Abstract

Using polymer-dispersed liquid crystals (PDLCs), an electrically switchable binary phase pattern was fabricated to generate Airy beams through a programmable lithographic system. The right main lobe of the reconstructed Airy beam experienced 1.3 mm transverse deflection within 24 cm propagation distance. With a suitable voltage applied, the binary PDLC pattern can be erased due to the index match between polymers and liquid crystals. This versatile approach can be also used to generate other special beams with electrically tunable capability.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Dholakia, P. Reece, and M. Gu, “Optical micromanipulation,” Chem. Soc. Rev. 37(1), 42–55 (2007).
    [CrossRef]
  2. V. Garcés-Chávez, D. McGloin, H. Melville, W. Sibbett, and K. Dholakia, “Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam,” Nature 419(6903), 145–147 (2002).
    [CrossRef] [PubMed]
  3. Z. Ding, H. Ren, Y. Zhao, J. S. Nelson, and Z. Chen, “High-resolution optical coherence tomography over a large depth range with an axicon lens,” Opt. Lett. 27(4), 243–245 (2002).
    [CrossRef]
  4. J. Durnin, “Exact solutions for nondiffracting beams. I. The scalar theory,” J. Opt. Soc. Am. A 4(4), 651 (1987).
    [CrossRef]
  5. J. Durnin, J. J. Miceli, and J. H. Eberly, “Diffraction-free beams,” Phys. Rev. Lett. 58(15), 1499–1501 (1987).
    [CrossRef] [PubMed]
  6. D. G. Hall, “Vector-beam solutions of Maxwell's wave equation,” Opt. Lett. 21(1), 9 (1996).
    [CrossRef] [PubMed]
  7. U. T. Schwarz, M. A. Bandres, and J. C. Gutiérrez-Vega, “Observation of Ince-Gaussian modes in stable resonators,” Opt. Lett. 29(16), 1870–1872 (2004).
    [CrossRef] [PubMed]
  8. J. C. Gutierrez-Vega and M. A. Bandres, “Ince-Gaussian beams in a quadratic-index medium,” J. Opt. Soc. Am. A 22, 306 (2005).
    [CrossRef]
  9. J. C. Gutiérrez-Vega, M. D. Iturbe-Castillo, and S. Chávez-Cerda, “Alternative formulation for invariant optical fields: Mathieu beams,” Opt. Lett. 25(20), 1493–1495 (2000).
    [CrossRef]
  10. M. V. Berry and N. L. Balazs, “Nonspreading wave packets,” Am. J. Phys. 47(3), 264 (1979).
    [CrossRef]
  11. G. A. Siviloglou and D. N. Christodoulides, “Accelerating finite energy Airy beams,” Opt. Lett. 32(8), 979–981 (2007).
    [CrossRef] [PubMed]
  12. G. A. Siviloglou, J. Broky, A. Dogariu, and D. N. Christodoulides, “Observation of accelerating Airy beams,” Phys. Rev. Lett. 99(21), 213901 (2007).
    [CrossRef]
  13. J. Broky, G. A. Siviloglou, A. Dogariu, and D. N. Christodoulides, “Self-healing properties of optical Airy beams,” Opt. Express 16(17), 12880–12891 (2008).
    [CrossRef] [PubMed]
  14. G. A. Siviloglou, J. Broky, A. Dogariu, and D. N. Christodoulides, “Ballistic dynamics of Airy beams,” Opt. Lett. 33(3), 207–209 (2008).
    [CrossRef] [PubMed]
  15. M. A. Bandres and J. C. Gutiérrez-Vega, “Airy-Gauss beams and their transformation by paraxial optical systems,” Opt. Express 15(25), 16719–16728 (2007).
    [CrossRef] [PubMed]
