Abstract

Using home-built dedicated ray-tracing software, we simulate photorealistic images of sceneries in three dimensions including dielectric carpet cloaks – i.e., continuously varying refractive-index distributions that allow for invisibility cloaking of a bump in a metallic carpet. Results for the ideal and for a simplified cloak are shown. The presented material gives a visual and intuitive impression of the performance of different arrangements and might be ideally suited for communicating the concepts of transformation optics to the general public.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
    [CrossRef] [PubMed]
  2. U. Leonhardt, “Optical conformal mapping,” Science 312(5781), 1777–1780 (2006).
    [CrossRef] [PubMed]
  3. U. Leonhardt and T. G. Philbin, “General relativity in electrical engineering,” N. J. Phys. 8(10), 247 (2006).
    [CrossRef]
  4. U. Leonhardt, “Notes on conformal invisibility devices,” N. J. Phys. 8(7), 118 (2006).
    [CrossRef]
  5. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
    [CrossRef] [PubMed]
  6. W. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, “Optical cloaking with metamaterials,” Nat. Photonics 1(4), 224–227 (2007).
    [CrossRef]
  7. V. M. Shalaev, “Physics. Transforming light,” Science 322(5900), 384–386 (2008).
    [CrossRef] [PubMed]
  8. J. Li and J. B. Pendry, “Hiding under the carpet: a new strategy for cloaking,” Phys. Rev. Lett. 101(20), 203901 (2008).
    [CrossRef] [PubMed]
  9. U. Leonhardt and T. Tyc, “Broadband invisibility by non-Euclidean cloaking,” Science 323(5910), 110–112 (2009).
    [CrossRef]
  10. R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband ground-plane cloak,” Science 323(5912), 366–369 (2009).
    [CrossRef] [PubMed]
  11. J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater. 8(7), 568–571 (2009).
    [CrossRef] [PubMed]
  12. L. H. Gabrielli, J. Cardenas, C. B. Poitras, and M. Lipson, “Silicon nanostructure cloaking at optical frequencies,” Nat. Photonics 3, 461–463 (2009).
    [CrossRef]
  13. J. H. Lee, J. Blair, V. A. Tamma, Q. Wu, S. J. Rhee, C. J. Summers, and W. Park, “Direct visualization of optical frequency invisibility cloak based on silicon nanorod array,” Opt. Express 17, 12922 (2009).
    [CrossRef] [PubMed]
  14. I. I. Smolyaninov, V. N. Smolyaninova, A. V. Kildishev, and V. M. Shalaev, “Anisotropic metamaterials emulated by tapered waveguides: application to optical cloaking,” Phys. Rev. Lett. 102(21), 213901 (2009).
    [CrossRef] [PubMed]
  15. N. A. Nicorovici, R. C. McPhedran, and G. W. Milton, “Optical and dielectric properties of partially resonant composites,” Phys. Rev. B 49(12), 8479–8482 (1994).
    [CrossRef]
  16. A. Alù and N. Engheta, “Plasmonic materials in transparency and cloaking problems: mechanism, robustness, and physical insights,” Opt. Express 15(6), 3318–3332 (2007).
    [CrossRef] [PubMed]
  17. S. Andrew, Glassner, An Introduction to Ray Tracing (Morgan Kaufmann, 1989).
  18. G. Dolling, M. Wegener, S. Linden, and C. Hormann, “Photorealistic images of objects in effective negative-index materials,” Opt. Express 14(5), 1842–1849 (2006).
    [CrossRef] [PubMed]
  19. N. A. P. Nicorovici, R. C. McPhedran, S. Enoch, and G. Tayeb, “Finite wavelength cloaking by plasmonic resonance,” N. J. Phys. 10(11), 115020 (2008).
    [CrossRef]
  20. E. Kallos, C. Argyropoulos, and Y. Hao, “Ground-plane quasicloaking for free space,” Phys. Rev. A 79(6), 063825 (2009).
    [CrossRef]
  21. http://www.aph.uni-karlsruhe.de/wegener/en/publications&year=2009

2009 (7)

U. Leonhardt and T. Tyc, “Broadband invisibility by non-Euclidean cloaking,” Science 323(5910), 110–112 (2009).
[CrossRef]

