Abstract

We demonstrate plasmonic lithography with an optical contact probe to achieve high speed patterning without external gap distance control between the probe and the photoresist. The bottom surface of the probe is covered with a 10 nm thickness silica glass film for the gap distance control and coated with self-assembled monolayer (SAM) to reduce friction between the probe and the photoresist. We achieve a patterning resolution of ~50 nm and a patterning speed of ~10 mm/s. We obtain the quality of line patterning comparable to that in conventional optical lithography.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. J. Leggett, “Scanning near-field photolithography--surface photochemistry with nanoscale spatial resolution,” Chem. Soc. Rev. 35(11), 1150–1161 (2006).
    [CrossRef] [PubMed]
  2. J. Loos, “The Art of SPM: Scanning probe microscopy in materials science,” Adv. Mater. 17(15), 1821–1833 (2005).
    [CrossRef]
  3. S. Sun and G. J. Leggett, “Matching the resolution of electron beam lithography by scanning near-field photolithography,” Nano Lett. 4(8), 1381–1384 (2004).
    [CrossRef]
  4. B. W. Muir, A. Fairbrother, T. R. Gengenbach, F. Rovere, M. A. Abdo, K. M. McLean, and P. G. Hartley, “Scanning probe nanolithography and protein patterning of low-fouling plasma polymer multilayer films,” Adv. Mater. 18(23), 3079–3082 (2006).
    [CrossRef]
  5. I. Suez, M. Rolandi, S. A. Backer, A. Scholl, A. Doran, D. Okawa, A. Zettl, and J. M. J. Fréchet, “High-field scanning probe lithography in hexadecane: transitioning from field induced oxidation to solvent decomposition through surface modification,” Adv. Mater. 19(21), 3570–3573 (2007).
    [CrossRef]
  6. Y. Lin, M. H. Hong, W. J. Wang, Y. Z. Law, and T. C. Chong, “Sub-30 nm lithography with near-field scanning optical microscope combined with femtosecond laser,” Appl. Phys., A Mater. Sci. Process. 80(3), 461–465 (2005).
    [CrossRef]
  7. J. W. Kingsley, S. K. Ray, A. M. Adawi, G. J. Leggett, and D. G. Lidzey, “Optical nanolithography using a scanning near-field probe with an integrated light source,” Appl. Phys. Lett. 93(21), 213103 (2008).
    [CrossRef]
  8. M. M. Alkaisi, R. J. Blaikie, and S. J. McNab, “Nanolithography in the evanescent near field,” Adv. Mater. 13(12-13), 877–887 (2001).
    [CrossRef]
  9. J. G. Goodberlet and H. Kavak, “Patterning sub-50 nm features with near-field embedded-amplitude masks,” Appl. Phys. Lett. 81(7), 1315–1317 (2002).
    [CrossRef]
  10. W. Srituravanich, N. Fang, C. Sun, Q. Luo, and X. Zhang, “Plasmonic nanolithography,” Nano Lett. 4(6), 1085–1088 (2004).
    [CrossRef]
  11. E. X. Jin and X. Xu, “Obtaining super resolution light spot using surface plasmon assisted sharp ridge nanoaperture,” Appl. Phys. Lett. 86(11), 111106 (2005).
    [CrossRef]
  12. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
    [CrossRef] [PubMed]
  13. C. Peng, E. X. Jin, T. W. Clinton, and M. A. Seigler, “Cutoff wavelength of ridge waveguide near field transducer for disk data storage,” Opt. Express 16(20), 16043–16051 (2008).
    [CrossRef] [PubMed]
  14. K. Sendur and W. Challener, “Near-field radiation of bow-tie antennas and apertures at optical frequencies,” J. Microsc. 210(3), 279–283 (2003).
    [CrossRef] [PubMed]
  15. X. Shi and L. Hesselink, “Mechanisms for enhancing power throughput from planar nano-apertures for near-field optical data storage,” Jpn. J. Appl. Phys. 41(Part 1, No. 3B), 1632–1635 (2002).
    [CrossRef]
  16. Z. Rao, L. Hesselink, and J. S. Harris, “High-intensity bowtie-shaped nano-aperture vertical-cavity surface-emitting laser for near-field optics,” Opt. Lett. 32(14), 1995–1997 (2007).
    [CrossRef] [PubMed]
  17. I. P. Radko, V. S. Volkov, J. Beermann, A. B. Evlyukhin, T. Søndergaard, A. Boltasseva, S. I. Bozhevolnyi, “Plasmonic metasurfaces for waveguiding and field enhancement,” Laser Photon. Rev., 1–16 (2009) (to be published).
  18. L. Wang, S. M. Uppuluri, E. X. Jin, and X. Xu, “Nanolithography using high transmission nanoscale bowtie apertures,” Nano Lett. 6(3), 361–364 (2006).
    [CrossRef] [PubMed]
  19. L. Wang, E. X. Jin, S. M. Uppuluri, and X. Xu, “Contact optical nanolithography using nanoscale C-shaped apertures,” Opt. Express 14(21), 9902–9908 (2006).
    [CrossRef] [PubMed]
  20. N. Murphy-DuBay, L. Wang, E. C. Kinzel, S. M. Uppuluri, and X. Xu, “Nanopatterning using NSOM probes integrated with high transmission nanoscale bowtie aperture,” Opt. Express 16(4), 2584–2589 (2008).
    [CrossRef] [PubMed]
  21. Y. Wang, W. Srituravanich, C. Sun, and X. Zhang, “Plasmonic nearfield scanning probe with high transmission,” Nano Lett. 8(9), 3041–3045 (2008).
    [CrossRef] [PubMed]
  22. W. Srituravanich, L. Pan, Y. Wang, C. Sun, D. B. Bogy, and X. Zhang, “Flying plasmonic lens in the near field for high-speed nanolithography,” Nat. Nanotechnol. 3(12), 733–737 (2008).
    [CrossRef] [PubMed]
  23. K. Salaita, Y. Wang, J. Fragala, R. A. Vega, C. Liu, and C. A. Mirkin, “Massively parallel dip-pen nanolithography with 55 000-pen two-dimensional arrays,” Angew. Chem. Int. Ed. 45(43), 7220–7223 (2006).
    [CrossRef]
  24. F. Huo, Z. Zheng, G. Zheng, L. R. Giam, H. Zhang, and C. A. Mirkin, “Polymer pen lithography,” Science 321(5896), 1658–1660 (2008).
    [CrossRef] [PubMed]
  25. E. Lee and J. W. Hahn, “Modeling of three-dimensional photoresist profiles exposed by localized fields of high-transmission nano-apertures,” Nanotechnology 19(27), 275303 (2008).
    [CrossRef] [PubMed]
  26. E. X. Jin and X. Xu, “Radiation transfer through nanoscale apertures,” J. Quant. Spectrosc. Radiat. Transf. 93(1-3), 163–173 (2005).
    [CrossRef]
  27. M. Yan, L. Thylén, M. Qiu, and D. Parekh, “Feasibility study of nanoscaled optical waveguide based on near-resonant surface plasmon polariton,” Opt. Express 16(10), 7499–7507 (2008).
    [CrossRef] [PubMed]
  28. N. Marcuvitz, Waveguide handbook (Boston Technical Publishers, Lexington 1964).
  29. K. Hattori, K. Ito, Y. Soeno, M. Takai, and M. Matsuzaki, “Fabrication of discrete track perpendicular media for high recording density,” IEEE Trans. Magn. 40(4), 2510–2515 (2004).
    [CrossRef]
  30. K. Wu, T. C. Bailey, C. G. Willson, and J. G. Ekerdt, “Surface hydration and its effect on fluorinated SAM formation on SiO2 surfaces,” Langmuir 21(25), 11795–11801 (2005).
    [CrossRef] [PubMed]
  31. C. D. Lorenz, E. B. Webb, M. J. Stevens, M. Chandross, and G. S. Grest, “Frictional dynamics of perfluorinated self-assembled monolayers on amorphous SiO2,” Tribol. Lett. 19(2), 93–98 (2005).
    [CrossRef]
  32. H. J. Lee, S. Hyun, H. J. Lee, D. G. Choi, D. I. Lee, and E. S. Lee, “Adhesion promoter and anti-sticking layer effects on adhesion properties using symmetric AFM probe,” Adv. Mater. Res. 26–28, 1113–1116 (2007).
    [CrossRef]
  33. G. Y. Jung, Z. Li, W. Wu, Y. Chen, D. L. Olynick, S. Y. Wang, W. M. Tong, and R. S. Williams, “Vapor-phase self-assembled monolayer for improved mold release in nanoimprint lithography,” Langmuir 21(4), 1158–1161 (2005).
    [CrossRef] [PubMed]
  34. S. Kwon, W. Chang, and S. Jeong, “Shape and size variations during nanopatterning of photoresist using near-field scanning optical microscope,” Ultramicroscopy 105(1-4), 316–323 (2005).
    [CrossRef]

