Abstract

Optical singularities associated with the energy flow of two closely spaced dielectric-core gold-shell nanocylinders are studied by two-dimensional finite difference time domain method. The simulation results show that optical vortices as well as saddle points can be observed in the energy flow pattern of light interacting with the core-shell nanocylinder pair in its in-phase symmetric dipolar plasmon mode. The rotating direction of the optical vortices can be tuned by varying the width of the gap between the nanocylinder pair and the value of the permittivity of the dielectric core.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. F. Nye and M. V. Berry, “Dislocations in wave trains,” Proc. R. Soc. Lond. A Math. Phys. Sci. 336(1605), 165–190 (1974).
    [CrossRef]
  2. J. F. Nye, Natural Focusing and the Fine Stuctures of Light (Institute of Physics, Bristol, 1999).
  3. M. V. Bashevoy, V. A. Fedotov, and N. I. Zheludev, “Optical whirlpool on an absorbing metallic nanoparticle,” Opt. Express 13(21), 8372–8379 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?URI=OPEX-13-21-8372 .
    [CrossRef] [PubMed]
  4. M. I. Tribelsky and B. S. Luk’yanchuk, “Anomalous light scattering by small particles,” Phys. Rev. Lett. 97(26), 263902 (2006).
    [CrossRef]
  5. Yu. S. Kivshar and D. E. Pelinovsky, “Self-focusing and transverse instabilities of solitary waves,” Phys. Rep. 331(4), 117–195 (2000).
    [CrossRef]
  6. G. D’Aguanno, N. Mattiucci, M. Bloemer, and A. Desyatnikov, “Optical vortices during a superresolution process in a metamaterial,” Phys. Rev. A 77(4), 043825 (2008).
    [CrossRef]
  7. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
    [CrossRef]
  8. H. F. Schouten, T. D. Visser, G. Gbur, D. Lenstra, and H. Blok, “Creation and annihilation of phase singularities near a sub-wavelength slit,” Opt. Express 11(4), 371–380 (2003), http://www.opticsinfobase.org/oe/abstract.cfm?&uri=oe-11-4-371 .
    [CrossRef] [PubMed]
  9. H. F. Schouten, T. D. Visser, G. Gbur, D. Lenstra, and H. Blok, “The diffraction of light by narrow slits in plates of different materials,” J. Opt. A, Pure Appl. Opt. 6(5), S277–S280 (2004).
    [CrossRef]
  10. A. Ashkin and J. M. Dziedzic, “Optical trapping and manipulation of viruses and bacteria,” Science 235(4795), 1517–1520 (1987).
    [CrossRef] [PubMed]
  11. K. T. Gahagan and G. A. Swartzlander, “Simultaneous trapping of low index and high index microparticles observed with an optical vortex trap,” J. Opt. Soc. Am. B 16(4), 533–537 (1999).
    [CrossRef]
  12. H. Wang, D. W. Brandl, F. Le, P. Nordlander, and N. J. Halas, “Nanorice: a hybrid plasmonic nanostructure,” Nano Lett. 6(4), 827–832 (2006).
    [CrossRef] [PubMed]
  13. J. Aizpurua, P. Hanarp, D. S. Sutherland, M. Käll, G. W. Bryant, and F. J. García de Abajo, “Optical properties of gold nanorings,” Phys. Rev. Lett. 90(5), 057401 (2003).
    [CrossRef] [PubMed]
  14. J. B. Lassiter, J. Aizpurua, L. I. Hernandez, D. W. Brandl, I. Romero, S. Lal, J. H. Hafner, P. Nordlander, and N. J. Halas, “Close encounters between two nanoshells,” Nano Lett. 8(4), 1212–1218 (2008).
    [CrossRef] [PubMed]
  15. M. Moskovits, “Surface enhanced spectroscopy,” Rev. Mod. Phys. 57(3), 783–826 (1985).
    [CrossRef]
  16. A. Taflove, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, Boston, 1995).
  17. J. Y. Lu and Y. H. Chang, “Implementation of an efficient dielectric function into finite difference time domain method for simulating the coupling between localized surface plasmon of nanostructures,” Superlattices Microstruct. (to be published).
  18. P. Johnson and R. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
    [CrossRef]
  19. H. A. Yousif, R. E. Mattis, and K. Kozminski, Appl. Opt. 9, 4012–4024 (1994).
  20. E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302(5644), 419–422 (2003).
    [CrossRef] [PubMed]
  21. N. K. Grady, N. J. Halas, and P. Nordlander, “Influence of dielectric function properties on the optical response of plasmon resonant metallic nanoparticles,” Chem. Phys. Lett. 399(1-3), 167–171 (2004).
    [CrossRef]
  22. J. J. Penninkhof, A. Moroz, A. van Blaaderen, and A. Polman, “Optical properties of spherical and oblate spheroidal gold shell colloids,” J. Phys. Chem. C 112(11), 4146–4150 (2008).
    [CrossRef]

