Abstract

We present improved characteristics of the curved plasmonic waveguide which consists of a thin metal stripe with asymmetric cladding layers. It is shown that in the proposed curved asymmetric plasmonic waveguides, a balance between a radiation due to bending and a radiation due to the asymmetric claddings allows a bending with a smaller radius curvature and a lower loss compared to the waveguide with symmetric claddings. At the same time, a symmetric metal stripe waveguide’s typical trade-off between the bending characteristics and the propagation loss of a straight waveguide is relaxed with proper amount of asymmetry. With the proposed structure, a plasmonic waveguide bending whose radius is as small as 2 mm with a total loss of 1.8 dB/90° is designed. Enhanced sensitivity to the surrounding medium and its application are discussed.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. D. Boardman, ed., Electromagnetic Surface Modes, (Wiley Interscience, 1982).
  2. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
    [CrossRef] [PubMed]
  3. J. J. Burke, G. I. Stegeman, and T. Tamir, “Surface-Polariton-Like Waves Guided by Thin, Lossy Metal Films,” Phys. Rev. B 33(8), 5186–5201 (1986).
    [CrossRef]
  4. F. Yang, J. R. Sambles, and G. W. Bradberry, “Long-Range Surface Modes Supported by Thin Films,” Phys. Rev. B 44(11), 5855–5872 (1991).
    [CrossRef]
  5. P. Berini, “Plasmon-Polariton Waves Guided by Thin Lossy Metal Films of Finite Width: Bound Modes of Symmetric structures,” Phys. Rev. B 61(15), 10484–10503 (2000).
    [CrossRef]
  6. R. Charbonneau, P. Berini, E. Berolo, and E. Lisicka-Shrzek, “Experimental observation of plasmon polariton waves supported by a thin metal film of finite width,” Opt. Lett. 25(11), 844–846 (2000).
    [CrossRef]
  7. R. Nikolajsen, K. Leosson, I. Salakhutdinov, and S. I. Bozhevolnyi, “Polymer-based surface-plasmon polariton stripe waveguides at telecommunication wavelengths,” Appl. Phys. Lett. 82(5), 668–670 (2003).
    [CrossRef]
  8. R. Charbonneau, N. Lahoud, G. Mattiussi, and P. Berini, “Demonstration of integrated optics elements based on long-ranging surface plasmon polaritons,” Opt. Express 13(3), 977–984 (2005), http://www.opticsexpress.org/abstract.cfm?id=82563 .
    [CrossRef] [PubMed]
  9. A. Boltasseva, T. Nikolajsen, K. Leosson, K. Kjaer, M. S. Larsen, and S. I. Bozhevolnyi, “Integrated Optical Components Utilizing Long-Range Surface Plasmon Polaritons,” J. Lightwave Technol. 23(1), 413–422 (2005).
    [CrossRef]
  10. R. Charbonneau, C. Scales, I. Breukelaar, S. Fafard, N. Lahoud, G. Mattiussi, and P. Berini, “Passive integrated optics elements based on long-range surface plasmon-polaritons,” J. Lightwave Technol. 24(1), 477–494 (2006).
    [CrossRef]
  11. H. S. Won, K. C. Kim, S. H. Song, C.-H. Oh, P. S. Kim, S. Park, and S. I. Kim, “Vertical coupling of long-range surface plasmon polaritons,” Appl. Phys. Lett. 88(1), 011110 (2006).
    [CrossRef]
  12. P. Berini and J. Lu, “Curved long-range surface plasmon-polariton waveguides,” Opt. Express 14(6), 2365–2371 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-6-2365 .
    [CrossRef] [PubMed]
  13. W.-K. Kim, W.-S. Yang, H.-M. Lee, H.-Y. Lee, M. H. Lee, and W. J. Jung, “Leaky modes of curved long-range surface plasmon-polariton waveguide,” Opt. Express 14(26), 13043–13049 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-26-13043 .
    [CrossRef] [PubMed]
  14. S. Kim and A. Gopinath, “Vector analysis of optical dielectric waveguide bends using finite-difference method,” J. Lightwave Technol. 14(9), 2085–2092 (1996).
    [CrossRef]
  15. G. L. Xu, W. P. Huang, M. S. Stern, and S. K. Chaudhuri, “Full-vectorial mode calculations by finite difference method,” IEE Proc., Optoelectron. 141(5), 281–286 (1994).
    [CrossRef]
  16. S. J. Al-Bader and H. A. Jamid, “Perfectly matched layer absorbing boundary conditions for the method of lines modeling scheme,” IEEE Microw. Guid. Wave Lett. 8(11), 357–359 (1998).
    [CrossRef]
  17. R. Mittra and U. Pekel, “A new look at the perfectly matched layer (PML) concept for the reflectionless absorption of electromagnetic waves,” IEEE Microw. Guid. Wave Lett. 5(3), 84–86 (1995).
    [CrossRef]
  18. E. D. Palik, Handbook of Optical Constants of Solids (Academic, New York, 1985).
  19. I. G. Breukelaar, “Surface plasmon-polaritons in thin metal strips and slabs: waveguiding and mode cutoff,” B.A.Sc.Thesis, University of Ottawa, Canada (2004).
  20. S. Park and S. H. Song, “Polymer variable optical attenuator based on long range surface plasmon polaritons,” Electron. Lett. 42(7), 402–404 (2006).
    [CrossRef]