R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband ground-plane cloak,” Science 323(5912), 366–369 (2009).
[CrossRef] [PubMed]

J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater. 8(7), 568–571 (2009).
[CrossRef] [PubMed]

L. H. Gabrielli, J. Cardenas, C. B. Poitras, and M. Lipson, “Silicon nanostructure cloaking at optical frequencies,” Nat. Photonics 3, 461–463 (2009).
[CrossRef]

J. H. Lee, J. Blair, V. A. Tamma, Q. Wu, S. J. Rhee, C. J. Summers, and W. Park, “Direct visualization of optical frequency invisibility cloak based on silicon nanorod array,” Opt. Express 17, 12922 (2009).
[CrossRef] [PubMed]

I. I. Smolyaninov, V. N. Smolyaninova, A. V. Kildishev, and V. M. Shalaev, “Anisotropic metamaterials emulated by tapered waveguides: application to optical cloaking,” Phys. Rev. Lett. 102(21), 213901 (2009).
[CrossRef] [PubMed]

E. Kallos, C. Argyropoulos, and Y. Hao, “Ground-plane quasicloaking for free space,” Phys. Rev. A 79(6), 063825 (2009).
[CrossRef]

2008 (3)

N. A. P. Nicorovici, R. C. McPhedran, S. Enoch, and G. Tayeb, “Finite wavelength cloaking by plasmonic resonance,” N. J. Phys. 10(11), 115020 (2008).
[CrossRef]

V. M. Shalaev, “Physics. Transforming light,” Science 322(5900), 384–386 (2008).
[CrossRef] [PubMed]

J. Li and J. B. Pendry, “Hiding under the carpet: a new strategy for cloaking,” Phys. Rev. Lett. 101(20), 203901 (2008).
[CrossRef] [PubMed]

2007 (2)

A. Alù and N. Engheta, “Plasmonic materials in transparency and cloaking problems: mechanism, robustness, and physical insights,” Opt. Express 15(6), 3318–3332 (2007).
[CrossRef] [PubMed]

W. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, “Optical cloaking with metamaterials,” Nat. Photonics 1(4), 224–227 (2007).
[CrossRef]

2006 (6)

G. Dolling, M. Wegener, S. Linden, and C. Hormann, “Photorealistic images of objects in effective negative-index materials,” Opt. Express 14(5), 1842–1849 (2006).
[CrossRef] [PubMed]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
[CrossRef] [PubMed]

U. Leonhardt, “Optical conformal mapping,” Science 312(5781), 1777–1780 (2006).
[CrossRef] [PubMed]

U. Leonhardt and T. G. Philbin, “General relativity in electrical engineering,” N. J. Phys. 8(10), 247 (2006).
[CrossRef]

U. Leonhardt, “Notes on conformal invisibility devices,” N. J. Phys. 8(7), 118 (2006).
[CrossRef]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[CrossRef] [PubMed]

1994 (1)

N. A. Nicorovici, R. C. McPhedran, and G. W. Milton, “Optical and dielectric properties of partially resonant composites,” Phys. Rev. B 49(12), 8479–8482 (1994).
[CrossRef]

Alù, A.

Argyropoulos, C.

E. Kallos, C. Argyropoulos, and Y. Hao, “Ground-plane quasicloaking for free space,” Phys. Rev. A 79(6), 063825 (2009).
[CrossRef]

Bartal, G.

J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater. 8(7), 568–571 (2009).
[CrossRef] [PubMed]

Blair, J.

Cai, W.

W. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, “Optical cloaking with metamaterials,” Nat. Photonics 1(4), 224–227 (2007).
[CrossRef]

Cardenas, J.

L. H. Gabrielli, J. Cardenas, C. B. Poitras, and M. Lipson, “Silicon nanostructure cloaking at optical frequencies,” Nat. Photonics 3, 461–463 (2009).
[CrossRef]

Chettiar, U. K.

W. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, “Optical cloaking with metamaterials,” Nat. Photonics 1(4), 224–227 (2007).
[CrossRef]

Chin, J. Y.

R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband ground-plane cloak,” Science 323(5912), 366–369 (2009).
[CrossRef] [PubMed]

Cui, T. J.