2008 (3)

G. D’Aguanno, N. Mattiucci, M. Bloemer, and A. Desyatnikov, “Optical vortices during a superresolution process in a metamaterial,” Phys. Rev. A 77(4), 043825 (2008).
[CrossRef]

J. B. Lassiter, J. Aizpurua, L. I. Hernandez, D. W. Brandl, I. Romero, S. Lal, J. H. Hafner, P. Nordlander, and N. J. Halas, “Close encounters between two nanoshells,” Nano Lett. 8(4), 1212–1218 (2008).
[CrossRef] [PubMed]

J. J. Penninkhof, A. Moroz, A. van Blaaderen, and A. Polman, “Optical properties of spherical and oblate spheroidal gold shell colloids,” J. Phys. Chem. C 112(11), 4146–4150 (2008).
[CrossRef]

2006 (2)

M. I. Tribelsky and B. S. Luk’yanchuk, “Anomalous light scattering by small particles,” Phys. Rev. Lett. 97(26), 263902 (2006).
[CrossRef]

H. Wang, D. W. Brandl, F. Le, P. Nordlander, and N. J. Halas, “Nanorice: a hybrid plasmonic nanostructure,” Nano Lett. 6(4), 827–832 (2006).
[CrossRef] [PubMed]

2005 (1)

2004 (2)

H. F. Schouten, T. D. Visser, G. Gbur, D. Lenstra, and H. Blok, “The diffraction of light by narrow slits in plates of different materials,” J. Opt. A, Pure Appl. Opt. 6(5), S277–S280 (2004).
[CrossRef]

N. K. Grady, N. J. Halas, and P. Nordlander, “Influence of dielectric function properties on the optical response of plasmon resonant metallic nanoparticles,” Chem. Phys. Lett. 399(1-3), 167–171 (2004).
[CrossRef]

2003 (3)

H. F. Schouten, T. D. Visser, G. Gbur, D. Lenstra, and H. Blok, “Creation and annihilation of phase singularities near a sub-wavelength slit,” Opt. Express 11(4), 371–380 (2003), http://www.opticsinfobase.org/oe/abstract.cfm?&uri=oe-11-4-371 .
[CrossRef] [PubMed]

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302(5644), 419–422 (2003).
[CrossRef] [PubMed]

J. Aizpurua, P. Hanarp, D. S. Sutherland, M. Käll, G. W. Bryant, and F. J. García de Abajo, “Optical properties of gold nanorings,” Phys. Rev. Lett. 90(5), 057401 (2003).
[CrossRef] [PubMed]

2000 (1)

Yu. S. Kivshar and D. E. Pelinovsky, “Self-focusing and transverse instabilities of solitary waves,” Phys. Rep. 331(4), 117–195 (2000).
[CrossRef]

1999 (1)

1998 (1)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

1994 (1)

H. A. Yousif, R. E. Mattis, and K. Kozminski, Appl. Opt. 9, 4012–4024 (1994).

1987 (1)

A. Ashkin and J. M. Dziedzic, “Optical trapping and manipulation of viruses and bacteria,” Science 235(4795), 1517–1520 (1987).
[CrossRef] [PubMed]

1985 (1)

M. Moskovits, “Surface enhanced spectroscopy,” Rev. Mod. Phys. 57(3), 783–826 (1985).
[CrossRef]

1974 (1)

J. F. Nye and M. V. Berry, “Dislocations in wave trains,” Proc. R. Soc. Lond. A Math. Phys. Sci. 336(1605), 165–190 (1974).
[CrossRef]

1972 (1)

P. Johnson and R. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[CrossRef]

Aizpurua, J.

