, and M. Levy, “Epitaxial Growth and Properties of Bi-Substituted Yttrium-Iron-Garnet Films Grown on (111) Gadolinium-Gallium-Garnet Substrates by Using rf Magnetron Sputtering,” J. Korean Phys. Soc. 43(3), 400–405 (2003).

J. Opt. Soc. Am. B

J. Phys. D Appl. Phys.

M. Vasiliev, P. C. Wo, K. Alameh, P. Munroe, Z. Xie, V. A. Kotov, and V. I. Burkov, “Microstructural characterization of sputtered garnet materials and all-garnet magnetic heterostructures: establishing the technology for magnetic photonic crystal fabrication,” J. Phys. D Appl. Phys. 42(13), 135003 (2009).
[CrossRef]

B. Teggart, R. Atkinson, and I. W. Salter, “Enhancement of the polar Kerr effect in bismuth-substituted DyGa iron garnet thin films,” J. Phys. D Appl. Phys. 31(19), 2442–2446 (1998).
[CrossRef]

Jpn. J. Appl. Phys.

H. S. Kim, Y. H. Lee, and S. S. Lee, “Grain Size Control of Bi-substituted Garnet Films Crystallized by Multi-Step Rapid Thermal Annealing for Magneto-Optical Disks,” Jpn. J. Appl. Phys. 32, L1804–L1807 (1993).
[CrossRef]

Opt. Mater.

P. C. Wo, P. R. Munroe, M. Vasiliev, Z. H. Xie, K. Alameh, and V. Kotov, “A novel technique for microstructure characterization of garnet films,” Opt. Mater. in press., doi:.

Surf. Interface Anal.

V. Goossens, J. Wielant, S. Van Gils, R. Finsy, and H. Terryn, “Optical properties of thin iron oxide films on steel,” Surf. Interface Anal. 38(4), 489–493 (2006).
[CrossRef]

Other

V. I. Belotelov, L. L. Doskolovich, A. K. Zvezdin, “Extraordinary magnetooptical effects and transmission through the metal-dielectric plasmonic systems,” Phys. Rev. Lett. 98, 77401(1–4) (2007).

M. Vasiliev, K. E. Alameh, V. A. Kotov, and Y. T. Lee, “Nanostructured Engineered Materials With High Magneto-Optic Performance for Integrated Photonics Applications,” in Proc. IEEE PhotonicsGlobal@Singapore, 2008 (IPGC 2008), ISBN 9781424439010, http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=4781410&isnumber=4781297 .

R. Ramesh, B.M. Simion and G. Thomas, “Epitaxial Magnetic Garnet Heterostructures,” J. Phys. IV France 7, C1–695 – C1–698 (1997).

T. Okuda, T. Katayama, K. Satoh, T. Oikawa, H. Yamamoto, and N. Koshizuka, in Proceedings of the 5th Symposium on Magnetism and Magnetic Materials, Taipei, Taiwan, Ed. by H.L. Huang and P.C. Kuo (World Scientific, Singapore, 1990), p. 61.

A. K. Zvezdin and V. A. Kotov, in Modern Magnetooptics and Magnetooptical Materials (Institute of Physics Publishing, Bristol and Philadelphia, ISBN 075030362X, 1997).

T. Okuda, N. Koshizuka, K. Hayashi, T. Takahashi, H. Kotani, and H. Yamamoto, “Epitaxial growth of Bi-substituted yttrium iron garnet films by ion beam sputtering,” Advances in Magneto-Optics, Proc. Int. Symp. Magneto-Optics, J. Magn. Soc. Jpn., 11, Supplement S1, 179–182 (1987).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

(a) A typical comparison of the measured transmission spectrum of a garnet (Bi2Dy1Fe4Ga1O12) film on a GGG substrate (blue dashed line) and its modeled transmission spectrum (continuous brown line), where the material’s refractive index dispersion has been measured and fully accounted for in the model. The fitting of the actual film’s thickness was performed by closely matching all measured transmission spectrum features to the modeled spectrum, whilst iteratively varying the modeled thickness. (b) The thicknesses of composite films having different absorption spectra were derived by spectrally matching the transmission ripples’ minima and maxima. The differences in the absorption coefficient spectra between Bi2Dy1Fe4Ga1O12 and Bi2Dy1Fe4Ga1O12: Bi2O3 were responsible for the differences in the transmission loss observed in the visible range. The absorption coefficient spectra of composites were derived by obtaining the exact fit (fit tolerance 0.01%) between the measured and modeled transmission spectra whilst varying the absorption coefficient at each wavelength computationally, after the spectral locations of all transmission ripples were matched during the thickness fitting. The data shown was used to derive the absorption spectrum shown in Fig. 5, trace 2.

Fig. 5
Fig. 5

Derived absorption coefficients spectra of sputtered Bi2Dy1Fe4Ga1O12 and of several co-sputtered garnet composite layers of type Bi2Dy1Fe4Ga1O12:Bi2O3 on GGG(111) substrates after annealing at the temperatures indicated. The main sputtering process parameters and film thicknesses are also shown.

