Abstract

We report emission from a bismuth doped chalcogenide glass which is flattened, has a full width at half maximum (FWHM) of 600 nm, peaks at 1300 nm and covers the entire telecommunications window. At cryogenic temperatures the FWHM reaches 850 nm. The quantum efficiency and lifetime were as high as 32% and 175 μs, respectively. We also report two new bismuth emission bands at 2000 and 2600 nm. Absorption bands at 680, 850, 1020 and 1180 nm were observed. The 1180 nm absorption band was previously unobserved. We suggest that the origin of the emission in Bi:GLS is Bi22 dimers.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Peng, D. Chen, J. Qiu, X. Jiang, and C. Zhu, “Bismuth-doped zinc aluminosilicate glasses and glass-ceramics with ultra-broadband infrared luminescence,” Opt. Mater. 29(5), 556–561 (2007).
    [CrossRef]
  2. Y. Arai, T. Suzuki, Y. Ohishi, S. Morimoto, and S. Khonthon, “Ultrabroadband near-infrared emission from a colorless bismuth-doped glass,” Appl. Phys. Lett. 90(26), 261110 (2007).
    [CrossRef]
  3. M. Peng, B. Wu, N. Da, C. Wang, D. Chen, C. Zhu, and J. Qiu, “Bismuth-activated luminescent materials for broadband optical amplifier in WDM system,” J. Non-Cryst. Solids 354(12-13), 1221–1225 (2008).
    [CrossRef]
  4. J. Ren, J. Qiu, B. Wu, and D. Chen, “Ultrabroad infrared luminescence from Bi-doped alkaline earth metal germanate glasses,” J. Mater. Res. 22(6), 1574–1578 (2007).
    [CrossRef]
  5. M. Peng, J. Qiu, D. Chen, X. Meng, I. Yang, X. Jiang, and C. Zhu, “Bismuth- and aluminum-codoped germanium oxide glasses for super-broadband optical amplification,” Opt. Lett. 29(17), 1998–2000 (2004).
    [CrossRef] [PubMed]
  6. M. Peng, J. Qiu, D. Chen, X. Meng, and C. Zhu, “Superbroadband 1310 nm emission from bismuth and tantalum codoped germanium oxide glasses,” Opt. Lett. 30(18), 2433–2435 (2005).
    [CrossRef] [PubMed]
  7. X. G. Meng, J. R. Qiu, M. Y. Peng, D. P. Chen, Q. Z. Zhao, X. W. Jiang, and C. S. Zhu, “Near infrared broadband emission of bismuth-doped aluminophosphate glass,” Opt. Express 13(5), 1628–1634 (2005).
    [CrossRef] [PubMed]
  8. X. G. Meng, J. R. Qiu, M. Y. Peng, D. P. Chen, Q. Z. Zhao, X. W. Jiang, and C. S. Zhu, “Infrared broadband emission of bismuth-doped barium-aluminum-borate glasses,” Opt. Express 13(5), 1635–1642 (2005).
    [CrossRef] [PubMed]
  9. Y. Fujimoto and M. Nakatsuka, “Infrared Luminescence from Bismuth-Doped Silica Glass,” Jpn. J. Appl. Phys. 40(Part 2, No. 3B), L279–L281 (2001).
    [CrossRef]
  10. X. Wang and H. Xia, “Infrared superbroadband emission of Bi ion doped germanium-aluminum-sodium glass,” Opt. Commun. 268(1), 75–78 (2006).
    [CrossRef]
  11. S. Khonthon, S. Morimoto, Y. Arai, and Y. Ohishi, “Luminescence Characteristics of Te- and Bi-Doped Glasses and Glass-Ceramics,” J. Ceram. Soc. Jpn. 115(1340), 259–263 (2007).
    [CrossRef]
  12. V. O. Sokolov, V. G. Plotnichenko, and E. M. Dianov, “Origin of broadband near-infrared luminescence in bismuth-doped glasses,” Opt. Lett. 33(13), 1488–1490 (2008).
    [CrossRef] [PubMed]
  13. G. P. Dong, X. D. Xiao, J. J. Ren, J. Ruan, X. F. Liu, J. R. Qiu, C. G. Lin, H. Z. Tao, and X. J. Zhao, “Broadband infrared luminescence from bismuth-doped GeS2-Ga2S3 chalcogenide glasses,” Chin. Phys. Lett. 25(5), 1891–1894 (2008).
    [CrossRef]
  14. J. S. Wang, E. M. Vogela, E. Snitzerb, J. L. Jackela, V. L. Da Silva, and Y. Silberberg, “1.3 μm emission of neodymium and praseodymium in tellurite-based glasses,” J. Non-Cryst. Solids 178, 109–113 (1994).
    [CrossRef]
  15. D. W. Hewak, J. A. Medeiros Neto, B. Samson, R. S. Brown, K. P. Jedrzejewski, J. Wang, E. Taylor, R. I. Laming, G. Wylangowski, and D. N. Payne,“Quantum-Efficiency of Praseodymium Doped Ga:La:S Glass for 1.3 mm Optical-Fiber Amplifiers,” IEEE Photon. Technol. Lett. 6(5), 609–612 (1994).
    [CrossRef]
  16. I. Abdulhalim, C. N. Pannell, R. S. Deol, D. W. Hewak, G. Wylangowski, and D. N. Payne, “High-performance acousto-optic chalcogenide glass based on Ga2S3-La2S3 Systems,” J. Non-Cryst. Solids 164–166, 1251–1254 (1993).
    [CrossRef]
  17. T. Schweizer, D. W. Hewak, B. N. Samson, and D. N. Payne, “Spectroscopic data of the 1.8-, 2.9-, and 4.3-mm transitions in dysprosium-doped gallium lanthanum sulfide glass,” Opt. Lett. 21(19), 1594–1596 (1996).
    [CrossRef] [PubMed]
  18. T. Schweizer, B. N. Samson, J. R. Hector, W. S. Brocklesby, D. W. Hewak, and D. N. Payne, “Infrared emission from holmium doped gallium lanthanum sulphide glass,” Infrared Phys. Technol. 40(4), 329–335 (1999).
    [CrossRef]
  19. M. Hughes, H. Rutt, D. Hewak, and R. Curry, “Spectroscopy of vanadium (III) doped gallium lanthanum sulphide chalcogenide glass. Phys. Lett. 90(3), 031108 (2007).
  20. M. A. Hughes, R. J. Curry, and D. W. Hewak, “Spectroscopy of titanium-doped gallium lanthanum sulfide glass,” J. Opt. Soc. Am. B 25(9), 1458–1465 (2008).
    [CrossRef]
  21. M. Peng, C. Wang, D. Chen, J. Qiu, X. Jiang, and C. Zhu, “Investigations on bismuth and aluminum co-doped germanium oxide glasses for ultra-broadband optical amplification,” J. Non-Cryst. Solids 351(30-32), 2388–2393 (2005).
    [CrossRef]
  22. C. E. Finlayson, A. Amezcua, P. J. Sazio, P. S. Walker, M. C. Grossel, R. J. Curry, D. C. Smith, and J. J. Baumberg, “Infrared emitting PbSe nanocrystals for telecommunications window applications,” J. Mod. Opt. 52(7), 955–964 (2005).
    [CrossRef]
  23. N. C. Greenham, “Measurement of absolute photoluminescence quantum efficiencies in conjugated polymers,” Chem. Phys. Lett. 241(1-2), 89–96 (1995).
    [CrossRef]
  24. J. Ren, J. Qiu, D. Chen, X. Hu, X. Jiang, and C. Zhu, “Ultrabroad infrared luminescence from Bi-doped aluminogermanate glasses,” Solid State Commun. 141(10), 559–562 (2007).
    [CrossRef]
  25. S. Zhou, H. Dong, H. Zeng, G. Feng, H. Yang, B. Zhu, and J. Qiu, “Broadband optical amplification in Bi-doped germanium silicate glass,” Appl. Phys. Lett. 91(6), 061919 (2007).
    [CrossRef]
  26. V. V. Dvoyrin, V. M. Mashinsky, L. I. Bulatov, I. A. Bufetov, A. V. Shubin, M. A. Melkumov, E. F. Kustov, E. M. Dianov, A. A. Umnikov, V. F. Khopin, M. V. Yashkov, and A. N. Guryanov, “Bismuth-doped-glass optical fibers--a new active medium for lasers and amplifiers,” Opt. Lett. 31(20), 2966–2968 (2006).
    [CrossRef] [PubMed]
  27. V. V. Dvoyrin, O. I. Medvedkov, V. M. Mashinsky, A. A. Umnikov, A. N. Guryanov, and E. M. Dianov, “Optical amplification in 1430-1495 nm range and laser action in Bi-doped fibers,” Opt. Express 16(21), 16971–16976 (2008).
    [CrossRef] [PubMed]
  28. T. Suzuki and Y. Ohishi, “Ultrabroadband near-infrared emission from Bi-doped Li2O-Al2O3-SiO2 glass,” Appl. Phys. Lett. 88(19), 191912 (2006).
    [CrossRef]
  29. M. Hughes, T. Suzuki, and Y. Ohishi, “Advanced bismuth doped lead-germanate glass for broadband optical gain devices,” J. Opt. Soc. Am. B 25(8), 1380–1386 (2008).
    [CrossRef]
  30. J. J. Ren, G. P. Dong, S. Q. Xu, R. Q. Bao, and J. R. Qiu, “Inhomogeneous broadening, luminescence origin and optical amplification in bismuth-doped glass,” J. Phys. Chem. A 112(14), 3036–3039 (2008).
    [CrossRef] [PubMed]
  31. A. B. Rulkov, A. A. Ferin, S. V. Popov, J. R. Taylor, I. Razdobreev, L. Bigot, and G. Bouwmans, “Narrow-line, 1178nm CW bismuth-doped fiber laser with 6.4W output for direct frequency doubling,” Opt. Express 15(9), 5473–5476 (2007).
    [CrossRef] [PubMed]
  32. M. P. Kalita, S. Yoo, and J. Sahu, “Bismuth doped fiber laser and study of unsaturable loss and pump induced absorption in laser performance,” Opt. Express 16(25), 21032–21038 (2008).
    [CrossRef] [PubMed]
  33. E. M. Dianov, S. V. Firstov, V. F. Khopin, A. N. Guryanov, and I. A. Bufetov, “Bi-doped fibre lasers and amplifiers emitting in a spectral region of 1.3 mm,” Quantum Electron. 38(7), 615–617 (2008).
    [CrossRef]
  34. Y. Ohishi, “Novel photonics materials for broadband lightwave processing,” in Photonics West, (SPIE, 2007), 646908.
  35. J. A. Duffy, “Redox equilibria in glass,” J. Non-Cryst. Solids 196, 45–50 (1996).
    [CrossRef]
  36. J. Ren, J. Qiu, D. Chen, C. Wang, X. Jiang, and C. Zhu, “Infrared luminescence properties of bismuth-doped barium silicate glasses,” J. Mater. Res. 22(7), 1954–1958 (2007).
    [CrossRef]
  37. S. Zhou, G. Feng, J. Bao, H. Yang, and J. Qiu, “Broadband near-infrared emission from Bi-doped aluminosilicate glasses,” J. Mater. Res. 22(6), 1435–1438 (2007).
    [CrossRef]
  38. M. Y. Peng, C. Zollfrank, and L. Wondraczek, “Origin of broad NIR photoluminescence in bismuthate glass and Bi-doped glasses at room temperature,” J. Phys.- Condes. Matter 21(28), 285106 (2009).
    [CrossRef]
  39. B. Denker, B. Galagan, V. Osiko, I. Shulman, S. Sverchkov, and E. Dianov, “Absorption and emission properties of Bi-doped Mg–Al–Si oxide glass system,” Appl. Phys. B-Lasers Opt. 95(4), 801–805 (2009).
    [CrossRef]
  40. B. Denker, B. Galagan, V. Osiko, I. Shulman, S. Sverchkov, and E. Dianov, “The IR emitting centers in Bi-doped Mg-Al-Si oxide glasses,” Laser Phys. 19(5), 1105–1111 (2009).
    [CrossRef]
  41. V. O. Sokolov, V. G. Plotnichenko, V. V. Koltashev, and E. M. Dianov, “Centres of broadband near-IR luminescence in bismuth-doped glasses,” J. Phys. D Appl. Phys. 42(9), 095410 (2009).
    [CrossRef]
  42. T. Ohkura, Y. Fujimoto, M. Nakatsuka, and S. Young-Seok, “Local Structures of Bismuth Ion in Bismuth-Doped Silica Glasses Analyzed Using Bi LIII X-Ray Absorption Fine Structure,” J. Am. Ceram. Soc. 90(11), 3596–3600 (2007).
    [CrossRef]
  43. K. Moringa, H. Yoshida, and H. Takebe, “Compositional dependence of absorption spectra of Ti3+ in silicate, borate, and phosphate glasses,” J. Am. Ceram. Soc. 77(12), 3113–3118 (1994).
    [CrossRef]
  44. E. F. Kustov, L. I. Bulatov, V. V. Dvoyrin, and V. M. Mashinsky, “Molecular orbital model of optical centers in bismuth-doped glasses,” Opt. Lett. 34(10), 1549–1551 (2009).
    [CrossRef] [PubMed]