2006 (5)

2005 (2)

2003 (2)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

R. Nikolajsen, K. Leosson, I. Salakhutdinov, and S. I. Bozhevolnyi, “Polymer-based surface-plasmon polariton stripe waveguides at telecommunication wavelengths,” Appl. Phys. Lett. 82(5), 668–670 (2003).
[CrossRef]

2000 (2)

P. Berini, “Plasmon-Polariton Waves Guided by Thin Lossy Metal Films of Finite Width: Bound Modes of Symmetric structures,” Phys. Rev. B 61(15), 10484–10503 (2000).
[CrossRef]

R. Charbonneau, P. Berini, E. Berolo, and E. Lisicka-Shrzek, “Experimental observation of plasmon polariton waves supported by a thin metal film of finite width,” Opt. Lett. 25(11), 844–846 (2000).
[CrossRef]

1998 (1)

S. J. Al-Bader and H. A. Jamid, “Perfectly matched layer absorbing boundary conditions for the method of lines modeling scheme,” IEEE Microw. Guid. Wave Lett. 8(11), 357–359 (1998).
[CrossRef]

1996 (1)

S. Kim and A. Gopinath, “Vector analysis of optical dielectric waveguide bends using finite-difference method,” J. Lightwave Technol. 14(9), 2085–2092 (1996).
[CrossRef]

1995 (1)

R. Mittra and U. Pekel, “A new look at the perfectly matched layer (PML) concept for the reflectionless absorption of electromagnetic waves,” IEEE Microw. Guid. Wave Lett. 5(3), 84–86 (1995).
[CrossRef]

1994 (1)

G. L. Xu, W. P. Huang, M. S. Stern, and S. K. Chaudhuri, “Full-vectorial mode calculations by finite difference method,” IEE Proc., Optoelectron. 141(5), 281–286 (1994).
[CrossRef]

1991 (1)

F. Yang, J. R. Sambles, and G. W. Bradberry, “Long-Range Surface Modes Supported by Thin Films,” Phys. Rev. B 44(11), 5855–5872 (1991).
[CrossRef]

1986 (1)

J. J. Burke, G. I. Stegeman, and T. Tamir, “Surface-Polariton-Like Waves Guided by Thin, Lossy Metal Films,” Phys. Rev. B 33(8), 5186–5201 (1986).
[CrossRef]

Al-Bader, S. J.

S. J. Al-Bader and H. A. Jamid, “Perfectly matched layer absorbing boundary conditions for the method of lines modeling scheme,” IEEE Microw. Guid. Wave Lett. 8(11), 357–359 (1998).
[CrossRef]

Barnes, W. L.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

Berini, P.

Berolo, E.

Boltasseva, A.

Bozhevolnyi, S. I.

A. Boltasseva, T. Nikolajsen, K. Leosson, K. Kjaer, M. S. Larsen, and S. I. Bozhevolnyi, “Integrated Optical Components Utilizing Long-Range Surface Plasmon Polaritons,” J. Lightwave Technol. 23(1), 413–422 (2005).
[CrossRef]

R. Nikolajsen, K. Leosson, I. Salakhutdinov, and S. I. Bozhevolnyi, “Polymer-based surface-plasmon polariton stripe waveguides at telecommunication wavelengths,” Appl. Phys. Lett. 82(5), 668–670 (2003).
[CrossRef]

Bradberry, G. W.