J. B. Lassiter, J. Aizpurua, L. I. Hernandez, D. W. Brandl, I. Romero, S. Lal, J. H. Hafner, P. Nordlander, and N. J. Halas, “Close encounters between two nanoshells,” Nano Lett. 8(4), 1212–1218 (2008).
[CrossRef] [PubMed]

J. Aizpurua, P. Hanarp, D. S. Sutherland, M. Käll, G. W. Bryant, and F. J. García de Abajo, “Optical properties of gold nanorings,” Phys. Rev. Lett. 90(5), 057401 (2003).
[CrossRef] [PubMed]

Ashkin, A.

A. Ashkin and J. M. Dziedzic, “Optical trapping and manipulation of viruses and bacteria,” Science 235(4795), 1517–1520 (1987).
[CrossRef] [PubMed]

Bashevoy, M. V.

Berry, M. V.

J. F. Nye and M. V. Berry, “Dislocations in wave trains,” Proc. R. Soc. Lond. A Math. Phys. Sci. 336(1605), 165–190 (1974).
[CrossRef]

Bloemer, M.

G. D’Aguanno, N. Mattiucci, M. Bloemer, and A. Desyatnikov, “Optical vortices during a superresolution process in a metamaterial,” Phys. Rev. A 77(4), 043825 (2008).
[CrossRef]

Blok, H.

H. F. Schouten, T. D. Visser, G. Gbur, D. Lenstra, and H. Blok, “The diffraction of light by narrow slits in plates of different materials,” J. Opt. A, Pure Appl. Opt. 6(5), S277–S280 (2004).
[CrossRef]

H. F. Schouten, T. D. Visser, G. Gbur, D. Lenstra, and H. Blok, “Creation and annihilation of phase singularities near a sub-wavelength slit,” Opt. Express 11(4), 371–380 (2003), http://www.opticsinfobase.org/oe/abstract.cfm?&uri=oe-11-4-371 .
[CrossRef] [PubMed]

Brandl, D. W.

J. B. Lassiter, J. Aizpurua, L. I. Hernandez, D. W. Brandl, I. Romero, S. Lal, J. H. Hafner, P. Nordlander, and N. J. Halas, “Close encounters between two nanoshells,” Nano Lett. 8(4), 1212–1218 (2008).
[CrossRef] [PubMed]

H. Wang, D. W. Brandl, F. Le, P. Nordlander, and N. J. Halas, “Nanorice: a hybrid plasmonic nanostructure,” Nano Lett. 6(4), 827–832 (2006).
[CrossRef] [PubMed]

Bryant, G. W.

J. Aizpurua, P. Hanarp, D. S. Sutherland, M. Käll, G. W. Bryant, and F. J. García de Abajo, “Optical properties of gold nanorings,” Phys. Rev. Lett. 90(5), 057401 (2003).
[CrossRef] [PubMed]

Chang, Y. H.

J. Y. Lu and Y. H. Chang, “Implementation of an efficient dielectric function into finite difference time domain method for simulating the coupling between localized surface plasmon of nanostructures,” Superlattices Microstruct. (to be published).

Christy, R.

P. Johnson and R. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[CrossRef]

D’Aguanno, G.

G. D’Aguanno, N. Mattiucci, M. Bloemer, and A. Desyatnikov, “Optical vortices during a superresolution process in a metamaterial,” Phys. Rev. A 77(4), 043825 (2008).
[CrossRef]

Desyatnikov, A.

G. D’Aguanno, N. Mattiucci, M. Bloemer, and A. Desyatnikov, “Optical vortices during a superresolution process in a metamaterial,” Phys. Rev. A 77(4), 043825 (2008).
[CrossRef]

Dziedzic, J. M.

A. Ashkin and J. M. Dziedzic, “Optical trapping and manipulation of viruses and bacteria,” Science 235(4795), 1517–1520 (1987).
[CrossRef] [PubMed]

Ebbesen, T. W.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

Fedotov, V. A.

Gahagan, K. T.

García de Abajo, F. J.

J. Aizpurua, P. Hanarp, D. S. Sutherland, M. Käll, G. W. Bryant, and F. J. García de Abajo, “Optical properties of gold nanorings,” Phys. Rev. Lett. 90(5), 057401 (2003).
[CrossRef] [PubMed]

Gbur, G.