2009

M. Y. Peng, C. Zollfrank, and L. Wondraczek, “Origin of broad NIR photoluminescence in bismuthate glass and Bi-doped glasses at room temperature,” J. Phys.- Condes. Matter 21(28), 285106 (2009).
[CrossRef]

B. Denker, B. Galagan, V. Osiko, I. Shulman, S. Sverchkov, and E. Dianov, “Absorption and emission properties of Bi-doped Mg–Al–Si oxide glass system,” Appl. Phys. B-Lasers Opt. 95(4), 801–805 (2009).
[CrossRef]

B. Denker, B. Galagan, V. Osiko, I. Shulman, S. Sverchkov, and E. Dianov, “The IR emitting centers in Bi-doped Mg-Al-Si oxide glasses,” Laser Phys. 19(5), 1105–1111 (2009).
[CrossRef]

V. O. Sokolov, V. G. Plotnichenko, V. V. Koltashev, and E. M. Dianov, “Centres of broadband near-IR luminescence in bismuth-doped glasses,” J. Phys. D Appl. Phys. 42(9), 095410 (2009).
[CrossRef]

E. F. Kustov, L. I. Bulatov, V. V. Dvoyrin, and V. M. Mashinsky, “Molecular orbital model of optical centers in bismuth-doped glasses,” Opt. Lett. 34(10), 1549–1551 (2009).
[CrossRef] [PubMed]

2008

M. Hughes, T. Suzuki, and Y. Ohishi, “Advanced bismuth doped lead-germanate glass for broadband optical gain devices,” J. Opt. Soc. Am. B 25(8), 1380–1386 (2008).
[CrossRef]

J. J. Ren, G. P. Dong, S. Q. Xu, R. Q. Bao, and J. R. Qiu, “Inhomogeneous broadening, luminescence origin and optical amplification in bismuth-doped glass,” J. Phys. Chem. A 112(14), 3036–3039 (2008).
[CrossRef] [PubMed]

M. P. Kalita, S. Yoo, and J. Sahu, “Bismuth doped fiber laser and study of unsaturable loss and pump induced absorption in laser performance,” Opt. Express 16(25), 21032–21038 (2008).
[CrossRef] [PubMed]

E. M. Dianov, S. V. Firstov, V. F. Khopin, A. N. Guryanov, and I. A. Bufetov, “Bi-doped fibre lasers and amplifiers emitting in a spectral region of 1.3 mm,” Quantum Electron. 38(7), 615–617 (2008).
[CrossRef]

M. A. Hughes, R. J. Curry, and D. W. Hewak, “Spectroscopy of titanium-doped gallium lanthanum sulfide glass,” J. Opt. Soc. Am. B 25(9), 1458–1465 (2008).
[CrossRef]

V. V. Dvoyrin, O. I. Medvedkov, V. M. Mashinsky, A. A. Umnikov, A. N. Guryanov, and E. M. Dianov, “Optical amplification in 1430-1495 nm range and laser action in Bi-doped fibers,” Opt. Express 16(21), 16971–16976 (2008).
[CrossRef] [PubMed]

M. Peng, B. Wu, N. Da, C. Wang, D. Chen, C. Zhu, and J. Qiu, “Bismuth-activated luminescent materials for broadband optical amplifier in WDM system,” J. Non-Cryst. Solids 354(12-13), 1221–1225 (2008).
[CrossRef]

V. O. Sokolov, V. G. Plotnichenko, and E. M. Dianov, “Origin of broadband near-infrared luminescence in bismuth-doped glasses,” Opt. Lett. 33(13), 1488–1490 (2008).
[CrossRef] [PubMed]

G. P. Dong, X. D. Xiao, J. J. Ren, J. Ruan, X. F. Liu, J. R. Qiu, C. G. Lin, H. Z. Tao, and X. J. Zhao, “Broadband infrared luminescence from bismuth-doped GeS2-Ga2S3 chalcogenide glasses,” Chin. Phys. Lett. 25(5), 1891–1894 (2008).
[CrossRef]

2007

S. Khonthon, S. Morimoto, Y. Arai, and Y. Ohishi, “Luminescence Characteristics of Te- and Bi-Doped Glasses and Glass-Ceramics,” J. Ceram. Soc. Jpn. 115(1340), 259–263 (2007).
[CrossRef]

J. Ren, J. Qiu, B. Wu, and D. Chen, “Ultrabroad infrared luminescence from Bi-doped alkaline earth metal germanate glasses,” J. Mater. Res. 22(6), 1574–1578 (2007).
[CrossRef]

M. Peng, D. Chen, J. Qiu, X. Jiang, and C. Zhu, “Bismuth-doped zinc aluminosilicate glasses and glass-ceramics with ultra-broadband infrared luminescence,” Opt. Mater. 29(5), 556–561 (2007).
[CrossRef]

Y. Arai, T. Suzuki, Y. Ohishi, S. Morimoto, and S. Khonthon, “Ultrabroadband near-infrared emission from a colorless bismuth-doped glass,” Appl. Phys. Lett. 90(26), 261110 (2007).
[CrossRef]

J. Ren, J. Qiu, D. Chen, X. Hu, X. Jiang, and C. Zhu, “Ultrabroad infrared luminescence from Bi-doped aluminogermanate glasses,” Solid State Commun. 141(10), 559–562 (2007).
[CrossRef]

S. Zhou, H. Dong, H. Zeng, G. Feng, H. Yang, B. Zhu, and J. Qiu, “Broadband optical amplification in Bi-doped germanium silicate glass,” Appl. Phys. Lett. 91(6), 061919 (2007).
[CrossRef]

A. B. Rulkov, A. A. Ferin, S. V. Popov, J. R. Taylor, I. Razdobreev, L. Bigot, and G. Bouwmans, “Narrow-line, 1178nm CW bismuth-doped fiber laser with 6.4W output for direct frequency doubling,” Opt. Express 15(9), 5473–5476 (2007).
[CrossRef] [PubMed]

T. Ohkura, Y. Fujimoto, M. Nakatsuka, and S. Young-Seok, “Local Structures of Bismuth Ion in Bismuth-Doped Silica Glasses Analyzed Using Bi LIII X-Ray Absorption Fine Structure,” J. Am. Ceram. Soc. 90(11), 3596–3600 (2007).
[CrossRef]

M. Hughes, H. Rutt, D. Hewak, and R. Curry, “Spectroscopy of vanadium (III) doped gallium lanthanum sulphide chalcogenide glass. Phys. Lett. 90(3), 031108 (2007).

J. Ren, J. Qiu, D. Chen, C. Wang, X. Jiang, and C. Zhu, “Infrared luminescence properties of bismuth-doped barium silicate glasses,” J. Mater. Res. 22(7), 1954–1958 (2007).
[CrossRef]

S. Zhou, G. Feng, J. Bao, H. Yang, and J. Qiu, “Broadband near-infrared emission from Bi-doped aluminosilicate glasses,” J. Mater. Res. 22(6), 1435–1438 (2007).
[CrossRef]

2006

V. V. Dvoyrin, V. M. Mashinsky, L. I. Bulatov, I. A. Bufetov, A. V. Shubin, M. A. Melkumov, E. F. Kustov, E. M. Dianov, A. A. Umnikov, V. F. Khopin, M. V. Yashkov, and A. N. Guryanov, “Bismuth-doped-glass optical fibers--a new active medium for lasers and amplifiers,” Opt. Lett. 31(20), 2966–2968 (2006).
[CrossRef] [PubMed]

T. Suzuki and Y. Ohishi, “Ultrabroadband near-infrared emission from Bi-doped Li2O-Al2O3-SiO2 glass,” Appl. Phys. Lett. 88(19), 191912 (2006).
[CrossRef]

X. Wang and H. Xia, “Infrared superbroadband emission of Bi ion doped germanium-aluminum-sodium glass,” Opt. Commun. 268(1), 75–78 (2006).
[CrossRef]

2005

M. Peng, J. Qiu, D. Chen, X. Meng, and C. Zhu, “Superbroadband 1310 nm emission from bismuth and tantalum codoped germanium oxide glasses,” Opt. Lett. 30(18), 2433–2435 (2005).
[CrossRef] [PubMed]