F. Yang, J. R. Sambles, and G. W. Bradberry, “Long-Range Surface Modes Supported by Thin Films,” Phys. Rev. B 44(11), 5855–5872 (1991).
[CrossRef]

Breukelaar, I.

Burke, J. J.

J. J. Burke, G. I. Stegeman, and T. Tamir, “Surface-Polariton-Like Waves Guided by Thin, Lossy Metal Films,” Phys. Rev. B 33(8), 5186–5201 (1986).
[CrossRef]

Charbonneau, R.

Chaudhuri, S. K.

G. L. Xu, W. P. Huang, M. S. Stern, and S. K. Chaudhuri, “Full-vectorial mode calculations by finite difference method,” IEE Proc., Optoelectron. 141(5), 281–286 (1994).
[CrossRef]

Dereux, A.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

Ebbesen, T. W.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

Fafard, S.

Gopinath, A.

S. Kim and A. Gopinath, “Vector analysis of optical dielectric waveguide bends using finite-difference method,” J. Lightwave Technol. 14(9), 2085–2092 (1996).
[CrossRef]

Huang, W. P.

G. L. Xu, W. P. Huang, M. S. Stern, and S. K. Chaudhuri, “Full-vectorial mode calculations by finite difference method,” IEE Proc., Optoelectron. 141(5), 281–286 (1994).
[CrossRef]

Jamid, H. A.

S. J. Al-Bader and H. A. Jamid, “Perfectly matched layer absorbing boundary conditions for the method of lines modeling scheme,” IEEE Microw. Guid. Wave Lett. 8(11), 357–359 (1998).
[CrossRef]

Jung, W. J.

Kim, K. C.

H. S. Won, K. C. Kim, S. H. Song, C.-H. Oh, P. S. Kim, S. Park, and S. I. Kim, “Vertical coupling of long-range surface plasmon polaritons,” Appl. Phys. Lett. 88(1), 011110 (2006).
[CrossRef]

Kim, P. S.

H. S. Won, K. C. Kim, S. H. Song, C.-H. Oh, P. S. Kim, S. Park, and S. I. Kim, “Vertical coupling of long-range surface plasmon polaritons,” Appl. Phys. Lett. 88(1), 011110 (2006).
[CrossRef]

Kim, S.

S. Kim and A. Gopinath, “Vector analysis of optical dielectric waveguide bends using finite-difference method,” J. Lightwave Technol. 14(9), 2085–2092 (1996).
[CrossRef]

Kim, S. I.

H. S. Won, K. C. Kim, S. H. Song, C.-H. Oh, P. S. Kim, S. Park, and S. I. Kim, “Vertical coupling of long-range surface plasmon polaritons,” Appl. Phys. Lett. 88(1), 011110 (2006).
[CrossRef]

Kim, W.-K.

Kjaer, K.

Lahoud, N.

Larsen, M. S.

Lee, H.-M.

Lee, H.-Y.

Lee, M. H.

Leosson, K.

A. Boltasseva, T. Nikolajsen, K. Leosson, K. Kjaer, M. S. Larsen, and S. I. Bozhevolnyi, “Integrated Optical Components Utilizing Long-Range Surface Plasmon Polaritons,” J. Lightwave Technol. 23(1), 413–422 (2005).
[CrossRef]

R. Nikolajsen, K. Leosson, I. Salakhutdinov, and S. I. Bozhevolnyi, “Polymer-based surface-plasmon polariton stripe waveguides at telecommunication wavelengths,” Appl. Phys. Lett. 82(5), 668–670 (2003).
[CrossRef]

Lisicka-Shrzek, E.

Lu, J.

Mattiussi, G.

Mittra, R.

R. Mittra and U. Pekel, “A new look at the perfectly matched layer (PML) concept for the reflectionless absorption of electromagnetic waves,” IEEE Microw. Guid. Wave Lett. 5(3), 84–86 (1995).
[CrossRef]

Nikolajsen, R.