  16. H. I. Sztul and R. R. Alfano, “The Poynting vector and angular momentum of Airy beams,” Opt. Express 16(13), 9411–9416 (2008).
    [CrossRef] [PubMed]
  17. P. Saari, “Laterally accelerating airy pulses,” Opt. Express 16(14), 10303–10308 (2008).
    [CrossRef] [PubMed]
  18. P. Saari, “Airy pulse-A new member of family of localized waves,” Laser Phys. 19(4), 725–729 (2009).
    [CrossRef]
  19. J. Baumgartl, M. Mazilu, and K. Dholakia, “Optically mediated particle clearing using Airy wavepackets,” Nat. Photonics 2(11), 675–678 (2008).
    [CrossRef]
  20. J. Baumgartl, G. M. Hannappel, D. J. Stevenson, D. Day, M. Gu, and K. Dholakia, “Optical redistribution of microparticles and cells between microwells,” Lab Chip 9(10), 1334 (2009).
    [CrossRef] [PubMed]
  21. P. Polynkin, M. Kolesik, J. V. Moloney, G. A. Siviloglou, and D. N. Christodoulides, “Curved plasma channel generation using ultraintense Airy beams,” Science 324(5924), 229–232 (2009).
    [CrossRef] [PubMed]
  22. T. Ellenbogen, N. Voloch-Bloch, A. Ganany-Padowicz, and A. Arie, “Nonlinear generation and manipulation of Airy beams,” Nat. Photonics 3(7), 395–398 (2009).
    [CrossRef]
  23. H. W. Ren, Y.-H. Fan, and S.-T. Wu, “Tunable Fresnel lens using nanoscale polymer-dispersed liquid crystals,” Appl. Phys. Lett. 83(8), 1515 (2003).
    [CrossRef]
  24. H. W. Ren, Y.-H. Lin, Y.-H. Fan, and S.-T. Wu, “Polarization-independent phase modulation using a polymer-dispersed liquid crystals,” Appl. Phys. Lett. 86(14), 141110 (2005).
    [CrossRef]
  25. Y. J. Liu, X. W. Sun, P. Shum, and X. J. Yin, “Tunable fly’s-eye lens made of patterned polymer-dispersed liquid crystal,” Opt. Express 14(12), 5634–5640 (2006).
    [CrossRef] [PubMed]
  26. Y. J. Liu and X. W. Sun, “Electrically tunable three-dimensional holographic photonic crystal made of polymer-dispersed liquid crystals using a single prism,” Jpn. J. Appl. Phys. 46(No. 10A), 6634–6638 (2007).
    [CrossRef]
  27. Y. J. Liu and X. W. Sun, “Electrically switchable computer-generated hologram recorded in polymer-dispersed liquid crystals,” Appl. Phys. Lett. 90(19), 191118 (2007).
    [CrossRef]
  28. Y. J. Liu, X. W. Sun, Q. Wang, and D. Luo, “Electrically switchable optical vortex generated by a computer-generated hologram recorded in polymer-dispersed liquid crystals,” Opt. Express 15(25), 16645–16650 (2007).
    [CrossRef] [PubMed]
  29. Y. J. Liu, H. T. Dai, X. W. Sun, and T. J. Huang, “Electrically switchable phase-type fractal zone plates and fractal photon sieves,” Opt. Express 17(15), 12418–12423 (2009).
    [CrossRef] [PubMed]
  30. T. Shimobaba, Y. Sato, J. Miura, M. Takenouchi, and T. Ito, “Real-time digital holographic microscopy using the graphic processing unit,” Opt. Express 16(16), 11776–11781 (2008).
    [CrossRef] [PubMed]
  31. The GWO library, http://sourceforge.net/projects/thegwolibrary/ .
  32. Q. Wang, X. W. Sun, and X. J. Yin, “Equidistant fringe phase shift measurement by use of a trough integration method,” Opt. Eng. 47(11), 115601 (2008).
    [CrossRef]