X. G. Meng, J. R. Qiu, M. Y. Peng, D. P. Chen, Q. Z. Zhao, X. W. Jiang, and C. S. Zhu, “Near infrared broadband emission of bismuth-doped aluminophosphate glass,” Opt. Express 13(5), 1628–1634 (2005).
[CrossRef] [PubMed]

X. G. Meng, J. R. Qiu, M. Y. Peng, D. P. Chen, Q. Z. Zhao, X. W. Jiang, and C. S. Zhu, “Infrared broadband emission of bismuth-doped barium-aluminum-borate glasses,” Opt. Express 13(5), 1635–1642 (2005).
[CrossRef] [PubMed]

M. Peng, C. Wang, D. Chen, J. Qiu, X. Jiang, and C. Zhu, “Investigations on bismuth and aluminum co-doped germanium oxide glasses for ultra-broadband optical amplification,” J. Non-Cryst. Solids 351(30-32), 2388–2393 (2005).
[CrossRef]

C. E. Finlayson, A. Amezcua, P. J. Sazio, P. S. Walker, M. C. Grossel, R. J. Curry, D. C. Smith, and J. J. Baumberg, “Infrared emitting PbSe nanocrystals for telecommunications window applications,” J. Mod. Opt. 52(7), 955–964 (2005).
[CrossRef]

2004

2001

Y. Fujimoto and M. Nakatsuka, “Infrared Luminescence from Bismuth-Doped Silica Glass,” Jpn. J. Appl. Phys. 40(Part 2, No. 3B), L279–L281 (2001).
[CrossRef]

1999

T. Schweizer, B. N. Samson, J. R. Hector, W. S. Brocklesby, D. W. Hewak, and D. N. Payne, “Infrared emission from holmium doped gallium lanthanum sulphide glass,” Infrared Phys. Technol. 40(4), 329–335 (1999).
[CrossRef]

1996

1995

N. C. Greenham, “Measurement of absolute photoluminescence quantum efficiencies in conjugated polymers,” Chem. Phys. Lett. 241(1-2), 89–96 (1995).
[CrossRef]

1994

K. Moringa, H. Yoshida, and H. Takebe, “Compositional dependence of absorption spectra of Ti3+ in silicate, borate, and phosphate glasses,” J. Am. Ceram. Soc. 77(12), 3113–3118 (1994).
[CrossRef]

J. S. Wang, E. M. Vogela, E. Snitzerb, J. L. Jackela, V. L. Da Silva, and Y. Silberberg, “1.3 μm emission of neodymium and praseodymium in tellurite-based glasses,” J. Non-Cryst. Solids 178, 109–113 (1994).
[CrossRef]

D. W. Hewak, J. A. Medeiros Neto, B. Samson, R. S. Brown, K. P. Jedrzejewski, J. Wang, E. Taylor, R. I. Laming, G. Wylangowski, and D. N. Payne,“Quantum-Efficiency of Praseodymium Doped Ga:La:S Glass for 1.3 mm Optical-Fiber Amplifiers,” IEEE Photon. Technol. Lett. 6(5), 609–612 (1994).
[CrossRef]

1993

I. Abdulhalim, C. N. Pannell, R. S. Deol, D. W. Hewak, G. Wylangowski, and D. N. Payne, “High-performance acousto-optic chalcogenide glass based on Ga2S3-La2S3 Systems,” J. Non-Cryst. Solids 164–166, 1251–1254 (1993).
[CrossRef]

Abdulhalim, I.

I. Abdulhalim, C. N. Pannell, R. S. Deol, D. W. Hewak, G. Wylangowski, and D. N. Payne, “High-performance acousto-optic chalcogenide glass based on Ga2S3-La2S3 Systems,” J. Non-Cryst. Solids 164–166, 1251–1254 (1993).
[CrossRef]

Amezcua, A.

C. E. Finlayson, A. Amezcua, P. J. Sazio, P. S. Walker, M. C. Grossel, R. J. Curry, D. C. Smith, and J. J. Baumberg, “Infrared emitting PbSe nanocrystals for telecommunications window applications,” J. Mod. Opt. 52(7), 955–964 (2005).
[CrossRef]

Arai, Y.

Y. Arai, T. Suzuki, Y. Ohishi, S. Morimoto, and S. Khonthon, “Ultrabroadband near-infrared emission from a colorless bismuth-doped glass,” Appl. Phys. Lett. 90(26), 261110 (2007).
[CrossRef]

S. Khonthon, S. Morimoto, Y. Arai, and Y. Ohishi, “Luminescence Characteristics of Te- and Bi-Doped Glasses and Glass-Ceramics,” J. Ceram. Soc. Jpn. 115(1340), 259–263 (2007).
[CrossRef]

Bao, J.

S. Zhou, G. Feng, J. Bao, H. Yang, and J. Qiu, “Broadband near-infrared emission from Bi-doped aluminosilicate glasses,” J. Mater. Res. 22(6), 1435–1438 (2007).
[CrossRef]

Bao, R. Q.

J. J. Ren, G. P. Dong, S. Q. Xu, R. Q. Bao, and J. R. Qiu, “Inhomogeneous broadening, luminescence origin and optical amplification in bismuth-doped glass,” J. Phys. Chem. A 112(14), 3036–3039 (2008).
[CrossRef] [PubMed]

Baumberg, J. J.

C. E. Finlayson, A. Amezcua, P. J. Sazio, P. S. Walker, M. C. Grossel, R. J. Curry, D. C. Smith, and J. J. Baumberg, “Infrared emitting PbSe nanocrystals for telecommunications window applications,” J. Mod. Opt. 52(7), 955–964 (2005).
[CrossRef]

Bigot, L.

Bouwmans, G.

Brocklesby, W. S.

T. Schweizer, B. N. Samson, J. R. Hector, W. S. Brocklesby, D. W. Hewak, and D. N. Payne, “Infrared emission from holmium doped gallium lanthanum sulphide glass,” Infrared Phys. Technol. 40(4), 329–335 (1999).
[CrossRef]

Brown, R. S.

D. W. Hewak, J. A. Medeiros Neto, B. Samson, R. S. Brown, K. P. Jedrzejewski, J. Wang, E. Taylor, R. I. Laming, G. Wylangowski, and D. N. Payne,“Quantum-Efficiency of Praseodymium Doped Ga:La:S Glass for 1.3 mm Optical-Fiber Amplifiers,” IEEE Photon. Technol. Lett. 6(5), 609–612 (1994).
[CrossRef]

Bufetov, I. A.

Bulatov, L. I.

Chen, D.

M. Peng, B. Wu, N. Da, C. Wang, D. Chen, C. Zhu, and J. Qiu, “Bismuth-activated luminescent materials for broadband optical amplifier in WDM system,” J. Non-Cryst. Solids 354(12-13), 1221–1225 (2008).
[CrossRef]

M. Peng, D. Chen, J. Qiu, X. Jiang, and C. Zhu, “Bismuth-doped zinc aluminosilicate glasses and glass-ceramics with ultra-broadband infrared luminescence,” Opt. Mater. 29(5), 556–561 (2007).
[CrossRef]

J. Ren, J. Qiu, B. Wu, and D. Chen, “Ultrabroad infrared luminescence from Bi-doped alkaline earth metal germanate glasses,” J. Mater. Res. 22(6), 1574–1578 (2007).
[CrossRef]

J. Ren, J. Qiu, D. Chen, X. Hu, X. Jiang, and C. Zhu, “Ultrabroad infrared luminescence from Bi-doped aluminogermanate glasses,” Solid State Commun. 141(10), 559–562 (2007).
[CrossRef]

J. Ren, J. Qiu, D. Chen, C. Wang, X. Jiang, and C. Zhu, “Infrared luminescence properties of bismuth-doped barium silicate glasses,” J. Mater. Res. 22(7), 1954–1958 (2007).
[CrossRef]

M. Peng, C. Wang, D. Chen, J. Qiu, X. Jiang, and C. Zhu, “Investigations on bismuth and aluminum co-doped germanium oxide glasses for ultra-broadband optical amplification,” J. Non-Cryst. Solids 351(30-32), 2388–2393 (2005).
[CrossRef]

M. Peng, J. Qiu, D. Chen, X. Meng, and C. Zhu, “Superbroadband 1310 nm emission from bismuth and tantalum codoped germanium oxide glasses,” Opt. Lett. 30(18), 2433–2435 (2005).
[CrossRef] [PubMed]

M. Peng, J. Qiu, D. Chen, X. Meng, I. Yang, X. Jiang, and C. Zhu, “Bismuth- and aluminum-codoped germanium oxide glasses for super-broadband optical amplification,” Opt. Lett. 29(17), 1998–2000 (2004).
[CrossRef] [PubMed]

Chen, D. P.

Curry, R.

M. Hughes, H. Rutt, D. Hewak, and R. Curry, “Spectroscopy of vanadium (III) doped gallium lanthanum sulphide chalcogenide glass. Phys. Lett. 90(3), 031108 (2007).

Curry, R. J.

M. A. Hughes, R. J. Curry, and D. W. Hewak, “Spectroscopy of titanium-doped gallium lanthanum sulfide glass,” J. Opt. Soc. Am. B 25(9), 1458–1465 (2008).
[CrossRef]

C. E. Finlayson, A. Amezcua, P. J. Sazio, P. S. Walker, M. C. Grossel, R. J. Curry, D. C. Smith, and J. J. Baumberg, “Infrared emitting PbSe nanocrystals for telecommunications window applications,” J. Mod. Opt. 52(7), 955–964 (2005).
[CrossRef]

Da, N.

M. Peng, B. Wu, N. Da, C. Wang, D. Chen, C. Zhu, and J. Qiu, “Bismuth-activated luminescent materials for broadband optical amplifier in WDM system,” J. Non-Cryst. Solids 354(12-13), 1221–1225 (2008).
[CrossRef]

Da Silva, V. L.

J. S. Wang, E. M. Vogela, E. Snitzerb, J. L. Jackela, V. L. Da Silva, and Y. Silberberg, “1.3 μm emission of neodymium and praseodymium in tellurite-based glasses,” J. Non-Cryst. Solids 178, 109–113 (1994).
[CrossRef]

Denker, B.

B. Denker, B. Galagan, V. Osiko, I. Shulman, S. Sverchkov, and E. Dianov, “Absorption and emission properties of Bi-doped Mg–Al–Si oxide glass system,” Appl. Phys. B-Lasers Opt. 95(4), 801–805 (2009).
[CrossRef]

B. Denker, B. Galagan, V. Osiko, I. Shulman, S. Sverchkov, and E. Dianov, “The IR emitting centers in Bi-doped Mg-Al-Si oxide glasses,” Laser Phys. 19(5), 1105–1111 (2009).
[CrossRef]

Deol, R. S.