2008

J. W. Kingsley, S. K. Ray, A. M. Adawi, G. J. Leggett, and D. G. Lidzey, “Optical nanolithography using a scanning near-field probe with an integrated light source,” Appl. Phys. Lett. 93(21), 213103 (2008).
[CrossRef]

C. Peng, E. X. Jin, T. W. Clinton, and M. A. Seigler, “Cutoff wavelength of ridge waveguide near field transducer for disk data storage,” Opt. Express 16(20), 16043–16051 (2008).
[CrossRef] [PubMed]

N. Murphy-DuBay, L. Wang, E. C. Kinzel, S. M. Uppuluri, and X. Xu, “Nanopatterning using NSOM probes integrated with high transmission nanoscale bowtie aperture,” Opt. Express 16(4), 2584–2589 (2008).
[CrossRef] [PubMed]

Y. Wang, W. Srituravanich, C. Sun, and X. Zhang, “Plasmonic nearfield scanning probe with high transmission,” Nano Lett. 8(9), 3041–3045 (2008).
[CrossRef] [PubMed]

W. Srituravanich, L. Pan, Y. Wang, C. Sun, D. B. Bogy, and X. Zhang, “Flying plasmonic lens in the near field for high-speed nanolithography,” Nat. Nanotechnol. 3(12), 733–737 (2008).
[CrossRef] [PubMed]

F. Huo, Z. Zheng, G. Zheng, L. R. Giam, H. Zhang, and C. A. Mirkin, “Polymer pen lithography,” Science 321(5896), 1658–1660 (2008).
[CrossRef] [PubMed]

E. Lee and J. W. Hahn, “Modeling of three-dimensional photoresist profiles exposed by localized fields of high-transmission nano-apertures,” Nanotechnology 19(27), 275303 (2008).
[CrossRef] [PubMed]

M. Yan, L. Thylén, M. Qiu, and D. Parekh, “Feasibility study of nanoscaled optical waveguide based on near-resonant surface plasmon polariton,” Opt. Express 16(10), 7499–7507 (2008).
[CrossRef] [PubMed]

2007

Z. Rao, L. Hesselink, and J. S. Harris, “High-intensity bowtie-shaped nano-aperture vertical-cavity surface-emitting laser for near-field optics,” Opt. Lett. 32(14), 1995–1997 (2007).
[CrossRef] [PubMed]

H. J. Lee, S. Hyun, H. J. Lee, D. G. Choi, D. I. Lee, and E. S. Lee, “Adhesion promoter and anti-sticking layer effects on adhesion properties using symmetric AFM probe,” Adv. Mater. Res. 26–28, 1113–1116 (2007).
[CrossRef]

I. Suez, M. Rolandi, S. A. Backer, A. Scholl, A. Doran, D. Okawa, A. Zettl, and J. M. J. Fréchet, “High-field scanning probe lithography in hexadecane: transitioning from field induced oxidation to solvent decomposition through surface modification,” Adv. Mater. 19(21), 3570–3573 (2007).
[CrossRef]

2006

G. J. Leggett, “Scanning near-field photolithography--surface photochemistry with nanoscale spatial resolution,” Chem. Soc. Rev. 35(11), 1150–1161 (2006).
[CrossRef] [PubMed]

B. W. Muir, A. Fairbrother, T. R. Gengenbach, F. Rovere, M. A. Abdo, K. M. McLean, and P. G. Hartley, “Scanning probe nanolithography and protein patterning of low-fouling plasma polymer multilayer films,” Adv. Mater. 18(23), 3079–3082 (2006).
[CrossRef]

K. Salaita, Y. Wang, J. Fragala, R. A. Vega, C. Liu, and C. A. Mirkin, “Massively parallel dip-pen nanolithography with 55 000-pen two-dimensional arrays,” Angew. Chem. Int. Ed. 45(43), 7220–7223 (2006).
[CrossRef]

L. Wang, S. M. Uppuluri, E. X. Jin, and X. Xu, “Nanolithography using high transmission nanoscale bowtie apertures,” Nano Lett. 6(3), 361–364 (2006).
[CrossRef] [PubMed]

L. Wang, E. X. Jin, S. M. Uppuluri, and X. Xu, “Contact optical nanolithography using nanoscale C-shaped apertures,” Opt. Express 14(21), 9902–9908 (2006).
[CrossRef] [PubMed]

2005

E. X. Jin and X. Xu, “Radiation transfer through nanoscale apertures,” J. Quant. Spectrosc. Radiat. Transf. 93(1-3), 163–173 (2005).
[CrossRef]

K. Wu, T. C. Bailey, C. G. Willson, and J. G. Ekerdt, “Surface hydration and its effect on fluorinated SAM formation on SiO2 surfaces,” Langmuir 21(25), 11795–11801 (2005).
[CrossRef] [PubMed]

C. D. Lorenz, E. B. Webb, M. J. Stevens, M. Chandross, and G. S. Grest, “Frictional dynamics of perfluorinated self-assembled monolayers on amorphous SiO2,” Tribol. Lett. 19(2), 93–98 (2005).
[CrossRef]

G. Y. Jung, Z. Li, W. Wu, Y. Chen, D. L. Olynick, S. Y. Wang, W. M. Tong, and R. S. Williams, “Vapor-phase self-assembled monolayer for improved mold release in nanoimprint lithography,” Langmuir 21(4), 1158–1161 (2005).
[CrossRef] [PubMed]