2009 (5)

P. Saari, “Airy pulse-A new member of family of localized waves,” Laser Phys. 19(4), 725–729 (2009).
[CrossRef]

J. Baumgartl, G. M. Hannappel, D. J. Stevenson, D. Day, M. Gu, and K. Dholakia, “Optical redistribution of microparticles and cells between microwells,” Lab Chip 9(10), 1334 (2009).
[CrossRef] [PubMed]

P. Polynkin, M. Kolesik, J. V. Moloney, G. A. Siviloglou, and D. N. Christodoulides, “Curved plasma channel generation using ultraintense Airy beams,” Science 324(5924), 229–232 (2009).
[CrossRef] [PubMed]

T. Ellenbogen, N. Voloch-Bloch, A. Ganany-Padowicz, and A. Arie, “Nonlinear generation and manipulation of Airy beams,” Nat. Photonics 3(7), 395–398 (2009).
[CrossRef]

Y. J. Liu, H. T. Dai, X. W. Sun, and T. J. Huang, “Electrically switchable phase-type fractal zone plates and fractal photon sieves,” Opt. Express 17(15), 12418–12423 (2009).
[CrossRef] [PubMed]

2008 (7)

2007 (7)

G. A. Siviloglou, J. Broky, A. Dogariu, and D. N. Christodoulides, “Observation of accelerating Airy beams,” Phys. Rev. Lett. 99(21), 213901 (2007).
[CrossRef]

Y. J. Liu and X. W. Sun, “Electrically tunable three-dimensional holographic photonic crystal made of polymer-dispersed liquid crystals using a single prism,” Jpn. J. Appl. Phys. 46(No. 10A), 6634–6638 (2007).
[CrossRef]

Y. J. Liu and X. W. Sun, “Electrically switchable computer-generated hologram recorded in polymer-dispersed liquid crystals,” Appl. Phys. Lett. 90(19), 191118 (2007).
[CrossRef]

K. Dholakia, P. Reece, and M. Gu, “Optical micromanipulation,” Chem. Soc. Rev. 37(1), 42–55 (2007).
[CrossRef]

G. A. Siviloglou and D. N. Christodoulides, “Accelerating finite energy Airy beams,” Opt. Lett. 32(8), 979–981 (2007).
[CrossRef] [PubMed]

Y. J. Liu, X. W. Sun, Q. Wang, and D. Luo, “Electrically switchable optical vortex generated by a computer-generated hologram recorded in polymer-dispersed liquid crystals,” Opt. Express 15(25), 16645–16650 (2007).
[CrossRef] [PubMed]

M. A. Bandres and J. C. Gutiérrez-Vega, “Airy-Gauss beams and their transformation by paraxial optical systems,” Opt. Express 15(25), 16719–16728 (2007).
[CrossRef] [PubMed]

2006 (1)

2005 (2)

J. C. Gutierrez-Vega and M. A. Bandres, “Ince-Gaussian beams in a quadratic-index medium,” J. Opt. Soc. Am. A 22, 306 (2005).
[CrossRef]

H. W. Ren, Y.-H. Lin, Y.-H. Fan, and S.-T. Wu, “Polarization-independent phase modulation using a polymer-dispersed liquid crystals,” Appl. Phys. Lett. 86(14), 141110 (2005).
[CrossRef]

2004 (1)

2003 (1)

H. W. Ren, Y.-H. Fan, and S.-T. Wu, “Tunable Fresnel lens using nanoscale polymer-dispersed liquid crystals,” Appl. Phys. Lett. 83(8), 1515 (2003).
[CrossRef]

2002 (2)

V. Garcés-Chávez, D. McGloin, H. Melville, W. Sibbett, and K. Dholakia, “Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam,” Nature 419(6903), 145–147 (2002).
[CrossRef] [PubMed]

Z. Ding, H. Ren, Y. Zhao, J. S. Nelson, and Z. Chen, “High-resolution optical coherence tomography over a large depth range with an axicon lens,” Opt. Lett. 27(4), 243–245 (2002).
[CrossRef]

2000 (1)

1996 (1)

1987 (2)

J. Durnin, J. J. Miceli, and J. H. Eberly, “Diffraction-free beams,” Phys. Rev. Lett. 58(15), 1499–1501 (1987).
[CrossRef] [PubMed]

J. Durnin, “Exact solutions for nondiffracting beams. I. The scalar theory,” J. Opt. Soc. Am. A 4(4), 651 (1987).
[CrossRef]

1979 (1)

M. V. Berry and N. L. Balazs, “Nonspreading wave packets,” Am. J. Phys. 47(3), 264 (1979).
[CrossRef]

Alfano, R. R.