H. F. Schouten, T. D. Visser, G. Gbur, D. Lenstra, and H. Blok, “The diffraction of light by narrow slits in plates of different materials,” J. Opt. A, Pure Appl. Opt. 6(5), S277–S280 (2004).
[CrossRef]

H. F. Schouten, T. D. Visser, G. Gbur, D. Lenstra, and H. Blok, “Creation and annihilation of phase singularities near a sub-wavelength slit,” Opt. Express 11(4), 371–380 (2003), http://www.opticsinfobase.org/oe/abstract.cfm?&uri=oe-11-4-371 .
[CrossRef] [PubMed]

Ghaemi, H. F.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

Grady, N. K.

N. K. Grady, N. J. Halas, and P. Nordlander, “Influence of dielectric function properties on the optical response of plasmon resonant metallic nanoparticles,” Chem. Phys. Lett. 399(1-3), 167–171 (2004).
[CrossRef]

Hafner, J. H.

J. B. Lassiter, J. Aizpurua, L. I. Hernandez, D. W. Brandl, I. Romero, S. Lal, J. H. Hafner, P. Nordlander, and N. J. Halas, “Close encounters between two nanoshells,” Nano Lett. 8(4), 1212–1218 (2008).
[CrossRef] [PubMed]

Halas, N. J.

J. B. Lassiter, J. Aizpurua, L. I. Hernandez, D. W. Brandl, I. Romero, S. Lal, J. H. Hafner, P. Nordlander, and N. J. Halas, “Close encounters between two nanoshells,” Nano Lett. 8(4), 1212–1218 (2008).
[CrossRef] [PubMed]

H. Wang, D. W. Brandl, F. Le, P. Nordlander, and N. J. Halas, “Nanorice: a hybrid plasmonic nanostructure,” Nano Lett. 6(4), 827–832 (2006).
[CrossRef] [PubMed]

N. K. Grady, N. J. Halas, and P. Nordlander, “Influence of dielectric function properties on the optical response of plasmon resonant metallic nanoparticles,” Chem. Phys. Lett. 399(1-3), 167–171 (2004).
[CrossRef]

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302(5644), 419–422 (2003).
[CrossRef] [PubMed]

Hanarp, P.

J. Aizpurua, P. Hanarp, D. S. Sutherland, M. Käll, G. W. Bryant, and F. J. García de Abajo, “Optical properties of gold nanorings,” Phys. Rev. Lett. 90(5), 057401 (2003).
[CrossRef] [PubMed]

Hernandez, L. I.

J. B. Lassiter, J. Aizpurua, L. I. Hernandez, D. W. Brandl, I. Romero, S. Lal, J. H. Hafner, P. Nordlander, and N. J. Halas, “Close encounters between two nanoshells,” Nano Lett. 8(4), 1212–1218 (2008).
[CrossRef] [PubMed]

Johnson, P.

P. Johnson and R. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[CrossRef]

Käll, M.

J. Aizpurua, P. Hanarp, D. S. Sutherland, M. Käll, G. W. Bryant, and F. J. García de Abajo, “Optical properties of gold nanorings,” Phys. Rev. Lett. 90(5), 057401 (2003).
[CrossRef] [PubMed]

Kivshar, Yu. S.

Yu. S. Kivshar and D. E. Pelinovsky, “Self-focusing and transverse instabilities of solitary waves,” Phys. Rep. 331(4), 117–195 (2000).
[CrossRef]

Kozminski, K.

H. A. Yousif, R. E. Mattis, and K. Kozminski, Appl. Opt. 9, 4012–4024 (1994).

Lal, S.

J. B. Lassiter, J. Aizpurua, L. I. Hernandez, D. W. Brandl, I. Romero, S. Lal, J. H. Hafner, P. Nordlander, and N. J. Halas, “Close encounters between two nanoshells,” Nano Lett. 8(4), 1212–1218 (2008).
[CrossRef] [PubMed]

Lassiter, J. B.

J. B. Lassiter, J. Aizpurua, L. I. Hernandez, D. W. Brandl, I. Romero, S. Lal, J. H. Hafner, P. Nordlander, and N. J. Halas, “Close encounters between two nanoshells,” Nano Lett. 8(4), 1212–1218 (2008).
[CrossRef] [PubMed]

Le, F.