S. Kwon, W. Chang, and S. Jeong, “Shape and size variations during nanopatterning of photoresist using near-field scanning optical microscope,” Ultramicroscopy 105(1-4), 316–323 (2005).
[CrossRef]

E. X. Jin and X. Xu, “Obtaining super resolution light spot using surface plasmon assisted sharp ridge nanoaperture,” Appl. Phys. Lett. 86(11), 111106 (2005).
[CrossRef]

J. Loos, “The Art of SPM: Scanning probe microscopy in materials science,” Adv. Mater. 17(15), 1821–1833 (2005).
[CrossRef]

Y. Lin, M. H. Hong, W. J. Wang, Y. Z. Law, and T. C. Chong, “Sub-30 nm lithography with near-field scanning optical microscope combined with femtosecond laser,” Appl. Phys., A Mater. Sci. Process. 80(3), 461–465 (2005).
[CrossRef]

2004

S. Sun and G. J. Leggett, “Matching the resolution of electron beam lithography by scanning near-field photolithography,” Nano Lett. 4(8), 1381–1384 (2004).
[CrossRef]

W. Srituravanich, N. Fang, C. Sun, Q. Luo, and X. Zhang, “Plasmonic nanolithography,” Nano Lett. 4(6), 1085–1088 (2004).
[CrossRef]

K. Hattori, K. Ito, Y. Soeno, M. Takai, and M. Matsuzaki, “Fabrication of discrete track perpendicular media for high recording density,” IEEE Trans. Magn. 40(4), 2510–2515 (2004).
[CrossRef]

2003

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

K. Sendur and W. Challener, “Near-field radiation of bow-tie antennas and apertures at optical frequencies,” J. Microsc. 210(3), 279–283 (2003).
[CrossRef] [PubMed]

2002

X. Shi and L. Hesselink, “Mechanisms for enhancing power throughput from planar nano-apertures for near-field optical data storage,” Jpn. J. Appl. Phys. 41(Part 1, No. 3B), 1632–1635 (2002).
[CrossRef]

J. G. Goodberlet and H. Kavak, “Patterning sub-50 nm features with near-field embedded-amplitude masks,” Appl. Phys. Lett. 81(7), 1315–1317 (2002).
[CrossRef]

2001

M. M. Alkaisi, R. J. Blaikie, and S. J. McNab, “Nanolithography in the evanescent near field,” Adv. Mater. 13(12-13), 877–887 (2001).
[CrossRef]

Abdo, M. A.

B. W. Muir, A. Fairbrother, T. R. Gengenbach, F. Rovere, M. A. Abdo, K. M. McLean, and P. G. Hartley, “Scanning probe nanolithography and protein patterning of low-fouling plasma polymer multilayer films,” Adv. Mater. 18(23), 3079–3082 (2006).
[CrossRef]

Adawi, A. M.

J. W. Kingsley, S. K. Ray, A. M. Adawi, G. J. Leggett, and D. G. Lidzey, “Optical nanolithography using a scanning near-field probe with an integrated light source,” Appl. Phys. Lett. 93(21), 213103 (2008).
[CrossRef]

Alkaisi, M. M.

M. M. Alkaisi, R. J. Blaikie, and S. J. McNab, “Nanolithography in the evanescent near field,” Adv. Mater. 13(12-13), 877–887 (2001).
[CrossRef]

Backer, S. A.

I. Suez, M. Rolandi, S. A. Backer, A. Scholl, A. Doran, D. Okawa, A. Zettl, and J. M. J. Fréchet, “High-field scanning probe lithography in hexadecane: transitioning from field induced oxidation to solvent decomposition through surface modification,” Adv. Mater. 19(21), 3570–3573 (2007).
[CrossRef]

Bailey, T. C.

K. Wu, T. C. Bailey, C. G. Willson, and J. G. Ekerdt, “Surface hydration and its effect on fluorinated SAM formation on SiO2 surfaces,” Langmuir 21(25), 11795–11801 (2005).
[CrossRef] [PubMed]

Barnes, W. L.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

Blaikie, R. J.

M. M. Alkaisi, R. J. Blaikie, and S. J. McNab, “Nanolithography in the evanescent near field,” Adv. Mater. 13(12-13), 877–887 (2001).
[CrossRef]

Bogy, D. B.

W. Srituravanich, L. Pan, Y. Wang, C. Sun, D. B. Bogy, and X. Zhang, “Flying plasmonic lens in the near field for high-speed nanolithography,” Nat. Nanotechnol. 3(12), 733–737 (2008).
[CrossRef] [PubMed]

Challener, W.

K. Sendur and W. Challener, “Near-field radiation of bow-tie antennas and apertures at optical frequencies,” J. Microsc. 210(3), 279–283 (2003).
[CrossRef] [PubMed]

Chandross, M.

C. D. Lorenz, E. B. Webb, M. J. Stevens, M. Chandross, and G. S. Grest, “Frictional dynamics of perfluorinated self-assembled monolayers on amorphous SiO2,” Tribol. Lett. 19(2), 93–98 (2005).
[CrossRef]

Chang, W.

S. Kwon, W. Chang, and S. Jeong, “Shape and size variations during nanopatterning of photoresist using near-field scanning optical microscope,” Ultramicroscopy 105(1-4), 316–323 (2005).
[CrossRef]

Chen, Y.

G. Y. Jung, Z. Li, W. Wu, Y. Chen, D. L. Olynick, S. Y. Wang, W. M. Tong, and R. S. Williams, “Vapor-phase self-assembled monolayer for improved mold release in nanoimprint lithography,” Langmuir 21(4), 1158–1161 (2005).
[CrossRef] [PubMed]

Choi, D. G.

H. J. Lee, S. Hyun, H. J. Lee, D. G. Choi, D. I. Lee, and E. S. Lee, “Adhesion promoter and anti-sticking layer effects on adhesion properties using symmetric AFM probe,” Adv. Mater. Res. 26–28, 1113–1116 (2007).
[CrossRef]

Chong, T. C.

Y. Lin, M. H. Hong, W. J. Wang, Y. Z. Law, and T. C. Chong, “Sub-30 nm lithography with near-field scanning optical microscope combined with femtosecond laser,” Appl. Phys., A Mater. Sci. Process. 80(3), 461–465 (2005).
[CrossRef]

Clinton, T. W.

Dereux, A.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

Doran, A.

I. Suez, M. Rolandi, S. A. Backer, A. Scholl, A. Doran, D. Okawa, A. Zettl, and J. M. J. Fréchet, “High-field scanning probe lithography in hexadecane: transitioning from field induced oxidation to solvent decomposition through surface modification,” Adv. Mater. 19(21), 3570–3573 (2007).
[CrossRef]

Ebbesen, T. W.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

Ekerdt, J. G.

K. Wu, T. C. Bailey, C. G. Willson, and J. G. Ekerdt, “Surface hydration and its effect on fluorinated SAM formation on SiO2 surfaces,” Langmuir 21(25), 11795–11801 (2005).
[CrossRef] [PubMed]

Fairbrother, A.

B. W. Muir, A. Fairbrother, T. R. Gengenbach, F. Rovere, M. A. Abdo, K. M. McLean, and P. G. Hartley, “Scanning probe nanolithography and protein patterning of low-fouling plasma polymer multilayer films,” Adv. Mater. 18(23), 3079–3082 (2006).
[CrossRef]

Fang, N.

