Abstract

A resolution-enhanced integral imaging microscope that uses lens array shifting is proposed in this study. The lens shift method maintains the same field of view of the reconstructed orthographic view images with increased spatial density. In this study, multiple sets of the elemental images were captured with horizontal and vertical shifts of the micro lens array and combined together to form a single set of the elemental images. From the combined elemental images, orthographic view images and depth slice images of the microscopic specimen were generated with enhanced resolution.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Inoue and R. Oldenbourg, Handbook of Optics(McGrawHill, 1995), Chap. 17.
  2. J.-S. Jang and B. Javidi, “Three-dimensional integral imaging of micro-objects,” Opt. Lett. 29(11), 1230–1232 (2004).
    [CrossRef] [PubMed]
  3. M. Levoy, R. Ng, A. Adams, M. Footer, and M. Horowitz, “Light Field Microscopy,” ACM Trans. Graph. 25(3), 31–42 (•••).
  4. H. Liao, N. Hata, S. Nakajima, M. Iwahara, I. Sakuma, and T. Dohi, “Surgical navigation by autostereoscopic image overlay of integral videography,” IEEE Trans. Inf. Technol. Biomed. 8(2), 114–121 (2004).
    [CrossRef] [PubMed]
  5. R. Ostnes, V. Abbottand, and S. Lavender, “Visualisation techniques: An overview - Part 1,” The Hydrographic Journal (113), 3–7 (2004).
  6. H. Yamanoue, M. Okui, and F. Okano, “Geometrical analysis of puppet-theater and cardboard effects in stereoscopic HDTV images,” IEEE Trans. Circuits Syst. Video Technol. 16(6), 744–752 (2006).
    [CrossRef]
  7. D. Gabor, “A new microscopic principle,” Nature 161(4098), 777–778 (1948).
    [CrossRef] [PubMed]
  8. G. Lippmmann, “La photographie integrale,” C. R. Acad. Sci. 146, 446–451 (1908).
  9. J.-H. Park, H.-R. Kim, Y. Kim, J. Kim, J. Hong, S.-D. Lee, and B. Lee, “Depth-enhanced three-dimensional-two-dimensional convertible display based on modified integral imaging,” Opt. Lett. 29(23), 2734–2736 (2004).
    [CrossRef] [PubMed]
  10. Y. Kim, H. Choi, S.-W. Cho, Y. Kim, J. Kim, G. Park, and B. Lee, “Three-dimensional integral display using plastic optical fibers,” Appl. Opt. 46(29), 7149–7154 (2007).
    [CrossRef] [PubMed]
  11. J. Kim, S.-W. Min, Y. Kim, and B. Lee, “Analysis on viewing characteristics of an integral floating system,” Appl. Opt. 47(19), D80–D86 (2008).
    [CrossRef] [PubMed]
  12. H. Liao, M. Iwahara, N. Hata, and T. Dohi, “High-quality integral videography using a multiprojector,” Opt. Express 12(6), 1067–1076 (2004), http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-6-1067 .
    [CrossRef] [PubMed]
  13. Y. Kim, J. Kim, J.-M. Kang, J.-H. Jung, H. Choi, and B. Lee, “Point light source integral imaging with improved resolution and viewing angle by the use of electrically movable pinhole array,” Opt. Express 15(26), 18253–18267 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-26-18253 .
    [CrossRef] [PubMed]
  14. H. Liao, T. Dohi, and M. Iwahara, “Improved viewing resolution of integral videography by use of rotated prism sheets,” Opt. Express 15(8), 4814–4822 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-8-4814 .
    [CrossRef] [PubMed]
  15. J.-H. Park, G. Baasantseren, N. Kim, G. Park, J.-M. Kang, and B. Lee, “View image generation in perspective and orthographic projection geometry based on integral imaging,” Opt. Express 16(12), 8800–8813 (2008), http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-12-8800 .
    [CrossRef] [PubMed]
  16. J. Arai, H. Hoshino, M. Okui, and F. Okano, “Effects of focusing on the resolution characteristics of integral photography,” J. Opt. Soc. Am. 20(6), 996–1004 (2003).
    [CrossRef]
  17. H. Liao, M. Iwahara, T. Koike, N. Hata, I. Sakuma, and T. Dohi, “Scalable high-resolution integral videography autostereoscopic display with a seamless multiprojection system,” Appl. Opt. 44(3), 305–315 (2005).
    [CrossRef] [PubMed]
  18. L. Erdmann and K. J. Gabriel, “High-resolution digital integral photography by use of a scanning microlens array,” Appl. Opt. 40(31), 5592–5599 (2001).
    [CrossRef]
  19. J.-S. Jang and B. Javidi, “Improved viewing resolution of three-dimensional integral imaging by use of nonstationary micro-optics,” Opt. Lett. 27(5), 324–326 (2002).
    [CrossRef]
  20. S. Kishk and B. Javidi, “Improved resolution 3D object sensing and recognition using time multiplexed computational integral imaging,” Opt. Express 11(26), 3528–3541 (2003), http://www.opticsinfobase.org/abstract.cfm?URI=oe-11-26-3528 .
    [CrossRef] [PubMed]
  21. D.-H. Shin and E.-S. Kim, “Computational integral imaging reconstruction of 3D Object using a depth conversion technique,” J. Opt. Soc. K. 12(3), 131–135 (2008).
    [CrossRef]