I. Abdulhalim, C. N. Pannell, R. S. Deol, D. W. Hewak, G. Wylangowski, and D. N. Payne, “High-performance acousto-optic chalcogenide glass based on Ga2S3-La2S3 Systems,” J. Non-Cryst. Solids 164–166, 1251–1254 (1993).
[CrossRef]

Dianov, E.

B. Denker, B. Galagan, V. Osiko, I. Shulman, S. Sverchkov, and E. Dianov, “The IR emitting centers in Bi-doped Mg-Al-Si oxide glasses,” Laser Phys. 19(5), 1105–1111 (2009).
[CrossRef]

B. Denker, B. Galagan, V. Osiko, I. Shulman, S. Sverchkov, and E. Dianov, “Absorption and emission properties of Bi-doped Mg–Al–Si oxide glass system,” Appl. Phys. B-Lasers Opt. 95(4), 801–805 (2009).
[CrossRef]

Dianov, E. M.

Dong, G. P.

G. P. Dong, X. D. Xiao, J. J. Ren, J. Ruan, X. F. Liu, J. R. Qiu, C. G. Lin, H. Z. Tao, and X. J. Zhao, “Broadband infrared luminescence from bismuth-doped GeS2-Ga2S3 chalcogenide glasses,” Chin. Phys. Lett. 25(5), 1891–1894 (2008).
[CrossRef]

J. J. Ren, G. P. Dong, S. Q. Xu, R. Q. Bao, and J. R. Qiu, “Inhomogeneous broadening, luminescence origin and optical amplification in bismuth-doped glass,” J. Phys. Chem. A 112(14), 3036–3039 (2008).
[CrossRef] [PubMed]

Dong, H.

S. Zhou, H. Dong, H. Zeng, G. Feng, H. Yang, B. Zhu, and J. Qiu, “Broadband optical amplification in Bi-doped germanium silicate glass,” Appl. Phys. Lett. 91(6), 061919 (2007).
[CrossRef]

Duffy, J. A.

J. A. Duffy, “Redox equilibria in glass,” J. Non-Cryst. Solids 196, 45–50 (1996).
[CrossRef]

Dvoyrin, V. V.

Feng, G.

S. Zhou, H. Dong, H. Zeng, G. Feng, H. Yang, B. Zhu, and J. Qiu, “Broadband optical amplification in Bi-doped germanium silicate glass,” Appl. Phys. Lett. 91(6), 061919 (2007).
[CrossRef]

S. Zhou, G. Feng, J. Bao, H. Yang, and J. Qiu, “Broadband near-infrared emission from Bi-doped aluminosilicate glasses,” J. Mater. Res. 22(6), 1435–1438 (2007).
[CrossRef]

Ferin, A. A.

Finlayson, C. E.

C. E. Finlayson, A. Amezcua, P. J. Sazio, P. S. Walker, M. C. Grossel, R. J. Curry, D. C. Smith, and J. J. Baumberg, “Infrared emitting PbSe nanocrystals for telecommunications window applications,” J. Mod. Opt. 52(7), 955–964 (2005).
[CrossRef]

Firstov, S. V.

E. M. Dianov, S. V. Firstov, V. F. Khopin, A. N. Guryanov, and I. A. Bufetov, “Bi-doped fibre lasers and amplifiers emitting in a spectral region of 1.3 mm,” Quantum Electron. 38(7), 615–617 (2008).
[CrossRef]

Fujimoto, Y.

T. Ohkura, Y. Fujimoto, M. Nakatsuka, and S. Young-Seok, “Local Structures of Bismuth Ion in Bismuth-Doped Silica Glasses Analyzed Using Bi LIII X-Ray Absorption Fine Structure,” J. Am. Ceram. Soc. 90(11), 3596–3600 (2007).
[CrossRef]

Y. Fujimoto and M. Nakatsuka, “Infrared Luminescence from Bismuth-Doped Silica Glass,” Jpn. J. Appl. Phys. 40(Part 2, No. 3B), L279–L281 (2001).
[CrossRef]

Galagan, B.

B. Denker, B. Galagan, V. Osiko, I. Shulman, S. Sverchkov, and E. Dianov, “The IR emitting centers in Bi-doped Mg-Al-Si oxide glasses,” Laser Phys. 19(5), 1105–1111 (2009).
[CrossRef]

B. Denker, B. Galagan, V. Osiko, I. Shulman, S. Sverchkov, and E. Dianov, “Absorption and emission properties of Bi-doped Mg–Al–Si oxide glass system,” Appl. Phys. B-Lasers Opt. 95(4), 801–805 (2009).
[CrossRef]

Greenham, N. C.

N. C. Greenham, “Measurement of absolute photoluminescence quantum efficiencies in conjugated polymers,” Chem. Phys. Lett. 241(1-2), 89–96 (1995).
[CrossRef]

Grossel, M. C.

C. E. Finlayson, A. Amezcua, P. J. Sazio, P. S. Walker, M. C. Grossel, R. J. Curry, D. C. Smith, and J. J. Baumberg, “Infrared emitting PbSe nanocrystals for telecommunications window applications,” J. Mod. Opt. 52(7), 955–964 (2005).
[CrossRef]

Guryanov, A. N.

Hector, J. R.

T. Schweizer, B. N. Samson, J. R. Hector, W. S. Brocklesby, D. W. Hewak, and D. N. Payne, “Infrared emission from holmium doped gallium lanthanum sulphide glass,” Infrared Phys. Technol. 40(4), 329–335 (1999).
[CrossRef]

Hewak, D.

M. Hughes, H. Rutt, D. Hewak, and R. Curry, “Spectroscopy of vanadium (III) doped gallium lanthanum sulphide chalcogenide glass. Phys. Lett. 90(3), 031108 (2007).

Hewak, D. W.

M. A. Hughes, R. J. Curry, and D. W. Hewak, “Spectroscopy of titanium-doped gallium lanthanum sulfide glass,” J. Opt. Soc. Am. B 25(9), 1458–1465 (2008).
[CrossRef]

T. Schweizer, B. N. Samson, J. R. Hector, W. S. Brocklesby, D. W. Hewak, and D. N. Payne, “Infrared emission from holmium doped gallium lanthanum sulphide glass,” Infrared Phys. Technol. 40(4), 329–335 (1999).
[CrossRef]

T. Schweizer, D. W. Hewak, B. N. Samson, and D. N. Payne, “Spectroscopic data of the 1.8-, 2.9-, and 4.3-mm transitions in dysprosium-doped gallium lanthanum sulfide glass,” Opt. Lett. 21(19), 1594–1596 (1996).
[CrossRef] [PubMed]

D. W. Hewak, J. A. Medeiros Neto, B. Samson, R. S. Brown, K. P. Jedrzejewski, J. Wang, E. Taylor, R. I. Laming, G. Wylangowski, and D. N. Payne,“Quantum-Efficiency of Praseodymium Doped Ga:La:S Glass for 1.3 mm Optical-Fiber Amplifiers,” IEEE Photon. Technol. Lett. 6(5), 609–612 (1994).
[CrossRef]

I. Abdulhalim, C. N. Pannell, R. S. Deol, D. W. Hewak, G. Wylangowski, and D. N. Payne, “High-performance acousto-optic chalcogenide glass based on Ga2S3-La2S3 Systems,” J. Non-Cryst. Solids 164–166, 1251–1254 (1993).
[CrossRef]

Hu, X.

J. Ren, J. Qiu, D. Chen, X. Hu, X. Jiang, and C. Zhu, “Ultrabroad infrared luminescence from Bi-doped aluminogermanate glasses,” Solid State Commun. 141(10), 559–562 (2007).
[CrossRef]

Hughes, M.

M. Hughes, T. Suzuki, and Y. Ohishi, “Advanced bismuth doped lead-germanate glass for broadband optical gain devices,” J. Opt. Soc. Am. B 25(8), 1380–1386 (2008).
[CrossRef]

M. Hughes, H. Rutt, D. Hewak, and R. Curry, “Spectroscopy of vanadium (III) doped gallium lanthanum sulphide chalcogenide glass. Phys. Lett. 90(3), 031108 (2007).

Hughes, M. A.

Jackela, J. L.

J. S. Wang, E. M. Vogela, E. Snitzerb, J. L. Jackela, V. L. Da Silva, and Y. Silberberg, “1.3 μm emission of neodymium and praseodymium in tellurite-based glasses,” J. Non-Cryst. Solids 178, 109–113 (1994).
[CrossRef]

Jedrzejewski, K. P.

D. W. Hewak, J. A. Medeiros Neto, B. Samson, R. S. Brown, K. P. Jedrzejewski, J. Wang, E. Taylor, R. I. Laming, G. Wylangowski, and D. N. Payne,“Quantum-Efficiency of Praseodymium Doped Ga:La:S Glass for 1.3 mm Optical-Fiber Amplifiers,” IEEE Photon. Technol. Lett. 6(5), 609–612 (1994).
[CrossRef]

Jiang, X.

J. Ren, J. Qiu, D. Chen, X. Hu, X. Jiang, and C. Zhu, “Ultrabroad infrared luminescence from Bi-doped aluminogermanate glasses,” Solid State Commun. 141(10), 559–562 (2007).
[CrossRef]

M. Peng, D. Chen, J. Qiu, X. Jiang, and C. Zhu, “Bismuth-doped zinc aluminosilicate glasses and glass-ceramics with ultra-broadband infrared luminescence,” Opt. Mater. 29(5), 556–561 (2007).
[CrossRef]

J. Ren, J. Qiu, D. Chen, C. Wang, X. Jiang, and C. Zhu, “Infrared luminescence properties of bismuth-doped barium silicate glasses,” J. Mater. Res. 22(7), 1954–1958 (2007).
[CrossRef]

M. Peng, C. Wang, D. Chen, J. Qiu, X. Jiang, and C. Zhu, “Investigations on bismuth and aluminum co-doped germanium oxide glasses for ultra-broadband optical amplification,” J. Non-Cryst. Solids 351(30-32), 2388–2393 (2005).
[CrossRef]

M. Peng, J. Qiu, D. Chen, X. Meng, I. Yang, X. Jiang, and C. Zhu, “Bismuth- and aluminum-codoped germanium oxide glasses for super-broadband optical amplification,” Opt. Lett. 29(17), 1998–2000 (2004).
[CrossRef] [PubMed]

Jiang, X. W.

Kalita, M. P.

Khonthon, S.

S. Khonthon, S. Morimoto, Y. Arai, and Y. Ohishi, “Luminescence Characteristics of Te- and Bi-Doped Glasses and Glass-Ceramics,” J. Ceram. Soc. Jpn. 115(1340), 259–263 (2007).
[CrossRef]

Y. Arai, T. Suzuki, Y. Ohishi, S. Morimoto, and S. Khonthon, “Ultrabroadband near-infrared emission from a colorless bismuth-doped glass,” Appl. Phys. Lett. 90(26), 261110 (2007).
[CrossRef]

Khopin, V. F.