W. Srituravanich, N. Fang, C. Sun, Q. Luo, and X. Zhang, “Plasmonic nanolithography,” Nano Lett. 4(6), 1085–1088 (2004).
[CrossRef]

Fragala, J.

K. Salaita, Y. Wang, J. Fragala, R. A. Vega, C. Liu, and C. A. Mirkin, “Massively parallel dip-pen nanolithography with 55 000-pen two-dimensional arrays,” Angew. Chem. Int. Ed. 45(43), 7220–7223 (2006).
[CrossRef]

Fréchet, J. M. J.

I. Suez, M. Rolandi, S. A. Backer, A. Scholl, A. Doran, D. Okawa, A. Zettl, and J. M. J. Fréchet, “High-field scanning probe lithography in hexadecane: transitioning from field induced oxidation to solvent decomposition through surface modification,” Adv. Mater. 19(21), 3570–3573 (2007).
[CrossRef]

Gengenbach, T. R.

B. W. Muir, A. Fairbrother, T. R. Gengenbach, F. Rovere, M. A. Abdo, K. M. McLean, and P. G. Hartley, “Scanning probe nanolithography and protein patterning of low-fouling plasma polymer multilayer films,” Adv. Mater. 18(23), 3079–3082 (2006).
[CrossRef]

Giam, L. R.

F. Huo, Z. Zheng, G. Zheng, L. R. Giam, H. Zhang, and C. A. Mirkin, “Polymer pen lithography,” Science 321(5896), 1658–1660 (2008).
[CrossRef] [PubMed]

Goodberlet, J. G.

J. G. Goodberlet and H. Kavak, “Patterning sub-50 nm features with near-field embedded-amplitude masks,” Appl. Phys. Lett. 81(7), 1315–1317 (2002).
[CrossRef]

Grest, G. S.

C. D. Lorenz, E. B. Webb, M. J. Stevens, M. Chandross, and G. S. Grest, “Frictional dynamics of perfluorinated self-assembled monolayers on amorphous SiO2,” Tribol. Lett. 19(2), 93–98 (2005).
[CrossRef]

Hahn, J. W.

E. Lee and J. W. Hahn, “Modeling of three-dimensional photoresist profiles exposed by localized fields of high-transmission nano-apertures,” Nanotechnology 19(27), 275303 (2008).
[CrossRef] [PubMed]

Harris, J. S.

Hartley, P. G.

B. W. Muir, A. Fairbrother, T. R. Gengenbach, F. Rovere, M. A. Abdo, K. M. McLean, and P. G. Hartley, “Scanning probe nanolithography and protein patterning of low-fouling plasma polymer multilayer films,” Adv. Mater. 18(23), 3079–3082 (2006).
[CrossRef]

Hattori, K.

K. Hattori, K. Ito, Y. Soeno, M. Takai, and M. Matsuzaki, “Fabrication of discrete track perpendicular media for high recording density,” IEEE Trans. Magn. 40(4), 2510–2515 (2004).
[CrossRef]

Hesselink, L.

Z. Rao, L. Hesselink, and J. S. Harris, “High-intensity bowtie-shaped nano-aperture vertical-cavity surface-emitting laser for near-field optics,” Opt. Lett. 32(14), 1995–1997 (2007).
[CrossRef] [PubMed]

X. Shi and L. Hesselink, “Mechanisms for enhancing power throughput from planar nano-apertures for near-field optical data storage,” Jpn. J. Appl. Phys. 41(Part 1, No. 3B), 1632–1635 (2002).
[CrossRef]

Hong, M. H.

Y. Lin, M. H. Hong, W. J. Wang, Y. Z. Law, and T. C. Chong, “Sub-30 nm lithography with near-field scanning optical microscope combined with femtosecond laser,” Appl. Phys., A Mater. Sci. Process. 80(3), 461–465 (2005).
[CrossRef]

Huo, F.

F. Huo, Z. Zheng, G. Zheng, L. R. Giam, H. Zhang, and C. A. Mirkin, “Polymer pen lithography,” Science 321(5896), 1658–1660 (2008).
[CrossRef] [PubMed]

Hyun, S.

H. J. Lee, S. Hyun, H. J. Lee, D. G. Choi, D. I. Lee, and E. S. Lee, “Adhesion promoter and anti-sticking layer effects on adhesion properties using symmetric AFM probe,” Adv. Mater. Res. 26–28, 1113–1116 (2007).
[CrossRef]

Ito, K.

K. Hattori, K. Ito, Y. Soeno, M. Takai, and M. Matsuzaki, “Fabrication of discrete track perpendicular media for high recording density,” IEEE Trans. Magn. 40(4), 2510–2515 (2004).
[CrossRef]

Jeong, S.

S. Kwon, W. Chang, and S. Jeong, “Shape and size variations during nanopatterning of photoresist using near-field scanning optical microscope,” Ultramicroscopy 105(1-4), 316–323 (2005).
[CrossRef]

Jin, E. X.

C. Peng, E. X. Jin, T. W. Clinton, and M. A. Seigler, “Cutoff wavelength of ridge waveguide near field transducer for disk data storage,” Opt. Express 16(20), 16043–16051 (2008).
[CrossRef] [PubMed]

L. Wang, S. M. Uppuluri, E. X. Jin, and X. Xu, “Nanolithography using high transmission nanoscale bowtie apertures,” Nano Lett. 6(3), 361–364 (2006).
[CrossRef] [PubMed]

L. Wang, E. X. Jin, S. M. Uppuluri, and X. Xu, “Contact optical nanolithography using nanoscale C-shaped apertures,” Opt. Express 14(21), 9902–9908 (2006).
[CrossRef] [PubMed]

E. X. Jin and X. Xu, “Obtaining super resolution light spot using surface plasmon assisted sharp ridge nanoaperture,” Appl. Phys. Lett. 86(11), 111106 (2005).
[CrossRef]

E. X. Jin and X. Xu, “Radiation transfer through nanoscale apertures,” J. Quant. Spectrosc. Radiat. Transf. 93(1-3), 163–173 (2005).
[CrossRef]

Jung, G. Y.

G. Y. Jung, Z. Li, W. Wu, Y. Chen, D. L. Olynick, S. Y. Wang, W. M. Tong, and R. S. Williams, “Vapor-phase self-assembled monolayer for improved mold release in nanoimprint lithography,” Langmuir 21(4), 1158–1161 (2005).
[CrossRef] [PubMed]

Kavak, H.

J. G. Goodberlet and H. Kavak, “Patterning sub-50 nm features with near-field embedded-amplitude masks,” Appl. Phys. Lett. 81(7), 1315–1317 (2002).
[CrossRef]

Kingsley, J. W.

J. W. Kingsley, S. K. Ray, A. M. Adawi, G. J. Leggett, and D. G. Lidzey, “Optical nanolithography using a scanning near-field probe with an integrated light source,” Appl. Phys. Lett. 93(21), 213103 (2008).
[CrossRef]

Kinzel, E. C.

Kwon, S.