Arie, A.

T. Ellenbogen, N. Voloch-Bloch, A. Ganany-Padowicz, and A. Arie, “Nonlinear generation and manipulation of Airy beams,” Nat. Photonics 3(7), 395–398 (2009).
[CrossRef]

Balazs, N. L.

M. V. Berry and N. L. Balazs, “Nonspreading wave packets,” Am. J. Phys. 47(3), 264 (1979).
[CrossRef]

Bandres, M. A.

Baumgartl, J.

J. Baumgartl, G. M. Hannappel, D. J. Stevenson, D. Day, M. Gu, and K. Dholakia, “Optical redistribution of microparticles and cells between microwells,” Lab Chip 9(10), 1334 (2009).
[CrossRef] [PubMed]

J. Baumgartl, M. Mazilu, and K. Dholakia, “Optically mediated particle clearing using Airy wavepackets,” Nat. Photonics 2(11), 675–678 (2008).
[CrossRef]

Berry, M. V.

M. V. Berry and N. L. Balazs, “Nonspreading wave packets,” Am. J. Phys. 47(3), 264 (1979).
[CrossRef]

Broky, J.

Chávez-Cerda, S.

Chen, Z.

Christodoulides, D. N.

P. Polynkin, M. Kolesik, J. V. Moloney, G. A. Siviloglou, and D. N. Christodoulides, “Curved plasma channel generation using ultraintense Airy beams,” Science 324(5924), 229–232 (2009).
[CrossRef] [PubMed]

J. Broky, G. A. Siviloglou, A. Dogariu, and D. N. Christodoulides, “Self-healing properties of optical Airy beams,” Opt. Express 16(17), 12880–12891 (2008).
[CrossRef] [PubMed]

G. A. Siviloglou, J. Broky, A. Dogariu, and D. N. Christodoulides, “Ballistic dynamics of Airy beams,” Opt. Lett. 33(3), 207–209 (2008).
[CrossRef] [PubMed]

G. A. Siviloglou and D. N. Christodoulides, “Accelerating finite energy Airy beams,” Opt. Lett. 32(8), 979–981 (2007).
[CrossRef] [PubMed]

G. A. Siviloglou, J. Broky, A. Dogariu, and D. N. Christodoulides, “Observation of accelerating Airy beams,” Phys. Rev. Lett. 99(21), 213901 (2007).
[CrossRef]

Dai, H. T.

Day, D.

J. Baumgartl, G. M. Hannappel, D. J. Stevenson, D. Day, M. Gu, and K. Dholakia, “Optical redistribution of microparticles and cells between microwells,” Lab Chip 9(10), 1334 (2009).
[CrossRef] [PubMed]

Dholakia, K.

J. Baumgartl, G. M. Hannappel, D. J. Stevenson, D. Day, M. Gu, and K. Dholakia, “Optical redistribution of microparticles and cells between microwells,” Lab Chip 9(10), 1334 (2009).
[CrossRef] [PubMed]

J. Baumgartl, M. Mazilu, and K. Dholakia, “Optically mediated particle clearing using Airy wavepackets,” Nat. Photonics 2(11), 675–678 (2008).
[CrossRef]

K. Dholakia, P. Reece, and M. Gu, “Optical micromanipulation,” Chem. Soc. Rev. 37(1), 42–55 (2007).
[CrossRef]

V. Garcés-Chávez, D. McGloin, H. Melville, W. Sibbett, and K. Dholakia, “Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam,” Nature 419(6903), 145–147 (2002).
[CrossRef] [PubMed]

Ding, Z.