Fig. 2
Fig. 2

Derived absorption coefficients spectra of sputtered Bi2Dy1Fe4Ga1O12 and Bi2Dy1Fe4.3Ga0.7O12 layers on GGG(111) substrates (in their amorphous and polycrystalline phases) and these of the best-performing annealed composite garnet films prepared using co-sputtering, with the main sputtering and annealing process parameters specified.

Fig. 3
Fig. 3

Derived absorption coefficients spectra of sputtered Bi2Dy1Fe4Ga1O12 and various Bi2Dy1Fe4Ga1O12:Bi2O3 co-sputtered composite layers on GGG(111) substrates (in the amorphous phase, as deposited at the substrate temperature 250 °C). The main sputtering process parameters and film thicknesses are shown.

Fig. 4
Fig. 4

Derived absorption coefficients spectra of sputtered Bi2Dy1Fe4.3Ga0.7O12 and of several co-sputtered garnet composite layers of type Bi2Dy1Fe4.3Ga0.7O12:Bi2O3 on GGG(111) substrates after annealing at the temperatures indicated. The main sputtering/annealing process parameters and also the derived film thicknesses are shown.

Fig. 6
Fig. 6

Derived absorption coefficients spectra of sputtered Bi2Dy1Fe4Ga1O12 and of several co-sputtered garnet composite layers of type Bi2Dy1Fe4Ga1O12:Bi2O3 on Corning 1737 glass substrates after annealing at the temperatures indicated. The main sputtering process parameters and film thicknesses are also shown.

Fig. 7
Fig. 7

Specific Faraday rotation (measured at remanent states of magnetization, as a “one-way” angle) of typical Bi2Dy1Fe4Ga1O12, Bi2Dy1Fe4.3Ga0.7O12 layers, and of the best-performing composite garnet films deposited onto GGG(111) substrates.

Fig. 8
Fig. 8

Summary of annealing temperatures used for crystallizing MO garnets and various types of garnet-oxide composites. The data are shown for (a) Bi2Dy1Fe4Ga1O12 and several Bi2Dy1Fe4Ga1O12: Bi2O3 composites deposited onto GGG (111) substrates; (b) Bi2Dy1Fe4Ga1O12 and Bi2Dy1Fe4Ga1O12: Bi2O3 composites deposited onto Corning 1737 glass substrates; (c) Bi2Dy1Fe4.3Ga0.7O12 and Bi2Dy1Fe4.3Ga0.7O12: Bi2O3 composites deposited onto GGG (111) substrates; (d) Bi2Dy1Fe4.3Ga0.7O12 and Bi2Dy1Fe4.3Ga0.7O12: Bi2O3 composites deposited onto Corning 1737 glass substrates.

Fig. 9
Fig. 9

Hysteresis loops of specific Faraday rotation measured at 532 nm in several Bi-substituted Ga-doped garnet-oxide composite films having thicknesses of 1.1 µm (solid red curve), 0.74 µm (dashed blue curve) and 0.555 µm (brown star curve) grown on GGG (111) substrates.

Fig. 10
Fig. 10

Magnetic domain patterns observed using a transmission-mode polarizing microscope in two different demagnetized garnet-oxide composite films sputtered onto GGG (111) substrates (a) 1000 nm of Bi2Dy1Fe4Ga1O12:Bi2O3, est. 23% excess oxide (300W + 90W), and (b) 850 nm of Bi2Dy1Fe4.3Ga0.7O12:Bi2O3, est. 24% excess oxide (200W + 25W).

Fig. 11
Fig. 11

Measured MO figure of merit spectra (the data points were taken at the wavelengths of 532, 635, 670 and 780 nm) of the typical Bi2Dy1Fe4Ga1O12 layers and of various garnet composites of type Bi2Dy1Fe4Ga1O12: Bi2O3 deposited onto GGG(111) (a) and Corning 1737 glass substrates (b).

Fig. 12
Fig. 12

Measured MO figure of merit spectra (the data points were taken at the wavelengths of 532, 635, 670 and 780 nm) of the typical Bi2Dy1Fe4.3Ga0.7O12 layers and of various garnet composites of type Bi2Dy1Fe4.3Ga0.7O12: Bi2O3 deposited onto GGG(111) (a) and Corning 1737 glass substrates (b).

Fig. 13
Fig. 13

Measured MO figures of merit (best obtained in our annealing experiments so far) at 532, 635 and 670 nm versus the estimated excess volumetric content of Bi2O3 in co-sputtered composite garnet films of types Bi2Dy1Fe4Ga1O12: Bi2O3 (a) and Bi2Dy1Fe4.3Ga0.7O12: Bi2O3 (b) deposited onto GGG (111) substrates.

Tables (1)

Tables Icon

Table 1 Typical sputtering conditions for magneto-optic garnet layers and garnet-oxide composites

Metrics