S. Kwon, W. Chang, and S. Jeong, “Shape and size variations during nanopatterning of photoresist using near-field scanning optical microscope,” Ultramicroscopy 105(1-4), 316–323 (2005).
[CrossRef]

Law, Y. Z.

Y. Lin, M. H. Hong, W. J. Wang, Y. Z. Law, and T. C. Chong, “Sub-30 nm lithography with near-field scanning optical microscope combined with femtosecond laser,” Appl. Phys., A Mater. Sci. Process. 80(3), 461–465 (2005).
[CrossRef]

Lee, D. I.

H. J. Lee, S. Hyun, H. J. Lee, D. G. Choi, D. I. Lee, and E. S. Lee, “Adhesion promoter and anti-sticking layer effects on adhesion properties using symmetric AFM probe,” Adv. Mater. Res. 26–28, 1113–1116 (2007).
[CrossRef]

Lee, E.

E. Lee and J. W. Hahn, “Modeling of three-dimensional photoresist profiles exposed by localized fields of high-transmission nano-apertures,” Nanotechnology 19(27), 275303 (2008).
[CrossRef] [PubMed]

Lee, E. S.

H. J. Lee, S. Hyun, H. J. Lee, D. G. Choi, D. I. Lee, and E. S. Lee, “Adhesion promoter and anti-sticking layer effects on adhesion properties using symmetric AFM probe,” Adv. Mater. Res. 26–28, 1113–1116 (2007).
[CrossRef]

Lee, H. J.

H. J. Lee, S. Hyun, H. J. Lee, D. G. Choi, D. I. Lee, and E. S. Lee, “Adhesion promoter and anti-sticking layer effects on adhesion properties using symmetric AFM probe,” Adv. Mater. Res. 26–28, 1113–1116 (2007).
[CrossRef]

H. J. Lee, S. Hyun, H. J. Lee, D. G. Choi, D. I. Lee, and E. S. Lee, “Adhesion promoter and anti-sticking layer effects on adhesion properties using symmetric AFM probe,” Adv. Mater. Res. 26–28, 1113–1116 (2007).
[CrossRef]

Leggett, G. J.

J. W. Kingsley, S. K. Ray, A. M. Adawi, G. J. Leggett, and D. G. Lidzey, “Optical nanolithography using a scanning near-field probe with an integrated light source,” Appl. Phys. Lett. 93(21), 213103 (2008).
[CrossRef]

G. J. Leggett, “Scanning near-field photolithography--surface photochemistry with nanoscale spatial resolution,” Chem. Soc. Rev. 35(11), 1150–1161 (2006).
[CrossRef] [PubMed]

S. Sun and G. J. Leggett, “Matching the resolution of electron beam lithography by scanning near-field photolithography,” Nano Lett. 4(8), 1381–1384 (2004).
[CrossRef]

Li, Z.

G. Y. Jung, Z. Li, W. Wu, Y. Chen, D. L. Olynick, S. Y. Wang, W. M. Tong, and R. S. Williams, “Vapor-phase self-assembled monolayer for improved mold release in nanoimprint lithography,” Langmuir 21(4), 1158–1161 (2005).
[CrossRef] [PubMed]

Lidzey, D. G.

J. W. Kingsley, S. K. Ray, A. M. Adawi, G. J. Leggett, and D. G. Lidzey, “Optical nanolithography using a scanning near-field probe with an integrated light source,” Appl. Phys. Lett. 93(21), 213103 (2008).
[CrossRef]

Lin, Y.

Y. Lin, M. H. Hong, W. J. Wang, Y. Z. Law, and T. C. Chong, “Sub-30 nm lithography with near-field scanning optical microscope combined with femtosecond laser,” Appl. Phys., A Mater. Sci. Process. 80(3), 461–465 (2005).
[CrossRef]

Liu, C.

K. Salaita, Y. Wang, J. Fragala, R. A. Vega, C. Liu, and C. A. Mirkin, “Massively parallel dip-pen nanolithography with 55 000-pen two-dimensional arrays,” Angew. Chem. Int. Ed. 45(43), 7220–7223 (2006).
[CrossRef]

Loos, J.

J. Loos, “The Art of SPM: Scanning probe microscopy in materials science,” Adv. Mater. 17(15), 1821–1833 (2005).
[CrossRef]

Lorenz, C. D.

C. D. Lorenz, E. B. Webb, M. J. Stevens, M. Chandross, and G. S. Grest, “Frictional dynamics of perfluorinated self-assembled monolayers on amorphous SiO2,” Tribol. Lett. 19(2), 93–98 (2005).
[CrossRef]

Luo, Q.

W. Srituravanich, N. Fang, C. Sun, Q. Luo, and X. Zhang, “Plasmonic nanolithography,” Nano Lett. 4(6), 1085–1088 (2004).
[CrossRef]

Matsuzaki, M.

K. Hattori, K. Ito, Y. Soeno, M. Takai, and M. Matsuzaki, “Fabrication of discrete track perpendicular media for high recording density,” IEEE Trans. Magn. 40(4), 2510–2515 (2004).
[CrossRef]

McLean, K. M.

B. W. Muir, A. Fairbrother, T. R. Gengenbach, F. Rovere, M. A. Abdo, K. M. McLean, and P. G. Hartley, “Scanning probe nanolithography and protein patterning of low-fouling plasma polymer multilayer films,” Adv. Mater. 18(23), 3079–3082 (2006).
[CrossRef]

McNab, S. J.

M. M. Alkaisi, R. J. Blaikie, and S. J. McNab, “Nanolithography in the evanescent near field,” Adv. Mater. 13(12-13), 877–887 (2001).
[CrossRef]

Mirkin, C. A.

F. Huo, Z. Zheng, G. Zheng, L. R. Giam, H. Zhang, and C. A. Mirkin, “Polymer pen lithography,” Science 321(5896), 1658–1660 (2008).
[CrossRef] [PubMed]

K. Salaita, Y. Wang, J. Fragala, R. A. Vega, C. Liu, and C. A. Mirkin, “Massively parallel dip-pen nanolithography with 55 000-pen two-dimensional arrays,” Angew. Chem. Int. Ed. 45(43), 7220–7223 (2006).
[CrossRef]

Muir, B. W.

B. W. Muir, A. Fairbrother, T. R. Gengenbach, F. Rovere, M. A. Abdo, K. M. McLean, and P. G. Hartley, “Scanning probe nanolithography and protein patterning of low-fouling plasma polymer multilayer films,” Adv. Mater. 18(23), 3079–3082 (2006).
[CrossRef]

Murphy-DuBay, N.

Okawa, D.

I. Suez, M. Rolandi, S. A. Backer, A. Scholl, A. Doran, D. Okawa, A. Zettl, and J. M. J. Fréchet, “High-field scanning probe lithography in hexadecane: transitioning from field induced oxidation to solvent decomposition through surface modification,” Adv. Mater. 19(21), 3570–3573 (2007).
[CrossRef]

Olynick, D. L.

G. Y. Jung, Z. Li, W. Wu, Y. Chen, D. L. Olynick, S. Y. Wang, W. M. Tong, and R. S. Williams, “Vapor-phase self-assembled monolayer for improved mold release in nanoimprint lithography,” Langmuir 21(4), 1158–1161 (2005).
[CrossRef] [PubMed]

Pan, L.