R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband ground-plane cloak,” Science 323(5912), 366–369 (2009).
[CrossRef] [PubMed]

Cummer, S. A.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[CrossRef] [PubMed]

Dolling, G.

Engheta, N.

Enoch, S.

N. A. P. Nicorovici, R. C. McPhedran, S. Enoch, and G. Tayeb, “Finite wavelength cloaking by plasmonic resonance,” N. J. Phys. 10(11), 115020 (2008).
[CrossRef]

Gabrielli, L. H.

L. H. Gabrielli, J. Cardenas, C. B. Poitras, and M. Lipson, “Silicon nanostructure cloaking at optical frequencies,” Nat. Photonics 3, 461–463 (2009).
[CrossRef]

Hao, Y.

E. Kallos, C. Argyropoulos, and Y. Hao, “Ground-plane quasicloaking for free space,” Phys. Rev. A 79(6), 063825 (2009).
[CrossRef]

Hormann, C.

Ji, C.

R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband ground-plane cloak,” Science 323(5912), 366–369 (2009).
[CrossRef] [PubMed]

Justice, B. J.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[CrossRef] [PubMed]

Kallos, E.

E. Kallos, C. Argyropoulos, and Y. Hao, “Ground-plane quasicloaking for free space,” Phys. Rev. A 79(6), 063825 (2009).
[CrossRef]

Kildishev, A. V.

I. I. Smolyaninov, V. N. Smolyaninova, A. V. Kildishev, and V. M. Shalaev, “Anisotropic metamaterials emulated by tapered waveguides: application to optical cloaking,” Phys. Rev. Lett. 102(21), 213901 (2009).
[CrossRef] [PubMed]

W. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, “Optical cloaking with metamaterials,” Nat. Photonics 1(4), 224–227 (2007).
[CrossRef]

Lee, J. H.

Leonhardt, U.

U. Leonhardt and T. Tyc, “Broadband invisibility by non-Euclidean cloaking,” Science 323(5910), 110–112 (2009).
[CrossRef]

U. Leonhardt, “Notes on conformal invisibility devices,” N. J. Phys. 8(7), 118 (2006).
[CrossRef]

U. Leonhardt, “Optical conformal mapping,” Science 312(5781), 1777–1780 (2006).
[CrossRef] [PubMed]

U. Leonhardt and T. G. Philbin, “General relativity in electrical engineering,” N. J. Phys. 8(10), 247 (2006).
[CrossRef]

Li, J.

J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater. 8(7), 568–571 (2009).
[CrossRef] [PubMed]

J. Li and J. B. Pendry, “Hiding under the carpet: a new strategy for cloaking,” Phys. Rev. Lett. 101(20), 203901 (2008).
[CrossRef] [PubMed]

Linden, S.

Lipson, M.

L. H. Gabrielli, J. Cardenas, C. B. Poitras, and M. Lipson, “Silicon nanostructure cloaking at optical frequencies,” Nat. Photonics 3, 461–463 (2009).
[CrossRef]

Liu, R.

R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband ground-plane cloak,” Science 323(5912), 366–369 (2009).
[CrossRef] [PubMed]

McPhedran, R. C.

N. A. P. Nicorovici, R. C. McPhedran, S. Enoch, and G. Tayeb, “Finite wavelength cloaking by plasmonic resonance,” N. J. Phys. 10(11), 115020 (2008).
[CrossRef]

N. A. Nicorovici, R. C. McPhedran, and G. W. Milton, “Optical and dielectric properties of partially resonant composites,” Phys. Rev. B 49(12), 8479–8482 (1994).
[CrossRef]

Milton, G. W.

N. A. Nicorovici, R. C. McPhedran, and G. W. Milton, “Optical and dielectric properties of partially resonant composites,” Phys. Rev. B 49(12), 8479–8482 (1994).
[CrossRef]

Mock, J. J.

R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband ground-plane cloak,” Science 323(5912), 366–369 (2009).
[CrossRef] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[CrossRef] [PubMed]

Nicorovici, N. A.

N. A. Nicorovici, R. C. McPhedran, and G. W. Milton, “Optical and dielectric properties of partially resonant composites,” Phys. Rev. B 49(12), 8479–8482 (1994).
[CrossRef]

Nicorovici, N. A. P.