Dogariu, A.

Durnin, J.

J. Durnin, “Exact solutions for nondiffracting beams. I. The scalar theory,” J. Opt. Soc. Am. A 4(4), 651 (1987).
[CrossRef]

J. Durnin, J. J. Miceli, and J. H. Eberly, “Diffraction-free beams,” Phys. Rev. Lett. 58(15), 1499–1501 (1987).
[CrossRef] [PubMed]

Eberly, J. H.

J. Durnin, J. J. Miceli, and J. H. Eberly, “Diffraction-free beams,” Phys. Rev. Lett. 58(15), 1499–1501 (1987).
[CrossRef] [PubMed]

Ellenbogen, T.

T. Ellenbogen, N. Voloch-Bloch, A. Ganany-Padowicz, and A. Arie, “Nonlinear generation and manipulation of Airy beams,” Nat. Photonics 3(7), 395–398 (2009).
[CrossRef]

Fan, Y.-H.

H. W. Ren, Y.-H. Lin, Y.-H. Fan, and S.-T. Wu, “Polarization-independent phase modulation using a polymer-dispersed liquid crystals,” Appl. Phys. Lett. 86(14), 141110 (2005).
[CrossRef]

H. W. Ren, Y.-H. Fan, and S.-T. Wu, “Tunable Fresnel lens using nanoscale polymer-dispersed liquid crystals,” Appl. Phys. Lett. 83(8), 1515 (2003).
[CrossRef]

Ganany-Padowicz, A.

T. Ellenbogen, N. Voloch-Bloch, A. Ganany-Padowicz, and A. Arie, “Nonlinear generation and manipulation of Airy beams,” Nat. Photonics 3(7), 395–398 (2009).
[CrossRef]

Garcés-Chávez, V.

V. Garcés-Chávez, D. McGloin, H. Melville, W. Sibbett, and K. Dholakia, “Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam,” Nature 419(6903), 145–147 (2002).
[CrossRef] [PubMed]

Gu, M.

J. Baumgartl, G. M. Hannappel, D. J. Stevenson, D. Day, M. Gu, and K. Dholakia, “Optical redistribution of microparticles and cells between microwells,” Lab Chip 9(10), 1334 (2009).
[CrossRef] [PubMed]

K. Dholakia, P. Reece, and M. Gu, “Optical micromanipulation,” Chem. Soc. Rev. 37(1), 42–55 (2007).
[CrossRef]

Gutierrez-Vega, J. C.

Gutiérrez-Vega, J. C.

Hall, D. G.

Hannappel, G. M.

J. Baumgartl, G. M. Hannappel, D. J. Stevenson, D. Day, M. Gu, and K. Dholakia, “Optical redistribution of microparticles and cells between microwells,” Lab Chip 9(10), 1334 (2009).
[CrossRef] [PubMed]

Huang, T. J.

Ito, T.

Iturbe-Castillo, M. D.

Kolesik, M.

P. Polynkin, M. Kolesik, J. V. Moloney, G. A. Siviloglou, and D. N. Christodoulides, “Curved plasma channel generation using ultraintense Airy beams,” Science 324(5924), 229–232 (2009).
[CrossRef] [PubMed]

Lin, Y.-H.

H. W. Ren, Y.-H. Lin, Y.-H. Fan, and S.-T. Wu, “Polarization-independent phase modulation using a polymer-dispersed liquid crystals,” Appl. Phys. Lett. 86(14), 141110 (2005).
[CrossRef]

Liu, Y. J.

Luo, D.

Mazilu, M.

J. Baumgartl, M. Mazilu, and K. Dholakia, “Optically mediated particle clearing using Airy wavepackets,” Nat. Photonics 2(11), 675–678 (2008).
[CrossRef]

McGloin, D.

V. Garcés-Chávez, D. McGloin, H. Melville, W. Sibbett, and K. Dholakia, “Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam,” Nature 419(6903), 145–147 (2002).
[CrossRef] [PubMed]

Melville, H.