W. Srituravanich, L. Pan, Y. Wang, C. Sun, D. B. Bogy, and X. Zhang, “Flying plasmonic lens in the near field for high-speed nanolithography,” Nat. Nanotechnol. 3(12), 733–737 (2008).
[CrossRef] [PubMed]

Parekh, D.

Peng, C.

Qiu, M.

Rao, Z.

Ray, S. K.

J. W. Kingsley, S. K. Ray, A. M. Adawi, G. J. Leggett, and D. G. Lidzey, “Optical nanolithography using a scanning near-field probe with an integrated light source,” Appl. Phys. Lett. 93(21), 213103 (2008).
[CrossRef]

Rolandi, M.

I. Suez, M. Rolandi, S. A. Backer, A. Scholl, A. Doran, D. Okawa, A. Zettl, and J. M. J. Fréchet, “High-field scanning probe lithography in hexadecane: transitioning from field induced oxidation to solvent decomposition through surface modification,” Adv. Mater. 19(21), 3570–3573 (2007).
[CrossRef]

Rovere, F.

B. W. Muir, A. Fairbrother, T. R. Gengenbach, F. Rovere, M. A. Abdo, K. M. McLean, and P. G. Hartley, “Scanning probe nanolithography and protein patterning of low-fouling plasma polymer multilayer films,” Adv. Mater. 18(23), 3079–3082 (2006).
[CrossRef]

Salaita, K.

K. Salaita, Y. Wang, J. Fragala, R. A. Vega, C. Liu, and C. A. Mirkin, “Massively parallel dip-pen nanolithography with 55 000-pen two-dimensional arrays,” Angew. Chem. Int. Ed. 45(43), 7220–7223 (2006).
[CrossRef]

Scholl, A.

I. Suez, M. Rolandi, S. A. Backer, A. Scholl, A. Doran, D. Okawa, A. Zettl, and J. M. J. Fréchet, “High-field scanning probe lithography in hexadecane: transitioning from field induced oxidation to solvent decomposition through surface modification,” Adv. Mater. 19(21), 3570–3573 (2007).
[CrossRef]

Seigler, M. A.

Sendur, K.

K. Sendur and W. Challener, “Near-field radiation of bow-tie antennas and apertures at optical frequencies,” J. Microsc. 210(3), 279–283 (2003).
[CrossRef] [PubMed]

Shi, X.

X. Shi and L. Hesselink, “Mechanisms for enhancing power throughput from planar nano-apertures for near-field optical data storage,” Jpn. J. Appl. Phys. 41(Part 1, No. 3B), 1632–1635 (2002).
[CrossRef]

Soeno, Y.

K. Hattori, K. Ito, Y. Soeno, M. Takai, and M. Matsuzaki, “Fabrication of discrete track perpendicular media for high recording density,” IEEE Trans. Magn. 40(4), 2510–2515 (2004).
[CrossRef]

Srituravanich, W.

W. Srituravanich, L. Pan, Y. Wang, C. Sun, D. B. Bogy, and X. Zhang, “Flying plasmonic lens in the near field for high-speed nanolithography,” Nat. Nanotechnol. 3(12), 733–737 (2008).
[CrossRef] [PubMed]

Y. Wang, W. Srituravanich, C. Sun, and X. Zhang, “Plasmonic nearfield scanning probe with high transmission,” Nano Lett. 8(9), 3041–3045 (2008).
[CrossRef] [PubMed]

W. Srituravanich, N. Fang, C. Sun, Q. Luo, and X. Zhang, “Plasmonic nanolithography,” Nano Lett. 4(6), 1085–1088 (2004).
[CrossRef]

Stevens, M. J.

C. D. Lorenz, E. B. Webb, M. J. Stevens, M. Chandross, and G. S. Grest, “Frictional dynamics of perfluorinated self-assembled monolayers on amorphous SiO2,” Tribol. Lett. 19(2), 93–98 (2005).
[CrossRef]

Suez, I.

I. Suez, M. Rolandi, S. A. Backer, A. Scholl, A. Doran, D. Okawa, A. Zettl, and J. M. J. Fréchet, “High-field scanning probe lithography in hexadecane: transitioning from field induced oxidation to solvent decomposition through surface modification,” Adv. Mater. 19(21), 3570–3573 (2007).
[CrossRef]

Sun, C.

Y. Wang, W. Srituravanich, C. Sun, and X. Zhang, “Plasmonic nearfield scanning probe with high transmission,” Nano Lett. 8(9), 3041–3045 (2008).
[CrossRef] [PubMed]

W. Srituravanich, L. Pan, Y. Wang, C. Sun, D. B. Bogy, and X. Zhang, “Flying plasmonic lens in the near field for high-speed nanolithography,” Nat. Nanotechnol. 3(12), 733–737 (2008).
[CrossRef] [PubMed]

W. Srituravanich, N. Fang, C. Sun, Q. Luo, and X. Zhang, “Plasmonic nanolithography,” Nano Lett. 4(6), 1085–1088 (2004).
[CrossRef]

Sun, S.

S. Sun and G. J. Leggett, “Matching the resolution of electron beam lithography by scanning near-field photolithography,” Nano Lett. 4(8), 1381–1384 (2004).
[CrossRef]

Takai, M.

K. Hattori, K. Ito, Y. Soeno, M. Takai, and M. Matsuzaki, “Fabrication of discrete track perpendicular media for high recording density,” IEEE Trans. Magn. 40(4), 2510–2515 (2004).
[CrossRef]

Thylén, L.

Tong, W. M.

G. Y. Jung, Z. Li, W. Wu, Y. Chen, D. L. Olynick, S. Y. Wang, W. M. Tong, and R. S. Williams, “Vapor-phase self-assembled monolayer for improved mold release in nanoimprint lithography,” Langmuir 21(4), 1158–1161 (2005).
[CrossRef] [PubMed]

Uppuluri, S. M.

Vega, R. A.

K. Salaita, Y. Wang, J. Fragala, R. A. Vega, C. Liu, and C. A. Mirkin, “Massively parallel dip-pen nanolithography with 55 000-pen two-dimensional arrays,” Angew. Chem. Int. Ed. 45(43), 7220–7223 (2006).
[CrossRef]

Wang, L.

Wang, S. Y.

G. Y. Jung, Z. Li, W. Wu, Y. Chen, D. L. Olynick, S. Y. Wang, W. M. Tong, and R. S. Williams, “Vapor-phase self-assembled monolayer for improved mold release in nanoimprint lithography,” Langmuir 21(4), 1158–1161 (2005).
[CrossRef] [PubMed]

Wang, W. J.

Y. Lin, M. H. Hong, W. J. Wang, Y. Z. Law, and T. C. Chong, “Sub-30 nm lithography with near-field scanning optical microscope combined with femtosecond laser,” Appl. Phys., A Mater. Sci. Process. 80(3), 461–465 (2005).
[CrossRef]

Wang, Y.