N. A. P. Nicorovici, R. C. McPhedran, S. Enoch, and G. Tayeb, “Finite wavelength cloaking by plasmonic resonance,” N. J. Phys. 10(11), 115020 (2008).
[CrossRef]

Park, W.

Pendry, J. B.

J. Li and J. B. Pendry, “Hiding under the carpet: a new strategy for cloaking,” Phys. Rev. Lett. 101(20), 203901 (2008).
[CrossRef] [PubMed]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
[CrossRef] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[CrossRef] [PubMed]

Philbin, T. G.

U. Leonhardt and T. G. Philbin, “General relativity in electrical engineering,” N. J. Phys. 8(10), 247 (2006).
[CrossRef]

Poitras, C. B.

L. H. Gabrielli, J. Cardenas, C. B. Poitras, and M. Lipson, “Silicon nanostructure cloaking at optical frequencies,” Nat. Photonics 3, 461–463 (2009).
[CrossRef]

Rhee, S. J.

Schurig, D.

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
[CrossRef] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[CrossRef] [PubMed]

Shalaev, V. M.

I. I. Smolyaninov, V. N. Smolyaninova, A. V. Kildishev, and V. M. Shalaev, “Anisotropic metamaterials emulated by tapered waveguides: application to optical cloaking,” Phys. Rev. Lett. 102(21), 213901 (2009).
[CrossRef] [PubMed]

V. M. Shalaev, “Physics. Transforming light,” Science 322(5900), 384–386 (2008).
[CrossRef] [PubMed]

W. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, “Optical cloaking with metamaterials,” Nat. Photonics 1(4), 224–227 (2007).
[CrossRef]

Smith, D. R.

R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband ground-plane cloak,” Science 323(5912), 366–369 (2009).
[CrossRef] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[CrossRef] [PubMed]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
[CrossRef] [PubMed]

Smolyaninov, I. I.

I. I. Smolyaninov, V. N. Smolyaninova, A. V. Kildishev, and V. M. Shalaev, “Anisotropic metamaterials emulated by tapered waveguides: application to optical cloaking,” Phys. Rev. Lett. 102(21), 213901 (2009).
[CrossRef] [PubMed]

Smolyaninova, V. N.

I. I. Smolyaninov, V. N. Smolyaninova, A. V. Kildishev, and V. M. Shalaev, “Anisotropic metamaterials emulated by tapered waveguides: application to optical cloaking,” Phys. Rev. Lett. 102(21), 213901 (2009).
[CrossRef] [PubMed]

Starr, A. F.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[CrossRef] [PubMed]

Summers, C. J.

Tamma, V. A.

Tayeb, G.

N. A. P. Nicorovici, R. C. McPhedran, S. Enoch, and G. Tayeb, “Finite wavelength cloaking by plasmonic resonance,” N. J. Phys. 10(11), 115020 (2008).
[CrossRef]

Tyc, T.

U. Leonhardt and T. Tyc, “Broadband invisibility by non-Euclidean cloaking,” Science 323(5910), 110–112 (2009).
[CrossRef]

Valentine, J.

J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater. 8(7), 568–571 (2009).
[CrossRef] [PubMed]

Wegener, M.

Wu, Q.

Zentgraf, T.

J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater. 8(7), 568–571 (2009).
[CrossRef] [PubMed]

Zhang, X.

J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater. 8(7), 568–571 (2009).
[CrossRef] [PubMed]

N. J. Phys. (3)

U. Leonhardt and T. G. Philbin, “General relativity in electrical engineering,” N. J. Phys. 8(10), 247 (2006).
[CrossRef]

U. Leonhardt, “Notes on conformal invisibility devices,” N. J. Phys. 8(7), 118 (2006).
[CrossRef]

N. A. P. Nicorovici, R. C. McPhedran, S. Enoch, and G. Tayeb, “Finite wavelength cloaking by plasmonic resonance,” N. J. Phys. 10(11), 115020 (2008).
[CrossRef]

Nat. Mater. (1)