Koltashev, V. V.

V. O. Sokolov, V. G. Plotnichenko, V. V. Koltashev, and E. M. Dianov, “Centres of broadband near-IR luminescence in bismuth-doped glasses,” J. Phys. D Appl. Phys. 42(9), 095410 (2009).
[CrossRef]

Kustov, E. F.

Laming, R. I.

D. W. Hewak, J. A. Medeiros Neto, B. Samson, R. S. Brown, K. P. Jedrzejewski, J. Wang, E. Taylor, R. I. Laming, G. Wylangowski, and D. N. Payne,“Quantum-Efficiency of Praseodymium Doped Ga:La:S Glass for 1.3 mm Optical-Fiber Amplifiers,” IEEE Photon. Technol. Lett. 6(5), 609–612 (1994).
[CrossRef]

Lin, C. G.

G. P. Dong, X. D. Xiao, J. J. Ren, J. Ruan, X. F. Liu, J. R. Qiu, C. G. Lin, H. Z. Tao, and X. J. Zhao, “Broadband infrared luminescence from bismuth-doped GeS2-Ga2S3 chalcogenide glasses,” Chin. Phys. Lett. 25(5), 1891–1894 (2008).
[CrossRef]

Liu, X. F.

G. P. Dong, X. D. Xiao, J. J. Ren, J. Ruan, X. F. Liu, J. R. Qiu, C. G. Lin, H. Z. Tao, and X. J. Zhao, “Broadband infrared luminescence from bismuth-doped GeS2-Ga2S3 chalcogenide glasses,” Chin. Phys. Lett. 25(5), 1891–1894 (2008).
[CrossRef]

Mashinsky, V. M.

Medeiros Neto, J. A.

D. W. Hewak, J. A. Medeiros Neto, B. Samson, R. S. Brown, K. P. Jedrzejewski, J. Wang, E. Taylor, R. I. Laming, G. Wylangowski, and D. N. Payne,“Quantum-Efficiency of Praseodymium Doped Ga:La:S Glass for 1.3 mm Optical-Fiber Amplifiers,” IEEE Photon. Technol. Lett. 6(5), 609–612 (1994).
[CrossRef]

Medvedkov, O. I.

Melkumov, M. A.

Meng, X.

Meng, X. G.

Morimoto, S.

S. Khonthon, S. Morimoto, Y. Arai, and Y. Ohishi, “Luminescence Characteristics of Te- and Bi-Doped Glasses and Glass-Ceramics,” J. Ceram. Soc. Jpn. 115(1340), 259–263 (2007).
[CrossRef]

Y. Arai, T. Suzuki, Y. Ohishi, S. Morimoto, and S. Khonthon, “Ultrabroadband near-infrared emission from a colorless bismuth-doped glass,” Appl. Phys. Lett. 90(26), 261110 (2007).
[CrossRef]

Moringa, K.

K. Moringa, H. Yoshida, and H. Takebe, “Compositional dependence of absorption spectra of Ti3+ in silicate, borate, and phosphate glasses,” J. Am. Ceram. Soc. 77(12), 3113–3118 (1994).
[CrossRef]

Nakatsuka, M.

T. Ohkura, Y. Fujimoto, M. Nakatsuka, and S. Young-Seok, “Local Structures of Bismuth Ion in Bismuth-Doped Silica Glasses Analyzed Using Bi LIII X-Ray Absorption Fine Structure,” J. Am. Ceram. Soc. 90(11), 3596–3600 (2007).
[CrossRef]

Y. Fujimoto and M. Nakatsuka, “Infrared Luminescence from Bismuth-Doped Silica Glass,” Jpn. J. Appl. Phys. 40(Part 2, No. 3B), L279–L281 (2001).
[CrossRef]

Ohishi, Y.

M. Hughes, T. Suzuki, and Y. Ohishi, “Advanced bismuth doped lead-germanate glass for broadband optical gain devices,” J. Opt. Soc. Am. B 25(8), 1380–1386 (2008).
[CrossRef]

S. Khonthon, S. Morimoto, Y. Arai, and Y. Ohishi, “Luminescence Characteristics of Te- and Bi-Doped Glasses and Glass-Ceramics,” J. Ceram. Soc. Jpn. 115(1340), 259–263 (2007).
[CrossRef]

Y. Arai, T. Suzuki, Y. Ohishi, S. Morimoto, and S. Khonthon, “Ultrabroadband near-infrared emission from a colorless bismuth-doped glass,” Appl. Phys. Lett. 90(26), 261110 (2007).
[CrossRef]

T. Suzuki and Y. Ohishi, “Ultrabroadband near-infrared emission from Bi-doped Li2O-Al2O3-SiO2 glass,” Appl. Phys. Lett. 88(19), 191912 (2006).
[CrossRef]

Ohkura, T.

T. Ohkura, Y. Fujimoto, M. Nakatsuka, and S. Young-Seok, “Local Structures of Bismuth Ion in Bismuth-Doped Silica Glasses Analyzed Using Bi LIII X-Ray Absorption Fine Structure,” J. Am. Ceram. Soc. 90(11), 3596–3600 (2007).
[CrossRef]

Osiko, V.

B. Denker, B. Galagan, V. Osiko, I. Shulman, S. Sverchkov, and E. Dianov, “The IR emitting centers in Bi-doped Mg-Al-Si oxide glasses,” Laser Phys. 19(5), 1105–1111 (2009).
[CrossRef]

B. Denker, B. Galagan, V. Osiko, I. Shulman, S. Sverchkov, and E. Dianov, “Absorption and emission properties of Bi-doped Mg–Al–Si oxide glass system,” Appl. Phys. B-Lasers Opt. 95(4), 801–805 (2009).
[CrossRef]

Pannell, C. N.

I. Abdulhalim, C. N. Pannell, R. S. Deol, D. W. Hewak, G. Wylangowski, and D. N. Payne, “High-performance acousto-optic chalcogenide glass based on Ga2S3-La2S3 Systems,” J. Non-Cryst. Solids 164–166, 1251–1254 (1993).
[CrossRef]

Payne, D. N.

T. Schweizer, B. N. Samson, J. R. Hector, W. S. Brocklesby, D. W. Hewak, and D. N. Payne, “Infrared emission from holmium doped gallium lanthanum sulphide glass,” Infrared Phys. Technol. 40(4), 329–335 (1999).
[CrossRef]

T. Schweizer, D. W. Hewak, B. N. Samson, and D. N. Payne, “Spectroscopic data of the 1.8-, 2.9-, and 4.3-mm transitions in dysprosium-doped gallium lanthanum sulfide glass,” Opt. Lett. 21(19), 1594–1596 (1996).
[CrossRef] [PubMed]

D. W. Hewak, J. A. Medeiros Neto, B. Samson, R. S. Brown, K. P. Jedrzejewski, J. Wang, E. Taylor, R. I. Laming, G. Wylangowski, and D. N. Payne,“Quantum-Efficiency of Praseodymium Doped Ga:La:S Glass for 1.3 mm Optical-Fiber Amplifiers,” IEEE Photon. Technol. Lett. 6(5), 609–612 (1994).
[CrossRef]

I. Abdulhalim, C. N. Pannell, R. S. Deol, D. W. Hewak, G. Wylangowski, and D. N. Payne, “High-performance acousto-optic chalcogenide glass based on Ga2S3-La2S3 Systems,” J. Non-Cryst. Solids 164–166, 1251–1254 (1993).
[CrossRef]

Peng, M.

M. Peng, B. Wu, N. Da, C. Wang, D. Chen, C. Zhu, and J. Qiu, “Bismuth-activated luminescent materials for broadband optical amplifier in WDM system,” J. Non-Cryst. Solids 354(12-13), 1221–1225 (2008).
[CrossRef]

M. Peng, D. Chen, J. Qiu, X. Jiang, and C. Zhu, “Bismuth-doped zinc aluminosilicate glasses and glass-ceramics with ultra-broadband infrared luminescence,” Opt. Mater. 29(5), 556–561 (2007).
[CrossRef]

M. Peng, J. Qiu, D. Chen, X. Meng, and C. Zhu, “Superbroadband 1310 nm emission from bismuth and tantalum codoped germanium oxide glasses,” Opt. Lett. 30(18), 2433–2435 (2005).
[CrossRef] [PubMed]

M. Peng, C. Wang, D. Chen, J. Qiu, X. Jiang, and C. Zhu, “Investigations on bismuth and aluminum co-doped germanium oxide glasses for ultra-broadband optical amplification,” J. Non-Cryst. Solids 351(30-32), 2388–2393 (2005).
[CrossRef]

M. Peng, J. Qiu, D. Chen, X. Meng, I. Yang, X. Jiang, and C. Zhu, “Bismuth- and aluminum-codoped germanium oxide glasses for super-broadband optical amplification,” Opt. Lett. 29(17), 1998–2000 (2004).
[CrossRef] [PubMed]

Peng, M. Y.

Plotnichenko, V. G.

V. O. Sokolov, V. G. Plotnichenko, V. V. Koltashev, and E. M. Dianov, “Centres of broadband near-IR luminescence in bismuth-doped glasses,” J. Phys. D Appl. Phys. 42(9), 095410 (2009).
[CrossRef]

V. O. Sokolov, V. G. Plotnichenko, and E. M. Dianov, “Origin of broadband near-infrared luminescence in bismuth-doped glasses,” Opt. Lett. 33(13), 1488–1490 (2008).
[CrossRef] [PubMed]

Popov, S. V.

Qiu, J.