V. Garcés-Chávez, D. McGloin, H. Melville, W. Sibbett, and K. Dholakia, “Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam,” Nature 419(6903), 145–147 (2002).
[CrossRef] [PubMed]

Miceli, J. J.

J. Durnin, J. J. Miceli, and J. H. Eberly, “Diffraction-free beams,” Phys. Rev. Lett. 58(15), 1499–1501 (1987).
[CrossRef] [PubMed]

Miura, J.

Moloney, J. V.

P. Polynkin, M. Kolesik, J. V. Moloney, G. A. Siviloglou, and D. N. Christodoulides, “Curved plasma channel generation using ultraintense Airy beams,” Science 324(5924), 229–232 (2009).
[CrossRef] [PubMed]

Nelson, J. S.

Polynkin, P.

P. Polynkin, M. Kolesik, J. V. Moloney, G. A. Siviloglou, and D. N. Christodoulides, “Curved plasma channel generation using ultraintense Airy beams,” Science 324(5924), 229–232 (2009).
[CrossRef] [PubMed]

Reece, P.

K. Dholakia, P. Reece, and M. Gu, “Optical micromanipulation,” Chem. Soc. Rev. 37(1), 42–55 (2007).
[CrossRef]

Ren, H.

Ren, H. W.

H. W. Ren, Y.-H. Lin, Y.-H. Fan, and S.-T. Wu, “Polarization-independent phase modulation using a polymer-dispersed liquid crystals,” Appl. Phys. Lett. 86(14), 141110 (2005).
[CrossRef]

H. W. Ren, Y.-H. Fan, and S.-T. Wu, “Tunable Fresnel lens using nanoscale polymer-dispersed liquid crystals,” Appl. Phys. Lett. 83(8), 1515 (2003).
[CrossRef]

Saari, P.

P. Saari, “Airy pulse-A new member of family of localized waves,” Laser Phys. 19(4), 725–729 (2009).
[CrossRef]

P. Saari, “Laterally accelerating airy pulses,” Opt. Express 16(14), 10303–10308 (2008).
[CrossRef] [PubMed]

Sato, Y.

Schwarz, U. T.

Shimobaba, T.

Shum, P.

Sibbett, W.

V. Garcés-Chávez, D. McGloin, H. Melville, W. Sibbett, and K. Dholakia, “Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam,” Nature 419(6903), 145–147 (2002).
[CrossRef] [PubMed]

Siviloglou, G. A.

P. Polynkin, M. Kolesik, J. V. Moloney, G. A. Siviloglou, and D. N. Christodoulides, “Curved plasma channel generation using ultraintense Airy beams,” Science 324(5924), 229–232 (2009).
[CrossRef] [PubMed]

J. Broky, G. A. Siviloglou, A. Dogariu, and D. N. Christodoulides, “Self-healing properties of optical Airy beams,” Opt. Express 16(17), 12880–12891 (2008).
[CrossRef] [PubMed]

G. A. Siviloglou, J. Broky, A. Dogariu, and D. N. Christodoulides, “Ballistic dynamics of Airy beams,” Opt. Lett. 33(3), 207–209 (2008).
[CrossRef] [PubMed]

G. A. Siviloglou and D. N. Christodoulides, “Accelerating finite energy Airy beams,” Opt. Lett. 32(8), 979–981 (2007).
[CrossRef] [PubMed]

G. A. Siviloglou, J. Broky, A. Dogariu, and D. N. Christodoulides, “Observation of accelerating Airy beams,” Phys. Rev. Lett. 99(21), 213901 (2007).
[CrossRef]

Stevenson, D. J.

J. Baumgartl, G. M. Hannappel, D. J. Stevenson, D. Day, M. Gu, and K. Dholakia, “Optical redistribution of microparticles and cells between microwells,” Lab Chip 9(10), 1334 (2009).
[CrossRef] [PubMed]

Sun, X. W.