J. Valentine, J. Li, T. Zentgraf, G. Bartal, and X. Zhang, “An optical cloak made of dielectrics,” Nat. Mater. 8(7), 568–571 (2009).
[CrossRef] [PubMed]

Nat. Photonics (2)

L. H. Gabrielli, J. Cardenas, C. B. Poitras, and M. Lipson, “Silicon nanostructure cloaking at optical frequencies,” Nat. Photonics 3, 461–463 (2009).
[CrossRef]

W. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, “Optical cloaking with metamaterials,” Nat. Photonics 1(4), 224–227 (2007).
[CrossRef]

Opt. Express (3)

Phys. Rev. A (1)

E. Kallos, C. Argyropoulos, and Y. Hao, “Ground-plane quasicloaking for free space,” Phys. Rev. A 79(6), 063825 (2009).
[CrossRef]

Phys. Rev. B (1)

N. A. Nicorovici, R. C. McPhedran, and G. W. Milton, “Optical and dielectric properties of partially resonant composites,” Phys. Rev. B 49(12), 8479–8482 (1994).
[CrossRef]

Phys. Rev. Lett. (2)

I. I. Smolyaninov, V. N. Smolyaninova, A. V. Kildishev, and V. M. Shalaev, “Anisotropic metamaterials emulated by tapered waveguides: application to optical cloaking,” Phys. Rev. Lett. 102(21), 213901 (2009).
[CrossRef] [PubMed]

J. Li and J. B. Pendry, “Hiding under the carpet: a new strategy for cloaking,” Phys. Rev. Lett. 101(20), 203901 (2008).
[CrossRef] [PubMed]

Science (6)

U. Leonhardt and T. Tyc, “Broadband invisibility by non-Euclidean cloaking,” Science 323(5910), 110–112 (2009).
[CrossRef]

R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, “Broadband ground-plane cloak,” Science 323(5912), 366–369 (2009).
[CrossRef] [PubMed]

V. M. Shalaev, “Physics. Transforming light,” Science 322(5900), 384–386 (2008).
[CrossRef] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[CrossRef] [PubMed]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science 312(5781), 1780–1782 (2006).
[CrossRef] [PubMed]

U. Leonhardt, “Optical conformal mapping,” Science 312(5781), 1777–1780 (2006).
[CrossRef] [PubMed]

Other (2)

S. Andrew, Glassner, An Introduction to Ray Tracing (Morgan Kaufmann, 1989).

http://www.aph.uni-karlsruhe.de/wegener/en/publications&year=2009

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Artist’s view of the scenery. A virtual camera with large field-of-view images a niche in a museum with portraits of famous scientists representing geometrical optics (Sir Isaac Newton), wave optics & electromagnetic waves (Heinrich Hertz), and quantum optics & general relativity (Albert Einstein), respectively. The bump on the floor (green) and the boundaries of the dielectric cloaking structure (red) are highlighted. (b) Resulting calculated image for a gray floor (i.e., no bump and no cloak).

Fig. 2
Fig. 2

False-color images of the refractive-index distribution of the cloaking structure (see also floor in Fig. 1(a)) in the xy-plane. The index is translationally invariant in the z-direction. (a) Reference index n = 1.00 (compare Fig. 3) and (b) n = 1.20 (compare Fig. 4). (a) and (b) are identical up to a factor of 1.20.

Fig. 3
Fig. 3

Rendered images seen by the virtual camera of Fig. 1(a). (a) Metallic (hence reflecting) floor, (b) as (a) but with a bump whose edges are outlined in green (see also green outline within cloak in Fig. 1), (c) as (b) but with the cloaking structure added (top outlined in red). The index distribution corresponds to that shown in Fig. 2(a), i.e., the reference index is unity.

Fig. 4
Fig. 4

As Fig. 3 but for a cloaking structure with a reference index equal to 1.20. Unlike in Fig. 3, both (a) and (b) include a dielectric plate with the reference index of 1.20 and with the same height as the cloak. In (a)-(b) and (c), the tops of the dielectric medium and the cloak, respectively, are outlined in red.

Fig. 5
Fig. 5

(a) Simplified refractive index distribution roughly mimicking that of Fig. 2(b). The reference index is 1.20. (b) Corresponding rendered image.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Δx=2H1cosαsinα.

Metrics