Y. Wang, W. Srituravanich, C. Sun, and X. Zhang, “Plasmonic nearfield scanning probe with high transmission,” Nano Lett. 8(9), 3041–3045 (2008).
[CrossRef] [PubMed]

W. Srituravanich, L. Pan, Y. Wang, C. Sun, D. B. Bogy, and X. Zhang, “Flying plasmonic lens in the near field for high-speed nanolithography,” Nat. Nanotechnol. 3(12), 733–737 (2008).
[CrossRef] [PubMed]

K. Salaita, Y. Wang, J. Fragala, R. A. Vega, C. Liu, and C. A. Mirkin, “Massively parallel dip-pen nanolithography with 55 000-pen two-dimensional arrays,” Angew. Chem. Int. Ed. 45(43), 7220–7223 (2006).
[CrossRef]

Webb, E. B.

C. D. Lorenz, E. B. Webb, M. J. Stevens, M. Chandross, and G. S. Grest, “Frictional dynamics of perfluorinated self-assembled monolayers on amorphous SiO2,” Tribol. Lett. 19(2), 93–98 (2005).
[CrossRef]

Williams, R. S.

G. Y. Jung, Z. Li, W. Wu, Y. Chen, D. L. Olynick, S. Y. Wang, W. M. Tong, and R. S. Williams, “Vapor-phase self-assembled monolayer for improved mold release in nanoimprint lithography,” Langmuir 21(4), 1158–1161 (2005).
[CrossRef] [PubMed]

Willson, C. G.

K. Wu, T. C. Bailey, C. G. Willson, and J. G. Ekerdt, “Surface hydration and its effect on fluorinated SAM formation on SiO2 surfaces,” Langmuir 21(25), 11795–11801 (2005).
[CrossRef] [PubMed]

Wu, K.

K. Wu, T. C. Bailey, C. G. Willson, and J. G. Ekerdt, “Surface hydration and its effect on fluorinated SAM formation on SiO2 surfaces,” Langmuir 21(25), 11795–11801 (2005).
[CrossRef] [PubMed]

Wu, W.

G. Y. Jung, Z. Li, W. Wu, Y. Chen, D. L. Olynick, S. Y. Wang, W. M. Tong, and R. S. Williams, “Vapor-phase self-assembled monolayer for improved mold release in nanoimprint lithography,” Langmuir 21(4), 1158–1161 (2005).
[CrossRef] [PubMed]

Xu, X.

N. Murphy-DuBay, L. Wang, E. C. Kinzel, S. M. Uppuluri, and X. Xu, “Nanopatterning using NSOM probes integrated with high transmission nanoscale bowtie aperture,” Opt. Express 16(4), 2584–2589 (2008).
[CrossRef] [PubMed]

L. Wang, S. M. Uppuluri, E. X. Jin, and X. Xu, “Nanolithography using high transmission nanoscale bowtie apertures,” Nano Lett. 6(3), 361–364 (2006).
[CrossRef] [PubMed]

L. Wang, E. X. Jin, S. M. Uppuluri, and X. Xu, “Contact optical nanolithography using nanoscale C-shaped apertures,” Opt. Express 14(21), 9902–9908 (2006).
[CrossRef] [PubMed]

E. X. Jin and X. Xu, “Obtaining super resolution light spot using surface plasmon assisted sharp ridge nanoaperture,” Appl. Phys. Lett. 86(11), 111106 (2005).
[CrossRef]

E. X. Jin and X. Xu, “Radiation transfer through nanoscale apertures,” J. Quant. Spectrosc. Radiat. Transf. 93(1-3), 163–173 (2005).
[CrossRef]

Yan, M.

Zettl, A.

I. Suez, M. Rolandi, S. A. Backer, A. Scholl, A. Doran, D. Okawa, A. Zettl, and J. M. J. Fréchet, “High-field scanning probe lithography in hexadecane: transitioning from field induced oxidation to solvent decomposition through surface modification,” Adv. Mater. 19(21), 3570–3573 (2007).
[CrossRef]

Zhang, H.

F. Huo, Z. Zheng, G. Zheng, L. R. Giam, H. Zhang, and C. A. Mirkin, “Polymer pen lithography,” Science 321(5896), 1658–1660 (2008).
[CrossRef] [PubMed]

Zhang, X.

W. Srituravanich, L. Pan, Y. Wang, C. Sun, D. B. Bogy, and X. Zhang, “Flying plasmonic lens in the near field for high-speed nanolithography,” Nat. Nanotechnol. 3(12), 733–737 (2008).
[CrossRef] [PubMed]

Y. Wang, W. Srituravanich, C. Sun, and X. Zhang, “Plasmonic nearfield scanning probe with high transmission,” Nano Lett. 8(9), 3041–3045 (2008).
[CrossRef] [PubMed]

W. Srituravanich, N. Fang, C. Sun, Q. Luo, and X. Zhang, “Plasmonic nanolithography,” Nano Lett. 4(6), 1085–1088 (2004).
[CrossRef]

Zheng, G.

F. Huo, Z. Zheng, G. Zheng, L. R. Giam, H. Zhang, and C. A. Mirkin, “Polymer pen lithography,” Science 321(5896), 1658–1660 (2008).
[CrossRef] [PubMed]

Zheng, Z.

F. Huo, Z. Zheng, G. Zheng, L. R. Giam, H. Zhang, and C. A. Mirkin, “Polymer pen lithography,” Science 321(5896), 1658–1660 (2008).
[CrossRef] [PubMed]

Adv. Mater.

J. Loos, “The Art of SPM: Scanning probe microscopy in materials science,” Adv. Mater. 17(15), 1821–1833 (2005).
[CrossRef]

B. W. Muir, A. Fairbrother, T. R. Gengenbach, F. Rovere, M. A. Abdo, K. M. McLean, and P. G. Hartley, “Scanning probe nanolithography and protein patterning of low-fouling plasma polymer multilayer films,” Adv. Mater. 18(23), 3079–3082 (2006).
[CrossRef]

I. Suez, M. Rolandi, S. A. Backer, A. Scholl, A. Doran, D. Okawa, A. Zettl, and J. M. J. Fréchet, “High-field scanning probe lithography in hexadecane: transitioning from field induced oxidation to solvent decomposition through surface modification,” Adv. Mater. 19(21), 3570–3573 (2007).
[CrossRef]

M. M. Alkaisi, R. J. Blaikie, and S. J. McNab, “Nanolithography in the evanescent near field,” Adv. Mater. 13(12-13), 877–887 (2001).
[CrossRef]

Adv. Mater. Res.

H. J. Lee, S. Hyun, H. J. Lee, D. G. Choi, D. I. Lee, and E. S. Lee, “Adhesion promoter and anti-sticking layer effects on adhesion properties using symmetric AFM probe,” Adv. Mater. Res. 26–28, 1113–1116 (2007).
[CrossRef]

Angew. Chem. Int. Ed.

K. Salaita, Y. Wang, J. Fragala, R. A. Vega, C. Liu, and C. A. Mirkin, “Massively parallel dip-pen nanolithography with 55 000-pen two-dimensional arrays,” Angew. Chem. Int. Ed. 45(43), 7220–7223 (2006).
[CrossRef]

Appl. Phys. Lett.