H. Wang, D. W. Brandl, F. Le, P. Nordlander, and N. J. Halas, “Nanorice: a hybrid plasmonic nanostructure,” Nano Lett. 6(4), 827–832 (2006).
[CrossRef] [PubMed]

Lenstra, D.

H. F. Schouten, T. D. Visser, G. Gbur, D. Lenstra, and H. Blok, “The diffraction of light by narrow slits in plates of different materials,” J. Opt. A, Pure Appl. Opt. 6(5), S277–S280 (2004).
[CrossRef]

H. F. Schouten, T. D. Visser, G. Gbur, D. Lenstra, and H. Blok, “Creation and annihilation of phase singularities near a sub-wavelength slit,” Opt. Express 11(4), 371–380 (2003), http://www.opticsinfobase.org/oe/abstract.cfm?&uri=oe-11-4-371 .
[CrossRef] [PubMed]

Lezec, H. J.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

Lu, J. Y.

J. Y. Lu and Y. H. Chang, “Implementation of an efficient dielectric function into finite difference time domain method for simulating the coupling between localized surface plasmon of nanostructures,” Superlattices Microstruct. (to be published).

Luk’yanchuk, B. S.

M. I. Tribelsky and B. S. Luk’yanchuk, “Anomalous light scattering by small particles,” Phys. Rev. Lett. 97(26), 263902 (2006).
[CrossRef]

Mattis, R. E.

H. A. Yousif, R. E. Mattis, and K. Kozminski, Appl. Opt. 9, 4012–4024 (1994).

Mattiucci, N.

G. D’Aguanno, N. Mattiucci, M. Bloemer, and A. Desyatnikov, “Optical vortices during a superresolution process in a metamaterial,” Phys. Rev. A 77(4), 043825 (2008).
[CrossRef]

Moroz, A.

J. J. Penninkhof, A. Moroz, A. van Blaaderen, and A. Polman, “Optical properties of spherical and oblate spheroidal gold shell colloids,” J. Phys. Chem. C 112(11), 4146–4150 (2008).
[CrossRef]

Moskovits, M.

M. Moskovits, “Surface enhanced spectroscopy,” Rev. Mod. Phys. 57(3), 783–826 (1985).
[CrossRef]

Nordlander, P.

J. B. Lassiter, J. Aizpurua, L. I. Hernandez, D. W. Brandl, I. Romero, S. Lal, J. H. Hafner, P. Nordlander, and N. J. Halas, “Close encounters between two nanoshells,” Nano Lett. 8(4), 1212–1218 (2008).
[CrossRef] [PubMed]

H. Wang, D. W. Brandl, F. Le, P. Nordlander, and N. J. Halas, “Nanorice: a hybrid plasmonic nanostructure,” Nano Lett. 6(4), 827–832 (2006).
[CrossRef] [PubMed]

N. K. Grady, N. J. Halas, and P. Nordlander, “Influence of dielectric function properties on the optical response of plasmon resonant metallic nanoparticles,” Chem. Phys. Lett. 399(1-3), 167–171 (2004).
[CrossRef]

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302(5644), 419–422 (2003).
[CrossRef] [PubMed]

Nye, J. F.

J. F. Nye and M. V. Berry, “Dislocations in wave trains,” Proc. R. Soc. Lond. A Math. Phys. Sci. 336(1605), 165–190 (1974).
[CrossRef]

Pelinovsky, D. E.

Yu. S. Kivshar and D. E. Pelinovsky, “Self-focusing and transverse instabilities of solitary waves,” Phys. Rep. 331(4), 117–195 (2000).
[CrossRef]

Penninkhof, J. J.

J. J. Penninkhof, A. Moroz, A. van Blaaderen, and A. Polman, “Optical properties of spherical and oblate spheroidal gold shell colloids,” J. Phys. Chem. C 112(11), 4146–4150 (2008).
[CrossRef]

Polman, A.

J. J. Penninkhof, A. Moroz, A. van Blaaderen, and A. Polman, “Optical properties of spherical and oblate spheroidal gold shell colloids,” J. Phys. Chem. C 112(11), 4146–4150 (2008).
[CrossRef]

Prodan, E.

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302(5644), 419–422 (2003).
[CrossRef] [PubMed]

Radloff, C.

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302(5644), 419–422 (2003).
[CrossRef] [PubMed]

Romero, I.