M. Peng, B. Wu, N. Da, C. Wang, D. Chen, C. Zhu, and J. Qiu, “Bismuth-activated luminescent materials for broadband optical amplifier in WDM system,” J. Non-Cryst. Solids 354(12-13), 1221–1225 (2008).
[CrossRef]

M. Peng, D. Chen, J. Qiu, X. Jiang, and C. Zhu, “Bismuth-doped zinc aluminosilicate glasses and glass-ceramics with ultra-broadband infrared luminescence,” Opt. Mater. 29(5), 556–561 (2007).
[CrossRef]

J. Ren, J. Qiu, B. Wu, and D. Chen, “Ultrabroad infrared luminescence from Bi-doped alkaline earth metal germanate glasses,” J. Mater. Res. 22(6), 1574–1578 (2007).
[CrossRef]

J. Ren, J. Qiu, D. Chen, X. Hu, X. Jiang, and C. Zhu, “Ultrabroad infrared luminescence from Bi-doped aluminogermanate glasses,” Solid State Commun. 141(10), 559–562 (2007).
[CrossRef]

S. Zhou, H. Dong, H. Zeng, G. Feng, H. Yang, B. Zhu, and J. Qiu, “Broadband optical amplification in Bi-doped germanium silicate glass,” Appl. Phys. Lett. 91(6), 061919 (2007).
[CrossRef]

S. Zhou, G. Feng, J. Bao, H. Yang, and J. Qiu, “Broadband near-infrared emission from Bi-doped aluminosilicate glasses,” J. Mater. Res. 22(6), 1435–1438 (2007).
[CrossRef]

J. Ren, J. Qiu, D. Chen, C. Wang, X. Jiang, and C. Zhu, “Infrared luminescence properties of bismuth-doped barium silicate glasses,” J. Mater. Res. 22(7), 1954–1958 (2007).
[CrossRef]

M. Peng, C. Wang, D. Chen, J. Qiu, X. Jiang, and C. Zhu, “Investigations on bismuth and aluminum co-doped germanium oxide glasses for ultra-broadband optical amplification,” J. Non-Cryst. Solids 351(30-32), 2388–2393 (2005).
[CrossRef]

M. Peng, J. Qiu, D. Chen, X. Meng, and C. Zhu, “Superbroadband 1310 nm emission from bismuth and tantalum codoped germanium oxide glasses,” Opt. Lett. 30(18), 2433–2435 (2005).
[CrossRef] [PubMed]

M. Peng, J. Qiu, D. Chen, X. Meng, I. Yang, X. Jiang, and C. Zhu, “Bismuth- and aluminum-codoped germanium oxide glasses for super-broadband optical amplification,” Opt. Lett. 29(17), 1998–2000 (2004).
[CrossRef] [PubMed]

Qiu, J. R.

G. P. Dong, X. D. Xiao, J. J. Ren, J. Ruan, X. F. Liu, J. R. Qiu, C. G. Lin, H. Z. Tao, and X. J. Zhao, “Broadband infrared luminescence from bismuth-doped GeS2-Ga2S3 chalcogenide glasses,” Chin. Phys. Lett. 25(5), 1891–1894 (2008).
[CrossRef]

J. J. Ren, G. P. Dong, S. Q. Xu, R. Q. Bao, and J. R. Qiu, “Inhomogeneous broadening, luminescence origin and optical amplification in bismuth-doped glass,” J. Phys. Chem. A 112(14), 3036–3039 (2008).
[CrossRef] [PubMed]

X. G. Meng, J. R. Qiu, M. Y. Peng, D. P. Chen, Q. Z. Zhao, X. W. Jiang, and C. S. Zhu, “Infrared broadband emission of bismuth-doped barium-aluminum-borate glasses,” Opt. Express 13(5), 1635–1642 (2005).
[CrossRef] [PubMed]

X. G. Meng, J. R. Qiu, M. Y. Peng, D. P. Chen, Q. Z. Zhao, X. W. Jiang, and C. S. Zhu, “Near infrared broadband emission of bismuth-doped aluminophosphate glass,” Opt. Express 13(5), 1628–1634 (2005).
[CrossRef] [PubMed]

Razdobreev, I.

Ren, J.

J. Ren, J. Qiu, D. Chen, C. Wang, X. Jiang, and C. Zhu, “Infrared luminescence properties of bismuth-doped barium silicate glasses,” J. Mater. Res. 22(7), 1954–1958 (2007).
[CrossRef]

J. Ren, J. Qiu, B. Wu, and D. Chen, “Ultrabroad infrared luminescence from Bi-doped alkaline earth metal germanate glasses,” J. Mater. Res. 22(6), 1574–1578 (2007).
[CrossRef]

J. Ren, J. Qiu, D. Chen, X. Hu, X. Jiang, and C. Zhu, “Ultrabroad infrared luminescence from Bi-doped aluminogermanate glasses,” Solid State Commun. 141(10), 559–562 (2007).
[CrossRef]

Ren, J. J.

G. P. Dong, X. D. Xiao, J. J. Ren, J. Ruan, X. F. Liu, J. R. Qiu, C. G. Lin, H. Z. Tao, and X. J. Zhao, “Broadband infrared luminescence from bismuth-doped GeS2-Ga2S3 chalcogenide glasses,” Chin. Phys. Lett. 25(5), 1891–1894 (2008).
[CrossRef]

J. J. Ren, G. P. Dong, S. Q. Xu, R. Q. Bao, and J. R. Qiu, “Inhomogeneous broadening, luminescence origin and optical amplification in bismuth-doped glass,” J. Phys. Chem. A 112(14), 3036–3039 (2008).
[CrossRef] [PubMed]

Ruan, J.

G. P. Dong, X. D. Xiao, J. J. Ren, J. Ruan, X. F. Liu, J. R. Qiu, C. G. Lin, H. Z. Tao, and X. J. Zhao, “Broadband infrared luminescence from bismuth-doped GeS2-Ga2S3 chalcogenide glasses,” Chin. Phys. Lett. 25(5), 1891–1894 (2008).
[CrossRef]

Rulkov, A. B.

Rutt, H.

M. Hughes, H. Rutt, D. Hewak, and R. Curry, “Spectroscopy of vanadium (III) doped gallium lanthanum sulphide chalcogenide glass. Phys. Lett. 90(3), 031108 (2007).

Sahu, J.

Samson, B.

D. W. Hewak, J. A. Medeiros Neto, B. Samson, R. S. Brown, K. P. Jedrzejewski, J. Wang, E. Taylor, R. I. Laming, G. Wylangowski, and D. N. Payne,“Quantum-Efficiency of Praseodymium Doped Ga:La:S Glass for 1.3 mm Optical-Fiber Amplifiers,” IEEE Photon. Technol. Lett. 6(5), 609–612 (1994).
[CrossRef]

Samson, B. N.

T. Schweizer, B. N. Samson, J. R. Hector, W. S. Brocklesby, D. W. Hewak, and D. N. Payne, “Infrared emission from holmium doped gallium lanthanum sulphide glass,” Infrared Phys. Technol. 40(4), 329–335 (1999).
[CrossRef]

T. Schweizer, D. W. Hewak, B. N. Samson, and D. N. Payne, “Spectroscopic data of the 1.8-, 2.9-, and 4.3-mm transitions in dysprosium-doped gallium lanthanum sulfide glass,” Opt. Lett. 21(19), 1594–1596 (1996).
[CrossRef] [PubMed]

Sazio, P. J.

C. E. Finlayson, A. Amezcua, P. J. Sazio, P. S. Walker, M. C. Grossel, R. J. Curry, D. C. Smith, and J. J. Baumberg, “Infrared emitting PbSe nanocrystals for telecommunications window applications,” J. Mod. Opt. 52(7), 955–964 (2005).
[CrossRef]

Schweizer, T.

T. Schweizer, B. N. Samson, J. R. Hector, W. S. Brocklesby, D. W. Hewak, and D. N. Payne, “Infrared emission from holmium doped gallium lanthanum sulphide glass,” Infrared Phys. Technol. 40(4), 329–335 (1999).
[CrossRef]

T. Schweizer, D. W. Hewak, B. N. Samson, and D. N. Payne, “Spectroscopic data of the 1.8-, 2.9-, and 4.3-mm transitions in dysprosium-doped gallium lanthanum sulfide glass,” Opt. Lett. 21(19), 1594–1596 (1996).
[CrossRef] [PubMed]

Shubin, A. V.

Shulman, I.

B. Denker, B. Galagan, V. Osiko, I. Shulman, S. Sverchkov, and E. Dianov, “Absorption and emission properties of Bi-doped Mg–Al–Si oxide glass system,” Appl. Phys. B-Lasers Opt. 95(4), 801–805 (2009).
[CrossRef]

B. Denker, B. Galagan, V. Osiko, I. Shulman, S. Sverchkov, and E. Dianov, “The IR emitting centers in Bi-doped Mg-Al-Si oxide glasses,” Laser Phys. 19(5), 1105–1111 (2009).
[CrossRef]

Silberberg, Y.

J. S. Wang, E. M. Vogela, E. Snitzerb, J. L. Jackela, V. L. Da Silva, and Y. Silberberg, “1.3 μm emission of neodymium and praseodymium in tellurite-based glasses,” J. Non-Cryst. Solids 178, 109–113 (1994).
[CrossRef]

Smith, D. C.

C. E. Finlayson, A. Amezcua, P. J. Sazio, P. S. Walker, M. C. Grossel, R. J. Curry, D. C. Smith, and J. J. Baumberg, “Infrared emitting PbSe nanocrystals for telecommunications window applications,” J. Mod. Opt. 52(7), 955–964 (2005).
[CrossRef]

Snitzerb, E.

J. S. Wang, E. M. Vogela, E. Snitzerb, J. L. Jackela, V. L. Da Silva, and Y. Silberberg, “1.3 μm emission of neodymium and praseodymium in tellurite-based glasses,” J. Non-Cryst. Solids 178, 109–113 (1994).
[CrossRef]

Sokolov, V. O.

V. O. Sokolov, V. G. Plotnichenko, V. V. Koltashev, and E. M. Dianov, “Centres of broadband near-IR luminescence in bismuth-doped glasses,” J. Phys. D Appl. Phys. 42(9), 095410 (2009).
[CrossRef]

V. O. Sokolov, V. G. Plotnichenko, and E. M. Dianov, “Origin of broadband near-infrared luminescence in bismuth-doped glasses,” Opt. Lett. 33(13), 1488–1490 (2008).
[CrossRef] [PubMed]

Suzuki, T.

M. Hughes, T. Suzuki, and Y. Ohishi, “Advanced bismuth doped lead-germanate glass for broadband optical gain devices,” J. Opt. Soc. Am. B 25(8), 1380–1386 (2008).
[CrossRef]

Y. Arai, T. Suzuki, Y. Ohishi, S. Morimoto, and S. Khonthon, “Ultrabroadband near-infrared emission from a colorless bismuth-doped glass,” Appl. Phys. Lett. 90(26), 261110 (2007).
[CrossRef]

T. Suzuki and Y. Ohishi, “Ultrabroadband near-infrared emission from Bi-doped Li2O-Al2O3-SiO2 glass,” Appl. Phys. Lett. 88(19), 191912 (2006).
[CrossRef]

Sverchkov, S.

B. Denker, B. Galagan, V. Osiko, I. Shulman, S. Sverchkov, and E. Dianov, “The IR emitting centers in Bi-doped Mg-Al-Si oxide glasses,” Laser Phys. 19(5), 1105–1111 (2009).
[CrossRef]

B. Denker, B. Galagan, V. Osiko, I. Shulman, S. Sverchkov, and E. Dianov, “Absorption and emission properties of Bi-doped Mg–Al–Si oxide glass system,” Appl. Phys. B-Lasers Opt. 95(4), 801–805 (2009).
[CrossRef]

Takebe, H.