2008 (3)

2007 (3)

2006 (1)

H. Yamanoue, M. Okui, and F. Okano, “Geometrical analysis of puppet-theater and cardboard effects in stereoscopic HDTV images,” IEEE Trans. Circuits Syst. Video Technol. 16(6), 744–752 (2006).
[CrossRef]

2005 (1)

2004 (5)

2003 (2)

2002 (1)

2001 (1)

1948 (1)

D. Gabor, “A new microscopic principle,” Nature 161(4098), 777–778 (1948).
[CrossRef] [PubMed]

1908 (1)

G. Lippmmann, “La photographie integrale,” C. R. Acad. Sci. 146, 446–451 (1908).

Abbottand, V.

R. Ostnes, V. Abbottand, and S. Lavender, “Visualisation techniques: An overview - Part 1,” The Hydrographic Journal (113), 3–7 (2004).

Adams, A.

M. Levoy, R. Ng, A. Adams, M. Footer, and M. Horowitz, “Light Field Microscopy,” ACM Trans. Graph. 25(3), 31–42 (•••).

Arai, J.

J. Arai, H. Hoshino, M. Okui, and F. Okano, “Effects of focusing on the resolution characteristics of integral photography,” J. Opt. Soc. Am. 20(6), 996–1004 (2003).
[CrossRef]

Baasantseren, G.

Cho, S.-W.

Choi, H.

Dohi, T.

Erdmann, L.

Footer, M.

M. Levoy, R. Ng, A. Adams, M. Footer, and M. Horowitz, “Light Field Microscopy,” ACM Trans. Graph. 25(3), 31–42 (•••).

Gabor, D.

D. Gabor, “A new microscopic principle,” Nature 161(4098), 777–778 (1948).
[CrossRef] [PubMed]

Gabriel, K. J.

Hata, N.

Hong, J.

Horowitz, M.

M. Levoy, R. Ng, A. Adams, M. Footer, and M. Horowitz, “Light Field Microscopy,” ACM Trans. Graph. 25(3), 31–42 (•••).

Hoshino, H.

J. Arai, H. Hoshino, M. Okui, and F. Okano, “Effects of focusing on the resolution characteristics of integral photography,” J. Opt. Soc. Am. 20(6), 996–1004 (2003).
[CrossRef]

Iwahara, M.

Jang, J.-S.

Javidi, B.

Jung, J.-H.

Kang, J.-M.

Kim, E.-S.

D.-H. Shin and E.-S. Kim, “Computational integral imaging reconstruction of 3D Object using a depth conversion technique,” J. Opt. Soc. K. 12(3), 131–135 (2008).
[CrossRef]

Kim, H.-R.

Kim, J.

Kim, N.

Kim, Y.

Kishk, S.

Koike, T.

Lavender, S.

R. Ostnes, V. Abbottand, and S. Lavender, “Visualisation techniques: An overview - Part 1,” The Hydrographic Journal (113), 3–7 (2004).

Lee, B.

Lee, S.-D.

Levoy, M.

M. Levoy, R. Ng, A. Adams, M. Footer, and M. Horowitz, “Light Field Microscopy,” ACM Trans. Graph. 25(3), 31–42 (•••).

Liao, H.

Lippmmann, G.

G. Lippmmann, “La photographie integrale,” C. R. Acad. Sci. 146, 446–451 (1908).

Min, S.-W.

Nakajima, S.