J. B. Lassiter, J. Aizpurua, L. I. Hernandez, D. W. Brandl, I. Romero, S. Lal, J. H. Hafner, P. Nordlander, and N. J. Halas, “Close encounters between two nanoshells,” Nano Lett. 8(4), 1212–1218 (2008).
[CrossRef] [PubMed]

Schouten, H. F.

H. F. Schouten, T. D. Visser, G. Gbur, D. Lenstra, and H. Blok, “The diffraction of light by narrow slits in plates of different materials,” J. Opt. A, Pure Appl. Opt. 6(5), S277–S280 (2004).
[CrossRef]

H. F. Schouten, T. D. Visser, G. Gbur, D. Lenstra, and H. Blok, “Creation and annihilation of phase singularities near a sub-wavelength slit,” Opt. Express 11(4), 371–380 (2003), http://www.opticsinfobase.org/oe/abstract.cfm?&uri=oe-11-4-371 .
[CrossRef] [PubMed]

Sutherland, D. S.

J. Aizpurua, P. Hanarp, D. S. Sutherland, M. Käll, G. W. Bryant, and F. J. García de Abajo, “Optical properties of gold nanorings,” Phys. Rev. Lett. 90(5), 057401 (2003).
[CrossRef] [PubMed]

Swartzlander, G. A.

Thio, T.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

Tribelsky, M. I.

M. I. Tribelsky and B. S. Luk’yanchuk, “Anomalous light scattering by small particles,” Phys. Rev. Lett. 97(26), 263902 (2006).
[CrossRef]

van Blaaderen, A.

J. J. Penninkhof, A. Moroz, A. van Blaaderen, and A. Polman, “Optical properties of spherical and oblate spheroidal gold shell colloids,” J. Phys. Chem. C 112(11), 4146–4150 (2008).
[CrossRef]

Visser, T. D.

H. F. Schouten, T. D. Visser, G. Gbur, D. Lenstra, and H. Blok, “The diffraction of light by narrow slits in plates of different materials,” J. Opt. A, Pure Appl. Opt. 6(5), S277–S280 (2004).
[CrossRef]

H. F. Schouten, T. D. Visser, G. Gbur, D. Lenstra, and H. Blok, “Creation and annihilation of phase singularities near a sub-wavelength slit,” Opt. Express 11(4), 371–380 (2003), http://www.opticsinfobase.org/oe/abstract.cfm?&uri=oe-11-4-371 .
[CrossRef] [PubMed]

Wang, H.

H. Wang, D. W. Brandl, F. Le, P. Nordlander, and N. J. Halas, “Nanorice: a hybrid plasmonic nanostructure,” Nano Lett. 6(4), 827–832 (2006).
[CrossRef] [PubMed]

Wolff, P. A.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

Yousif, H. A.

H. A. Yousif, R. E. Mattis, and K. Kozminski, Appl. Opt. 9, 4012–4024 (1994).

Zheludev, N. I.

Appl. Opt. (1)

H. A. Yousif, R. E. Mattis, and K. Kozminski, Appl. Opt. 9, 4012–4024 (1994).

Chem. Phys. Lett. (1)

N. K. Grady, N. J. Halas, and P. Nordlander, “Influence of dielectric function properties on the optical response of plasmon resonant metallic nanoparticles,” Chem. Phys. Lett. 399(1-3), 167–171 (2004).
[CrossRef]

J. Opt. A, Pure Appl. Opt. (1)

H. F. Schouten, T. D. Visser, G. Gbur, D. Lenstra, and H. Blok, “The diffraction of light by narrow slits in plates of different materials,” J. Opt. A, Pure Appl. Opt. 6(5), S277–S280 (2004).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Phys. Chem. C (1)

J. J. Penninkhof, A. Moroz, A. van Blaaderen, and A. Polman, “Optical properties of spherical and oblate spheroidal gold shell colloids,” J. Phys. Chem. C 112(11), 4146–4150 (2008).
[CrossRef]

Nano Lett. (2)

J. B. Lassiter, J. Aizpurua, L. I. Hernandez, D. W. Brandl, I. Romero, S. Lal, J. H. Hafner, P. Nordlander, and N. J. Halas, “Close encounters between two nanoshells,” Nano Lett. 8(4), 1212–1218 (2008).
[CrossRef] [PubMed]