K. Moringa, H. Yoshida, and H. Takebe, “Compositional dependence of absorption spectra of Ti3+ in silicate, borate, and phosphate glasses,” J. Am. Ceram. Soc. 77(12), 3113–3118 (1994).
[CrossRef]

Tao, H. Z.

G. P. Dong, X. D. Xiao, J. J. Ren, J. Ruan, X. F. Liu, J. R. Qiu, C. G. Lin, H. Z. Tao, and X. J. Zhao, “Broadband infrared luminescence from bismuth-doped GeS2-Ga2S3 chalcogenide glasses,” Chin. Phys. Lett. 25(5), 1891–1894 (2008).
[CrossRef]

Taylor, E.

D. W. Hewak, J. A. Medeiros Neto, B. Samson, R. S. Brown, K. P. Jedrzejewski, J. Wang, E. Taylor, R. I. Laming, G. Wylangowski, and D. N. Payne,“Quantum-Efficiency of Praseodymium Doped Ga:La:S Glass for 1.3 mm Optical-Fiber Amplifiers,” IEEE Photon. Technol. Lett. 6(5), 609–612 (1994).
[CrossRef]

Taylor, J. R.

Umnikov, A. A.

Vogela, E. M.

J. S. Wang, E. M. Vogela, E. Snitzerb, J. L. Jackela, V. L. Da Silva, and Y. Silberberg, “1.3 μm emission of neodymium and praseodymium in tellurite-based glasses,” J. Non-Cryst. Solids 178, 109–113 (1994).
[CrossRef]

Walker, P. S.

C. E. Finlayson, A. Amezcua, P. J. Sazio, P. S. Walker, M. C. Grossel, R. J. Curry, D. C. Smith, and J. J. Baumberg, “Infrared emitting PbSe nanocrystals for telecommunications window applications,” J. Mod. Opt. 52(7), 955–964 (2005).
[CrossRef]

Wang, C.

M. Peng, B. Wu, N. Da, C. Wang, D. Chen, C. Zhu, and J. Qiu, “Bismuth-activated luminescent materials for broadband optical amplifier in WDM system,” J. Non-Cryst. Solids 354(12-13), 1221–1225 (2008).
[CrossRef]

J. Ren, J. Qiu, D. Chen, C. Wang, X. Jiang, and C. Zhu, “Infrared luminescence properties of bismuth-doped barium silicate glasses,” J. Mater. Res. 22(7), 1954–1958 (2007).
[CrossRef]

M. Peng, C. Wang, D. Chen, J. Qiu, X. Jiang, and C. Zhu, “Investigations on bismuth and aluminum co-doped germanium oxide glasses for ultra-broadband optical amplification,” J. Non-Cryst. Solids 351(30-32), 2388–2393 (2005).
[CrossRef]

Wang, J.

D. W. Hewak, J. A. Medeiros Neto, B. Samson, R. S. Brown, K. P. Jedrzejewski, J. Wang, E. Taylor, R. I. Laming, G. Wylangowski, and D. N. Payne,“Quantum-Efficiency of Praseodymium Doped Ga:La:S Glass for 1.3 mm Optical-Fiber Amplifiers,” IEEE Photon. Technol. Lett. 6(5), 609–612 (1994).
[CrossRef]

Wang, J. S.

J. S. Wang, E. M. Vogela, E. Snitzerb, J. L. Jackela, V. L. Da Silva, and Y. Silberberg, “1.3 μm emission of neodymium and praseodymium in tellurite-based glasses,” J. Non-Cryst. Solids 178, 109–113 (1994).
[CrossRef]

Wang, X.

X. Wang and H. Xia, “Infrared superbroadband emission of Bi ion doped germanium-aluminum-sodium glass,” Opt. Commun. 268(1), 75–78 (2006).
[CrossRef]

Wondraczek, L.

M. Y. Peng, C. Zollfrank, and L. Wondraczek, “Origin of broad NIR photoluminescence in bismuthate glass and Bi-doped glasses at room temperature,” J. Phys.- Condes. Matter 21(28), 285106 (2009).
[CrossRef]

Wu, B.

M. Peng, B. Wu, N. Da, C. Wang, D. Chen, C. Zhu, and J. Qiu, “Bismuth-activated luminescent materials for broadband optical amplifier in WDM system,” J. Non-Cryst. Solids 354(12-13), 1221–1225 (2008).
[CrossRef]

J. Ren, J. Qiu, B. Wu, and D. Chen, “Ultrabroad infrared luminescence from Bi-doped alkaline earth metal germanate glasses,” J. Mater. Res. 22(6), 1574–1578 (2007).
[CrossRef]

Wylangowski, G.

D. W. Hewak, J. A. Medeiros Neto, B. Samson, R. S. Brown, K. P. Jedrzejewski, J. Wang, E. Taylor, R. I. Laming, G. Wylangowski, and D. N. Payne,“Quantum-Efficiency of Praseodymium Doped Ga:La:S Glass for 1.3 mm Optical-Fiber Amplifiers,” IEEE Photon. Technol. Lett. 6(5), 609–612 (1994).
[CrossRef]

I. Abdulhalim, C. N. Pannell, R. S. Deol, D. W. Hewak, G. Wylangowski, and D. N. Payne, “High-performance acousto-optic chalcogenide glass based on Ga2S3-La2S3 Systems,” J. Non-Cryst. Solids 164–166, 1251–1254 (1993).
[CrossRef]

Xia, H.

X. Wang and H. Xia, “Infrared superbroadband emission of Bi ion doped germanium-aluminum-sodium glass,” Opt. Commun. 268(1), 75–78 (2006).
[CrossRef]

Xiao, X. D.

G. P. Dong, X. D. Xiao, J. J. Ren, J. Ruan, X. F. Liu, J. R. Qiu, C. G. Lin, H. Z. Tao, and X. J. Zhao, “Broadband infrared luminescence from bismuth-doped GeS2-Ga2S3 chalcogenide glasses,” Chin. Phys. Lett. 25(5), 1891–1894 (2008).
[CrossRef]

Xu, S. Q.

J. J. Ren, G. P. Dong, S. Q. Xu, R. Q. Bao, and J. R. Qiu, “Inhomogeneous broadening, luminescence origin and optical amplification in bismuth-doped glass,” J. Phys. Chem. A 112(14), 3036–3039 (2008).
[CrossRef] [PubMed]

Yang, H.

S. Zhou, G. Feng, J. Bao, H. Yang, and J. Qiu, “Broadband near-infrared emission from Bi-doped aluminosilicate glasses,” J. Mater. Res. 22(6), 1435–1438 (2007).
[CrossRef]

S. Zhou, H. Dong, H. Zeng, G. Feng, H. Yang, B. Zhu, and J. Qiu, “Broadband optical amplification in Bi-doped germanium silicate glass,” Appl. Phys. Lett. 91(6), 061919 (2007).
[CrossRef]

Yang, I.

Yashkov, M. V.

Yoo, S.

Yoshida, H.

K. Moringa, H. Yoshida, and H. Takebe, “Compositional dependence of absorption spectra of Ti3+ in silicate, borate, and phosphate glasses,” J. Am. Ceram. Soc. 77(12), 3113–3118 (1994).
[CrossRef]

Young-Seok, S.

T. Ohkura, Y. Fujimoto, M. Nakatsuka, and S. Young-Seok, “Local Structures of Bismuth Ion in Bismuth-Doped Silica Glasses Analyzed Using Bi LIII X-Ray Absorption Fine Structure,” J. Am. Ceram. Soc. 90(11), 3596–3600 (2007).
[CrossRef]

Zeng, H.

S. Zhou, H. Dong, H. Zeng, G. Feng, H. Yang, B. Zhu, and J. Qiu, “Broadband optical amplification in Bi-doped germanium silicate glass,” Appl. Phys. Lett. 91(6), 061919 (2007).
[CrossRef]

Zhao, Q. Z.

Zhao, X. J.

G. P. Dong, X. D. Xiao, J. J. Ren, J. Ruan, X. F. Liu, J. R. Qiu, C. G. Lin, H. Z. Tao, and X. J. Zhao, “Broadband infrared luminescence from bismuth-doped GeS2-Ga2S3 chalcogenide glasses,” Chin. Phys. Lett. 25(5), 1891–1894 (2008).
[CrossRef]

Zhou, S.

S. Zhou, H. Dong, H. Zeng, G. Feng, H. Yang, B. Zhu, and J. Qiu, “Broadband optical amplification in Bi-doped germanium silicate glass,” Appl. Phys. Lett. 91(6), 061919 (2007).
[CrossRef]

S. Zhou, G. Feng, J. Bao, H. Yang, and J. Qiu, “Broadband near-infrared emission from Bi-doped aluminosilicate glasses,” J. Mater. Res. 22(6), 1435–1438 (2007).
[CrossRef]

Zhu, B.

S. Zhou, H. Dong, H. Zeng, G. Feng, H. Yang, B. Zhu, and J. Qiu, “Broadband optical amplification in Bi-doped germanium silicate glass,” Appl. Phys. Lett. 91(6), 061919 (2007).
[CrossRef]

Zhu, C.

M. Peng, B. Wu, N. Da, C. Wang, D. Chen, C. Zhu, and J. Qiu, “Bismuth-activated luminescent materials for broadband optical amplifier in WDM system,” J. Non-Cryst. Solids 354(12-13), 1221–1225 (2008).
[CrossRef]

M. Peng, D. Chen, J. Qiu, X. Jiang, and C. Zhu, “Bismuth-doped zinc aluminosilicate glasses and glass-ceramics with ultra-broadband infrared luminescence,” Opt. Mater. 29(5), 556–561 (2007).
[CrossRef]

J. Ren, J. Qiu, D. Chen, X. Hu, X. Jiang, and C. Zhu, “Ultrabroad infrared luminescence from Bi-doped aluminogermanate glasses,” Solid State Commun. 141(10), 559–562 (2007).
[CrossRef]

J. Ren, J. Qiu, D. Chen, C. Wang, X. Jiang, and C. Zhu, “Infrared luminescence properties of bismuth-doped barium silicate glasses,” J. Mater. Res. 22(7), 1954–1958 (2007).
[CrossRef]

M. Peng, C. Wang, D. Chen, J. Qiu, X. Jiang, and C. Zhu, “Investigations on bismuth and aluminum co-doped germanium oxide glasses for ultra-broadband optical amplification,” J. Non-Cryst. Solids 351(30-32), 2388–2393 (2005).
[CrossRef]

M. Peng, J. Qiu, D. Chen, X. Meng, and C. Zhu, “Superbroadband 1310 nm emission from bismuth and tantalum codoped germanium oxide glasses,” Opt. Lett. 30(18), 2433–2435 (2005).
[CrossRef] [PubMed]

M. Peng, J. Qiu, D. Chen, X. Meng, I. Yang, X. Jiang, and C. Zhu, “Bismuth- and aluminum-codoped germanium oxide glasses for super-broadband optical amplification,” Opt. Lett. 29(17), 1998–2000 (2004).
[CrossRef] [PubMed]

Zhu, C. S.