R. Nikolajsen, K. Leosson, I. Salakhutdinov, and S. I. Bozhevolnyi, “Polymer-based surface-plasmon polariton stripe waveguides at telecommunication wavelengths,” Appl. Phys. Lett. 82(5), 668–670 (2003).
[CrossRef]

Nikolajsen, T.

Oh, C.-H.

H. S. Won, K. C. Kim, S. H. Song, C.-H. Oh, P. S. Kim, S. Park, and S. I. Kim, “Vertical coupling of long-range surface plasmon polaritons,” Appl. Phys. Lett. 88(1), 011110 (2006).
[CrossRef]

Park, S.

H. S. Won, K. C. Kim, S. H. Song, C.-H. Oh, P. S. Kim, S. Park, and S. I. Kim, “Vertical coupling of long-range surface plasmon polaritons,” Appl. Phys. Lett. 88(1), 011110 (2006).
[CrossRef]

S. Park and S. H. Song, “Polymer variable optical attenuator based on long range surface plasmon polaritons,” Electron. Lett. 42(7), 402–404 (2006).
[CrossRef]

Pekel, U.

R. Mittra and U. Pekel, “A new look at the perfectly matched layer (PML) concept for the reflectionless absorption of electromagnetic waves,” IEEE Microw. Guid. Wave Lett. 5(3), 84–86 (1995).
[CrossRef]

Salakhutdinov, I.

R. Nikolajsen, K. Leosson, I. Salakhutdinov, and S. I. Bozhevolnyi, “Polymer-based surface-plasmon polariton stripe waveguides at telecommunication wavelengths,” Appl. Phys. Lett. 82(5), 668–670 (2003).
[CrossRef]

Sambles, J. R.

F. Yang, J. R. Sambles, and G. W. Bradberry, “Long-Range Surface Modes Supported by Thin Films,” Phys. Rev. B 44(11), 5855–5872 (1991).
[CrossRef]

Scales, C.

Song, S. H.

S. Park and S. H. Song, “Polymer variable optical attenuator based on long range surface plasmon polaritons,” Electron. Lett. 42(7), 402–404 (2006).
[CrossRef]

H. S. Won, K. C. Kim, S. H. Song, C.-H. Oh, P. S. Kim, S. Park, and S. I. Kim, “Vertical coupling of long-range surface plasmon polaritons,” Appl. Phys. Lett. 88(1), 011110 (2006).
[CrossRef]

Stegeman, G. I.

J. J. Burke, G. I. Stegeman, and T. Tamir, “Surface-Polariton-Like Waves Guided by Thin, Lossy Metal Films,” Phys. Rev. B 33(8), 5186–5201 (1986).
[CrossRef]

Stern, M. S.

G. L. Xu, W. P. Huang, M. S. Stern, and S. K. Chaudhuri, “Full-vectorial mode calculations by finite difference method,” IEE Proc., Optoelectron. 141(5), 281–286 (1994).
[CrossRef]

Tamir, T.

J. J. Burke, G. I. Stegeman, and T. Tamir, “Surface-Polariton-Like Waves Guided by Thin, Lossy Metal Films,” Phys. Rev. B 33(8), 5186–5201 (1986).
[CrossRef]

Won, H. S.

H. S. Won, K. C. Kim, S. H. Song, C.-H. Oh, P. S. Kim, S. Park, and S. I. Kim, “Vertical coupling of long-range surface plasmon polaritons,” Appl. Phys. Lett. 88(1), 011110 (2006).
[CrossRef]

Xu, G. L.

G. L. Xu, W. P. Huang, M. S. Stern, and S. K. Chaudhuri, “Full-vectorial mode calculations by finite difference method,” IEE Proc., Optoelectron. 141(5), 281–286 (1994).
[CrossRef]

Yang, F.

F. Yang, J. R. Sambles, and G. W. Bradberry, “Long-Range Surface Modes Supported by Thin Films,” Phys. Rev. B 44(11), 5855–5872 (1991).
[CrossRef]

Yang, W.-S.