H. Wang, D. W. Brandl, F. Le, P. Nordlander, and N. J. Halas, “Nanorice: a hybrid plasmonic nanostructure,” Nano Lett. 6(4), 827–832 (2006).
[CrossRef] [PubMed]

Nature (1)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

Opt. Express (2)

Phys. Rep. (1)

Yu. S. Kivshar and D. E. Pelinovsky, “Self-focusing and transverse instabilities of solitary waves,” Phys. Rep. 331(4), 117–195 (2000).
[CrossRef]

Phys. Rev. A (1)

G. D’Aguanno, N. Mattiucci, M. Bloemer, and A. Desyatnikov, “Optical vortices during a superresolution process in a metamaterial,” Phys. Rev. A 77(4), 043825 (2008).
[CrossRef]

Phys. Rev. B (1)

P. Johnson and R. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[CrossRef]

Phys. Rev. Lett. (2)

J. Aizpurua, P. Hanarp, D. S. Sutherland, M. Käll, G. W. Bryant, and F. J. García de Abajo, “Optical properties of gold nanorings,” Phys. Rev. Lett. 90(5), 057401 (2003).
[CrossRef] [PubMed]

M. I. Tribelsky and B. S. Luk’yanchuk, “Anomalous light scattering by small particles,” Phys. Rev. Lett. 97(26), 263902 (2006).
[CrossRef]

Proc. R. Soc. Lond. A Math. Phys. Sci. (1)

J. F. Nye and M. V. Berry, “Dislocations in wave trains,” Proc. R. Soc. Lond. A Math. Phys. Sci. 336(1605), 165–190 (1974).
[CrossRef]

Rev. Mod. Phys. (1)

M. Moskovits, “Surface enhanced spectroscopy,” Rev. Mod. Phys. 57(3), 783–826 (1985).
[CrossRef]

Science (2)

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302(5644), 419–422 (2003).
[CrossRef] [PubMed]

A. Ashkin and J. M. Dziedzic, “Optical trapping and manipulation of viruses and bacteria,” Science 235(4795), 1517–1520 (1987).
[CrossRef] [PubMed]

Superlattices Microstruct. (1)

J. Y. Lu and Y. H. Chang, “Implementation of an efficient dielectric function into finite difference time domain method for simulating the coupling between localized surface plasmon of nanostructures,” Superlattices Microstruct. (to be published).

Other (2)

A. Taflove, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, Boston, 1995).

J. F. Nye, Natural Focusing and the Fine Stuctures of Light (Institute of Physics, Bristol, 1999).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic diagram of the geometric arrangement of the incident EM wave and the dielectric-core gold-shell nanocylinder pair. The propagating direction of the incident wave is in the z-direction and is perpendicular to the axis connecting the nanocylinder pair (x-direction). The electric field of the incident wave is in the x-direction.

Fig. 2
Fig. 2

(a) The FDTD calculated extinction, scattering, and absorption spectra of a dielectric-core gold-shell nanocylinder pair with separation distance of 27nm. The permittivity of the dielectric core is 4.1. The charge distributions of these plasmon modes are shown in the inset. (b) The energy flow pattern near the nanocylinder pair in its in-phase SD interaction mode.

Fig. 3
Fig. 3

The energy flow patterns of the core-shell nanocylinder pair. The gap width between the nanocylinder pair is (a) 20nm, (b) 35nm, (c) 70nm, (d) 135nm. The optical vortices disappear when the separation distance is 70nm. (e) The variation of the circulation inside each core-shell nanocylinder with the gap width. The circle-dotted red line and the square-dotted blue line represent the circulation inside the upper and the lower core-shell nanocylinders, respectively.

Fig. 4
Fig. 4

(a) The calculated extinction cross section spectra for the core-shell nanocylinder pair with dielectric permittivity of 4.1, 3.1, and 2.1, respectively. The energy flow patterns associated with the core-shell nanocylinder pair with dielectric permittivity of (b) 4.1, (c) 3.1, and (d) 2.1. Note that the rotating direction of the energy flow in (b) is opposite to the rotating direction of the energy flow in (c) and (d).

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

sinϕsSz(x,z)/|S| ,
cosϕsSx(x,z)/|S| ,
Circulation=×Sda^
ε(ω)=ε+σ/ε0iω+p=13(ApΩpeiϕpΩpωiΓp+ApΩpeiϕpΩp+ω+iΓp)

Metrics