J. G. Goodberlet and H. Kavak, “Patterning sub-50 nm features with near-field embedded-amplitude masks,” Appl. Phys. Lett. 81(7), 1315–1317 (2002).
[CrossRef]

J. W. Kingsley, S. K. Ray, A. M. Adawi, G. J. Leggett, and D. G. Lidzey, “Optical nanolithography using a scanning near-field probe with an integrated light source,” Appl. Phys. Lett. 93(21), 213103 (2008).
[CrossRef]

E. X. Jin and X. Xu, “Obtaining super resolution light spot using surface plasmon assisted sharp ridge nanoaperture,” Appl. Phys. Lett. 86(11), 111106 (2005).
[CrossRef]

Appl. Phys., A Mater. Sci. Process.

Y. Lin, M. H. Hong, W. J. Wang, Y. Z. Law, and T. C. Chong, “Sub-30 nm lithography with near-field scanning optical microscope combined with femtosecond laser,” Appl. Phys., A Mater. Sci. Process. 80(3), 461–465 (2005).
[CrossRef]

Chem. Soc. Rev.

G. J. Leggett, “Scanning near-field photolithography--surface photochemistry with nanoscale spatial resolution,” Chem. Soc. Rev. 35(11), 1150–1161 (2006).
[CrossRef] [PubMed]

IEEE Trans. Magn.

K. Hattori, K. Ito, Y. Soeno, M. Takai, and M. Matsuzaki, “Fabrication of discrete track perpendicular media for high recording density,” IEEE Trans. Magn. 40(4), 2510–2515 (2004).
[CrossRef]

J. Microsc.

K. Sendur and W. Challener, “Near-field radiation of bow-tie antennas and apertures at optical frequencies,” J. Microsc. 210(3), 279–283 (2003).
[CrossRef] [PubMed]

J. Quant. Spectrosc. Radiat. Transf.

E. X. Jin and X. Xu, “Radiation transfer through nanoscale apertures,” J. Quant. Spectrosc. Radiat. Transf. 93(1-3), 163–173 (2005).
[CrossRef]

Jpn. J. Appl. Phys.

X. Shi and L. Hesselink, “Mechanisms for enhancing power throughput from planar nano-apertures for near-field optical data storage,” Jpn. J. Appl. Phys. 41(Part 1, No. 3B), 1632–1635 (2002).
[CrossRef]

Langmuir

K. Wu, T. C. Bailey, C. G. Willson, and J. G. Ekerdt, “Surface hydration and its effect on fluorinated SAM formation on SiO2 surfaces,” Langmuir 21(25), 11795–11801 (2005).
[CrossRef] [PubMed]

G. Y. Jung, Z. Li, W. Wu, Y. Chen, D. L. Olynick, S. Y. Wang, W. M. Tong, and R. S. Williams, “Vapor-phase self-assembled monolayer for improved mold release in nanoimprint lithography,” Langmuir 21(4), 1158–1161 (2005).
[CrossRef] [PubMed]

Nano Lett.

Y. Wang, W. Srituravanich, C. Sun, and X. Zhang, “Plasmonic nearfield scanning probe with high transmission,” Nano Lett. 8(9), 3041–3045 (2008).
[CrossRef] [PubMed]

L. Wang, S. M. Uppuluri, E. X. Jin, and X. Xu, “Nanolithography using high transmission nanoscale bowtie apertures,” Nano Lett. 6(3), 361–364 (2006).
[CrossRef] [PubMed]

W. Srituravanich, N. Fang, C. Sun, Q. Luo, and X. Zhang, “Plasmonic nanolithography,” Nano Lett. 4(6), 1085–1088 (2004).
[CrossRef]

S. Sun and G. J. Leggett, “Matching the resolution of electron beam lithography by scanning near-field photolithography,” Nano Lett. 4(8), 1381–1384 (2004).
[CrossRef]

Nanotechnology

E. Lee and J. W. Hahn, “Modeling of three-dimensional photoresist profiles exposed by localized fields of high-transmission nano-apertures,” Nanotechnology 19(27), 275303 (2008).
[CrossRef] [PubMed]

Nat. Nanotechnol.

W. Srituravanich, L. Pan, Y. Wang, C. Sun, D. B. Bogy, and X. Zhang, “Flying plasmonic lens in the near field for high-speed nanolithography,” Nat. Nanotechnol. 3(12), 733–737 (2008).
[CrossRef] [PubMed]

Nature

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

Science

F. Huo, Z. Zheng, G. Zheng, L. R. Giam, H. Zhang, and C. A. Mirkin, “Polymer pen lithography,” Science 321(5896), 1658–1660 (2008).
[CrossRef] [PubMed]

Tribol. Lett.

C. D. Lorenz, E. B. Webb, M. J. Stevens, M. Chandross, and G. S. Grest, “Frictional dynamics of perfluorinated self-assembled monolayers on amorphous SiO2,” Tribol. Lett. 19(2), 93–98 (2005).
[CrossRef]

Ultramicroscopy

S. Kwon, W. Chang, and S. Jeong, “Shape and size variations during nanopatterning of photoresist using near-field scanning optical microscope,” Ultramicroscopy 105(1-4), 316–323 (2005).
[CrossRef]

Other

N. Marcuvitz, Waveguide handbook (Boston Technical Publishers, Lexington 1964).

I. P. Radko, V. S. Volkov, J. Beermann, A. B. Evlyukhin, T. Søndergaard, A. Boltasseva, S. I. Bozhevolnyi, “Plasmonic metasurfaces for waveguiding and field enhancement,” Laser Photon. Rev., 1–16 (2009) (to be published).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) A bowtie-shaped aperture designed with air gap, (b) designed with silica glass as the gap material. In both case, glass is used as a substrate of the aperture. For the FDTD calculation, we assume the x-polarized light is incident on the aperture and the gap distance between the aperture and PR is 10 nm. T is the thickness of metal film and O and R are the dimensions of the outline and ridge gap, respectively, of the bowtie-shaped nano-aperture. The lower boxes in each figure show the total field distribution in the observation plane, indicated by dotted lines in each aperture.

Fig. 2
Fig. 2

Schematic of the plasmonic lithography system with a contact probe. The contact probe is fabricated in a 120 nm thick aluminum thin film. The aperture hole is filled with silica glass and covered with a 10 nm thick silica glass film for maintaining constant gap distance between the aperture and PR. A SAM is coated on the bottom surface of the silica glass to reduce friction.

Fig. 3
Fig. 3

AFM image of the high-resolution line pattern recorded at 20 μm/s scanning speed. Laser power is 10 μW and illumination beam diameter is 5 μm.

Fig. 4
Fig. 4

Width and depth of line patterns plotted as a function of relative exposure dose (E/E0 ). In the experiments, we set the scan speed at 20 μm/s with illumination beam diameter of 5 μm and change the laser power from 10 to 40 μW.

Fig. 5
Fig. 5

Evaluation of line pattern quality showing LWR and DR as a function of line width.

Fig. 6
Fig. 6

AFM images of high-speed line patterns recorded at 10 mm/s. (a) A single line pattern of 50 nm width (FWHM) and (b) multiple line pattern of 150 nm width with 1 μm pitch. Laser power is given by (a) 0.5 mW and (b) 1.25 mW with a tightly focused beam of ~340 nm diameter.

Tables (1)

Tables Icon

Table 1 Dimensions and specifications of the bowtie-shaped nano-apertures in air and silica glass, respectively

Metrics