Appl. Phys. Lett. (2)

R. Nikolajsen, K. Leosson, I. Salakhutdinov, and S. I. Bozhevolnyi, “Polymer-based surface-plasmon polariton stripe waveguides at telecommunication wavelengths,” Appl. Phys. Lett. 82(5), 668–670 (2003).
[CrossRef]

H. S. Won, K. C. Kim, S. H. Song, C.-H. Oh, P. S. Kim, S. Park, and S. I. Kim, “Vertical coupling of long-range surface plasmon polaritons,” Appl. Phys. Lett. 88(1), 011110 (2006).
[CrossRef]

Electron. Lett. (1)

S. Park and S. H. Song, “Polymer variable optical attenuator based on long range surface plasmon polaritons,” Electron. Lett. 42(7), 402–404 (2006).
[CrossRef]

IEE Proc., Optoelectron. (1)

G. L. Xu, W. P. Huang, M. S. Stern, and S. K. Chaudhuri, “Full-vectorial mode calculations by finite difference method,” IEE Proc., Optoelectron. 141(5), 281–286 (1994).
[CrossRef]

IEEE Microw. Guid. Wave Lett. (2)

S. J. Al-Bader and H. A. Jamid, “Perfectly matched layer absorbing boundary conditions for the method of lines modeling scheme,” IEEE Microw. Guid. Wave Lett. 8(11), 357–359 (1998).
[CrossRef]

R. Mittra and U. Pekel, “A new look at the perfectly matched layer (PML) concept for the reflectionless absorption of electromagnetic waves,” IEEE Microw. Guid. Wave Lett. 5(3), 84–86 (1995).
[CrossRef]

J. Lightwave Technol. (3)

Nature (1)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

Opt. Express (3)

Opt. Lett. (1)

Phys. Rev. B (3)

J. J. Burke, G. I. Stegeman, and T. Tamir, “Surface-Polariton-Like Waves Guided by Thin, Lossy Metal Films,” Phys. Rev. B 33(8), 5186–5201 (1986).
[CrossRef]

F. Yang, J. R. Sambles, and G. W. Bradberry, “Long-Range Surface Modes Supported by Thin Films,” Phys. Rev. B 44(11), 5855–5872 (1991).
[CrossRef]

P. Berini, “Plasmon-Polariton Waves Guided by Thin Lossy Metal Films of Finite Width: Bound Modes of Symmetric structures,” Phys. Rev. B 61(15), 10484–10503 (2000).
[CrossRef]

Other (3)

E. D. Palik, Handbook of Optical Constants of Solids (Academic, New York, 1985).

I. G. Breukelaar, “Surface plasmon-polaritons in thin metal strips and slabs: waveguiding and mode cutoff,” B.A.Sc.Thesis, University of Ottawa, Canada (2004).

A. D. Boardman, ed., Electromagnetic Surface Modes, (Wiley Interscience, 1982).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Structure of curved asymmetric waveguide bend: (a) cross-sectional view, (b) top view, and (c) perspective view (n1 = variable, n2 = 1.47, W = 5μm, λ0 = 1.55μm).

Fig. 2
Fig. 2

(a) Effective refractive index and (b) propagation loss [dB/mm] for the straight asymmetric waveguides with n2 = 1.47, W = 5μm and λ0 = 1.55μm.

Fig. 3
Fig. 3

Electric field (Er ) distributions of the straight waveguides (t = 20 nm, n2 = 1.47, W = 5μm and λ0 = 1.55μm): (a) n1 = 1.47 (symmetric), (b) n1 = 1.469, and (c) n1 = 1.4685.

Fig. 4
Fig. 4

(a) Effective refractive index, (b) bending loss per unit length [dB/mm], and (c) bending loss per 90° [dB/90°] for the curved asymmetric waveguide with n2 = 1.47, W = 5μm and λ0 = 1.55μm.

Fig. 5
Fig. 5

Electric field (Er ) distributions of the fundamental mode in the curved waveguide with various radii (n1 = 1.468, n2 = 1.470, t = 20 nm). (a) R = 1,000 mm, (b) R = 50 mm, (c) R = 20 mm, (d) Ropt = 10 mm, (e) R = 6 mm, (f) R = 3 mm.

Fig. 6
Fig. 6

(a) Bending loss per unit length [dB/mm] and (b) bending loss per 90° bending [dB/90°] for the curved large asymmetric waveguides with n2 = 1.47, W = 5μm and λ0 = 1.55μm.

Metrics