Y. J. Liu, H. T. Dai, X. W. Sun, and T. J. Huang, “Electrically switchable phase-type fractal zone plates and fractal photon sieves,” Opt. Express 17(15), 12418–12423 (2009).
[CrossRef] [PubMed]

Q. Wang, X. W. Sun, and X. J. Yin, “Equidistant fringe phase shift measurement by use of a trough integration method,” Opt. Eng. 47(11), 115601 (2008).
[CrossRef]

Y. J. Liu and X. W. Sun, “Electrically tunable three-dimensional holographic photonic crystal made of polymer-dispersed liquid crystals using a single prism,” Jpn. J. Appl. Phys. 46(No. 10A), 6634–6638 (2007).
[CrossRef]

Y. J. Liu, X. W. Sun, Q. Wang, and D. Luo, “Electrically switchable optical vortex generated by a computer-generated hologram recorded in polymer-dispersed liquid crystals,” Opt. Express 15(25), 16645–16650 (2007).
[CrossRef] [PubMed]

Y. J. Liu and X. W. Sun, “Electrically switchable computer-generated hologram recorded in polymer-dispersed liquid crystals,” Appl. Phys. Lett. 90(19), 191118 (2007).
[CrossRef]

Y. J. Liu, X. W. Sun, P. Shum, and X. J. Yin, “Tunable fly’s-eye lens made of patterned polymer-dispersed liquid crystal,” Opt. Express 14(12), 5634–5640 (2006).
[CrossRef] [PubMed]

Sztul, H. I.

Takenouchi, M.

Voloch-Bloch, N.

T. Ellenbogen, N. Voloch-Bloch, A. Ganany-Padowicz, and A. Arie, “Nonlinear generation and manipulation of Airy beams,” Nat. Photonics 3(7), 395–398 (2009).
[CrossRef]

Wang, Q.

Wu, S.-T.

H. W. Ren, Y.-H. Lin, Y.-H. Fan, and S.-T. Wu, “Polarization-independent phase modulation using a polymer-dispersed liquid crystals,” Appl. Phys. Lett. 86(14), 141110 (2005).
[CrossRef]

H. W. Ren, Y.-H. Fan, and S.-T. Wu, “Tunable Fresnel lens using nanoscale polymer-dispersed liquid crystals,” Appl. Phys. Lett. 83(8), 1515 (2003).
[CrossRef]

Yin, X. J.

Q. Wang, X. W. Sun, and X. J. Yin, “Equidistant fringe phase shift measurement by use of a trough integration method,” Opt. Eng. 47(11), 115601 (2008).
[CrossRef]

Y. J. Liu, X. W. Sun, P. Shum, and X. J. Yin, “Tunable fly’s-eye lens made of patterned polymer-dispersed liquid crystal,” Opt. Express 14(12), 5634–5640 (2006).
[CrossRef] [PubMed]

Zhao, Y.

Am. J. Phys. (1)

M. V. Berry and N. L. Balazs, “Nonspreading wave packets,” Am. J. Phys. 47(3), 264 (1979).
[CrossRef]

Appl. Phys. Lett. (3)

H. W. Ren, Y.-H. Fan, and S.-T. Wu, “Tunable Fresnel lens using nanoscale polymer-dispersed liquid crystals,” Appl. Phys. Lett. 83(8), 1515 (2003).
[CrossRef]

H. W. Ren, Y.-H. Lin, Y.-H. Fan, and S.-T. Wu, “Polarization-independent phase modulation using a polymer-dispersed liquid crystals,” Appl. Phys. Lett. 86(14), 141110 (2005).
[CrossRef]

Y. J. Liu and X. W. Sun, “Electrically switchable computer-generated hologram recorded in polymer-dispersed liquid crystals,” Appl. Phys. Lett. 90(19), 191118 (2007).
[CrossRef]

Chem. Soc. Rev. (1)

K. Dholakia, P. Reece, and M. Gu, “Optical micromanipulation,” Chem. Soc. Rev. 37(1), 42–55 (2007).
[CrossRef]

J. Opt. Soc. Am. A (2)

Jpn. J. Appl. Phys. (1)