Zollfrank, C.

M. Y. Peng, C. Zollfrank, and L. Wondraczek, “Origin of broad NIR photoluminescence in bismuthate glass and Bi-doped glasses at room temperature,” J. Phys.- Condes. Matter 21(28), 285106 (2009).
[CrossRef]

. Phys. Lett.

M. Hughes, H. Rutt, D. Hewak, and R. Curry, “Spectroscopy of vanadium (III) doped gallium lanthanum sulphide chalcogenide glass. Phys. Lett. 90(3), 031108 (2007).

Appl. Phys. B-Lasers Opt.

B. Denker, B. Galagan, V. Osiko, I. Shulman, S. Sverchkov, and E. Dianov, “Absorption and emission properties of Bi-doped Mg–Al–Si oxide glass system,” Appl. Phys. B-Lasers Opt. 95(4), 801–805 (2009).
[CrossRef]

Appl. Phys. Lett.

S. Zhou, H. Dong, H. Zeng, G. Feng, H. Yang, B. Zhu, and J. Qiu, “Broadband optical amplification in Bi-doped germanium silicate glass,” Appl. Phys. Lett. 91(6), 061919 (2007).
[CrossRef]

T. Suzuki and Y. Ohishi, “Ultrabroadband near-infrared emission from Bi-doped Li2O-Al2O3-SiO2 glass,” Appl. Phys. Lett. 88(19), 191912 (2006).
[CrossRef]

Y. Arai, T. Suzuki, Y. Ohishi, S. Morimoto, and S. Khonthon, “Ultrabroadband near-infrared emission from a colorless bismuth-doped glass,” Appl. Phys. Lett. 90(26), 261110 (2007).
[CrossRef]

Chem. Phys. Lett.

N. C. Greenham, “Measurement of absolute photoluminescence quantum efficiencies in conjugated polymers,” Chem. Phys. Lett. 241(1-2), 89–96 (1995).
[CrossRef]

Chin. Phys. Lett.

G. P. Dong, X. D. Xiao, J. J. Ren, J. Ruan, X. F. Liu, J. R. Qiu, C. G. Lin, H. Z. Tao, and X. J. Zhao, “Broadband infrared luminescence from bismuth-doped GeS2-Ga2S3 chalcogenide glasses,” Chin. Phys. Lett. 25(5), 1891–1894 (2008).
[CrossRef]

IEEE Photon. Technol. Lett.

D. W. Hewak, J. A. Medeiros Neto, B. Samson, R. S. Brown, K. P. Jedrzejewski, J. Wang, E. Taylor, R. I. Laming, G. Wylangowski, and D. N. Payne,“Quantum-Efficiency of Praseodymium Doped Ga:La:S Glass for 1.3 mm Optical-Fiber Amplifiers,” IEEE Photon. Technol. Lett. 6(5), 609–612 (1994).
[CrossRef]

Infrared Phys. Technol.

T. Schweizer, B. N. Samson, J. R. Hector, W. S. Brocklesby, D. W. Hewak, and D. N. Payne, “Infrared emission from holmium doped gallium lanthanum sulphide glass,” Infrared Phys. Technol. 40(4), 329–335 (1999).
[CrossRef]

J. Am. Ceram. Soc.

T. Ohkura, Y. Fujimoto, M. Nakatsuka, and S. Young-Seok, “Local Structures of Bismuth Ion in Bismuth-Doped Silica Glasses Analyzed Using Bi LIII X-Ray Absorption Fine Structure,” J. Am. Ceram. Soc. 90(11), 3596–3600 (2007).
[CrossRef]

K. Moringa, H. Yoshida, and H. Takebe, “Compositional dependence of absorption spectra of Ti3+ in silicate, borate, and phosphate glasses,” J. Am. Ceram. Soc. 77(12), 3113–3118 (1994).
[CrossRef]

J. Ceram. Soc. Jpn.

S. Khonthon, S. Morimoto, Y. Arai, and Y. Ohishi, “Luminescence Characteristics of Te- and Bi-Doped Glasses and Glass-Ceramics,” J. Ceram. Soc. Jpn. 115(1340), 259–263 (2007).
[CrossRef]

J. Mater. Res.

J. Ren, J. Qiu, B. Wu, and D. Chen, “Ultrabroad infrared luminescence from Bi-doped alkaline earth metal germanate glasses,” J. Mater. Res. 22(6), 1574–1578 (2007).
[CrossRef]

J. Ren, J. Qiu, D. Chen, C. Wang, X. Jiang, and C. Zhu, “Infrared luminescence properties of bismuth-doped barium silicate glasses,” J. Mater. Res. 22(7), 1954–1958 (2007).
[CrossRef]

S. Zhou, G. Feng, J. Bao, H. Yang, and J. Qiu, “Broadband near-infrared emission from Bi-doped aluminosilicate glasses,” J. Mater. Res. 22(6), 1435–1438 (2007).
[CrossRef]

J. Mod. Opt.

C. E. Finlayson, A. Amezcua, P. J. Sazio, P. S. Walker, M. C. Grossel, R. J. Curry, D. C. Smith, and J. J. Baumberg, “Infrared emitting PbSe nanocrystals for telecommunications window applications,” J. Mod. Opt. 52(7), 955–964 (2005).
[CrossRef]

J. Non-Cryst. Solids

M. Peng, C. Wang, D. Chen, J. Qiu, X. Jiang, and C. Zhu, “Investigations on bismuth and aluminum co-doped germanium oxide glasses for ultra-broadband optical amplification,” J. Non-Cryst. Solids 351(30-32), 2388–2393 (2005).
[CrossRef]

J. A. Duffy, “Redox equilibria in glass,” J. Non-Cryst. Solids 196, 45–50 (1996).
[CrossRef]

M. Peng, B. Wu, N. Da, C. Wang, D. Chen, C. Zhu, and J. Qiu, “Bismuth-activated luminescent materials for broadband optical amplifier in WDM system,” J. Non-Cryst. Solids 354(12-13), 1221–1225 (2008).
[CrossRef]

J. S. Wang, E. M. Vogela, E. Snitzerb, J. L. Jackela, V. L. Da Silva, and Y. Silberberg, “1.3 μm emission of neodymium and praseodymium in tellurite-based glasses,” J. Non-Cryst. Solids 178, 109–113 (1994).
[CrossRef]

I. Abdulhalim, C. N. Pannell, R. S. Deol, D. W. Hewak, G. Wylangowski, and D. N. Payne, “High-performance acousto-optic chalcogenide glass based on Ga2S3-La2S3 Systems,” J. Non-Cryst. Solids 164–166, 1251–1254 (1993).
[CrossRef]

J. Opt. Soc. Am. B

J. Phys. Chem. A

J. J. Ren, G. P. Dong, S. Q. Xu, R. Q. Bao, and J. R. Qiu, “Inhomogeneous broadening, luminescence origin and optical amplification in bismuth-doped glass,” J. Phys. Chem. A 112(14), 3036–3039 (2008).
[CrossRef] [PubMed]

J. Phys. D Appl. Phys.

V. O. Sokolov, V. G. Plotnichenko, V. V. Koltashev, and E. M. Dianov, “Centres of broadband near-IR luminescence in bismuth-doped glasses,” J. Phys. D Appl. Phys. 42(9), 095410 (2009).
[CrossRef]

J. Phys.- Condes. Matter

M. Y. Peng, C. Zollfrank, and L. Wondraczek, “Origin of broad NIR photoluminescence in bismuthate glass and Bi-doped glasses at room temperature,” J. Phys.- Condes. Matter 21(28), 285106 (2009).
[CrossRef]

Jpn. J. Appl. Phys.

Y. Fujimoto and M. Nakatsuka, “Infrared Luminescence from Bismuth-Doped Silica Glass,” Jpn. J. Appl. Phys. 40(Part 2, No. 3B), L279–L281 (2001).
[CrossRef]

Laser Phys.

B. Denker, B. Galagan, V. Osiko, I. Shulman, S. Sverchkov, and E. Dianov, “The IR emitting centers in Bi-doped Mg-Al-Si oxide glasses,” Laser Phys. 19(5), 1105–1111 (2009).
[CrossRef]

Opt. Commun.

X. Wang and H. Xia, “Infrared superbroadband emission of Bi ion doped germanium-aluminum-sodium glass,” Opt. Commun. 268(1), 75–78 (2006).
[CrossRef]

Opt. Express

Opt. Lett.

Opt. Mater.

M. Peng, D. Chen, J. Qiu, X. Jiang, and C. Zhu, “Bismuth-doped zinc aluminosilicate glasses and glass-ceramics with ultra-broadband infrared luminescence,” Opt. Mater. 29(5), 556–561 (2007).
[CrossRef]

Quantum Electron.

E. M. Dianov, S. V. Firstov, V. F. Khopin, A. N. Guryanov, and I. A. Bufetov, “Bi-doped fibre lasers and amplifiers emitting in a spectral region of 1.3 mm,” Quantum Electron. 38(7), 615–617 (2008).
[CrossRef]

Solid State Commun.

J. Ren, J. Qiu, D. Chen, X. Hu, X. Jiang, and C. Zhu, “Ultrabroad infrared luminescence from Bi-doped aluminogermanate glasses,” Solid State Commun. 141(10), 559–562 (2007).
[CrossRef]

Other

Y. Ohishi, “Novel photonics materials for broadband lightwave processing,” in Photonics West, (SPIE, 2007), 646908.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Absorption spectra of 1% Bi doped GLS and un-doped GLS. The inset shows a close-up of the Bi:GLS absorption

Fig. 2
Fig. 2

Contour plot showing the emission spectra, normalized to the excitation power, of Bi doped GLS at excitation wavelengths of 480-1300 nm. Emission intensity is in a log scale.

Fig. 3
Fig. 3

Emission FWHM and quantum efficiency as a function of excitation wavelength.

Fig. 4
Fig. 4

Examples of emission spectra at excitation wavelength 755, 974, 1020 and 1064 nm. The standard telecommunication bands are also shown.

Fig. 5
Fig. 5

Emission spectra from 974 nm excitation at temperatures 5-300 K (a), deconvolution of the emission spectra at 5 K into Gaussians (b).

Fig. 6
Fig. 6

Emission FWHM as a function of temperature for excitation wavelengths of 808 and 974 nm.

Fig. 7
Fig. 7

Room temperature lifetime (μs) as a function of excitation and emission wavelength (a). Example of an emission decay (b).

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

ηQE=λIPL(λ)C(λ)dλλIsphere(λ)C(λ)dλλIsample(λ)C(λ)dλ

Metrics