Y. J. Liu and X. W. Sun, “Electrically tunable three-dimensional holographic photonic crystal made of polymer-dispersed liquid crystals using a single prism,” Jpn. J. Appl. Phys. 46(No. 10A), 6634–6638 (2007).
[CrossRef]

Lab Chip (1)

J. Baumgartl, G. M. Hannappel, D. J. Stevenson, D. Day, M. Gu, and K. Dholakia, “Optical redistribution of microparticles and cells between microwells,” Lab Chip 9(10), 1334 (2009).
[CrossRef] [PubMed]

Laser Phys. (1)

P. Saari, “Airy pulse-A new member of family of localized waves,” Laser Phys. 19(4), 725–729 (2009).
[CrossRef]

Nat. Photonics (2)

J. Baumgartl, M. Mazilu, and K. Dholakia, “Optically mediated particle clearing using Airy wavepackets,” Nat. Photonics 2(11), 675–678 (2008).
[CrossRef]

T. Ellenbogen, N. Voloch-Bloch, A. Ganany-Padowicz, and A. Arie, “Nonlinear generation and manipulation of Airy beams,” Nat. Photonics 3(7), 395–398 (2009).
[CrossRef]

Nature (1)

V. Garcés-Chávez, D. McGloin, H. Melville, W. Sibbett, and K. Dholakia, “Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam,” Nature 419(6903), 145–147 (2002).
[CrossRef] [PubMed]

Opt. Eng. (1)

Q. Wang, X. W. Sun, and X. J. Yin, “Equidistant fringe phase shift measurement by use of a trough integration method,” Opt. Eng. 47(11), 115601 (2008).
[CrossRef]

Opt. Express (8)

Opt. Lett. (6)

Phys. Rev. Lett. (2)

G. A. Siviloglou, J. Broky, A. Dogariu, and D. N. Christodoulides, “Observation of accelerating Airy beams,” Phys. Rev. Lett. 99(21), 213901 (2007).
[CrossRef]

J. Durnin, J. J. Miceli, and J. H. Eberly, “Diffraction-free beams,” Phys. Rev. Lett. 58(15), 1499–1501 (1987).
[CrossRef] [PubMed]

Science (1)

P. Polynkin, M. Kolesik, J. V. Moloney, G. A. Siviloglou, and D. N. Christodoulides, “Curved plasma channel generation using ultraintense Airy beams,” Science 324(5924), 229–232 (2009).
[CrossRef] [PubMed]

Other (1)

The GWO library, http://sourceforge.net/projects/thegwolibrary/ .

Supplementary Material (2)

» Media 1: AVI (2224 KB)     
» Media 2: AVI (2692 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

The gray (a) and binary (b) patterns to generate the Airy beam, and the reconstructed diffraction patterns (c) and (d) by numerical simulation, respectively.

Fig. 2
Fig. 2

The schematic of DMD programmable lithography system (a), and the reconstruction setup (b).

Fig. 3
Fig. 3

Optical microscopy images of the PDLC pattern with (a) and without (b) crossed polarizers.

Fig. 4
Fig. 4

The propagation of Airy beam generated by binary phase mask (a) simulated by GWO library (Media 1) and (b) the experimental results (Media 2).

Fig. 5
Fig. 5

(a)Transverse acceleration of the reconstructed Airy beam as a function of beam propagation distance. Circles mark experimental data while the red solid line represents a numerical simulating result. The dashed blue line is the simulated trace of Airy beam generated from continuous phase pattern. The insets are the intensity profiles of reconstructed the Airy beam from PDLC sample recorded by a CCD at distance of (I) 33.03 cm and the corresponding simulation result (II). (b) 3D slice demonstration of simulated results.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

ϕ(ξ,s)=Ai(s(ξ/2)2)exp(i(sξ/2)i(ξ3/12)),
xdλ02z2/(16π2x03)

Metrics