H. Liao, N. Hata, S. Nakajima, M. Iwahara, I. Sakuma, and T. Dohi, “Surgical navigation by autostereoscopic image overlay of integral videography,” IEEE Trans. Inf. Technol. Biomed. 8(2), 114–121 (2004).
[CrossRef] [PubMed]

Ng, R.

M. Levoy, R. Ng, A. Adams, M. Footer, and M. Horowitz, “Light Field Microscopy,” ACM Trans. Graph. 25(3), 31–42 (•••).

Okano, F.

H. Yamanoue, M. Okui, and F. Okano, “Geometrical analysis of puppet-theater and cardboard effects in stereoscopic HDTV images,” IEEE Trans. Circuits Syst. Video Technol. 16(6), 744–752 (2006).
[CrossRef]

J. Arai, H. Hoshino, M. Okui, and F. Okano, “Effects of focusing on the resolution characteristics of integral photography,” J. Opt. Soc. Am. 20(6), 996–1004 (2003).
[CrossRef]

Okui, M.

H. Yamanoue, M. Okui, and F. Okano, “Geometrical analysis of puppet-theater and cardboard effects in stereoscopic HDTV images,” IEEE Trans. Circuits Syst. Video Technol. 16(6), 744–752 (2006).
[CrossRef]

J. Arai, H. Hoshino, M. Okui, and F. Okano, “Effects of focusing on the resolution characteristics of integral photography,” J. Opt. Soc. Am. 20(6), 996–1004 (2003).
[CrossRef]

Ostnes, R.

R. Ostnes, V. Abbottand, and S. Lavender, “Visualisation techniques: An overview - Part 1,” The Hydrographic Journal (113), 3–7 (2004).

Park, G.

Park, J.-H.

Sakuma, I.

H. Liao, M. Iwahara, T. Koike, N. Hata, I. Sakuma, and T. Dohi, “Scalable high-resolution integral videography autostereoscopic display with a seamless multiprojection system,” Appl. Opt. 44(3), 305–315 (2005).
[CrossRef] [PubMed]

H. Liao, N. Hata, S. Nakajima, M. Iwahara, I. Sakuma, and T. Dohi, “Surgical navigation by autostereoscopic image overlay of integral videography,” IEEE Trans. Inf. Technol. Biomed. 8(2), 114–121 (2004).
[CrossRef] [PubMed]

Shin, D.-H.

D.-H. Shin and E.-S. Kim, “Computational integral imaging reconstruction of 3D Object using a depth conversion technique,” J. Opt. Soc. K. 12(3), 131–135 (2008).
[CrossRef]

Yamanoue, H.

H. Yamanoue, M. Okui, and F. Okano, “Geometrical analysis of puppet-theater and cardboard effects in stereoscopic HDTV images,” IEEE Trans. Circuits Syst. Video Technol. 16(6), 744–752 (2006).
[CrossRef]

ACM Trans. Graph. (1)

M. Levoy, R. Ng, A. Adams, M. Footer, and M. Horowitz, “Light Field Microscopy,” ACM Trans. Graph. 25(3), 31–42 (•••).

Appl. Opt. (4)

C. R. Acad. Sci. (1)

G. Lippmmann, “La photographie integrale,” C. R. Acad. Sci. 146, 446–451 (1908).

IEEE Trans. Circuits Syst. Video Technol. (1)

H. Yamanoue, M. Okui, and F. Okano, “Geometrical analysis of puppet-theater and cardboard effects in stereoscopic HDTV images,” IEEE Trans. Circuits Syst. Video Technol. 16(6), 744–752 (2006).
[CrossRef]

IEEE Trans. Inf. Technol. Biomed. (1)

H. Liao, N. Hata, S. Nakajima, M. Iwahara, I. Sakuma, and T. Dohi, “Surgical navigation by autostereoscopic image overlay of integral videography,” IEEE Trans. Inf. Technol. Biomed. 8(2), 114–121 (2004).
[CrossRef] [PubMed]

J. Opt. Soc. Am. (1)

J. Arai, H. Hoshino, M. Okui, and F. Okano, “Effects of focusing on the resolution characteristics of integral photography,” J. Opt. Soc. Am. 20(6), 996–1004 (2003).
[CrossRef]

J. Opt. Soc. K. (1)

D.-H. Shin and E.-S. Kim, “Computational integral imaging reconstruction of 3D Object using a depth conversion technique,” J. Opt. Soc. K. 12(3), 131–135 (2008).
[CrossRef]

Nature (1)

D. Gabor, “A new microscopic principle,” Nature 161(4098), 777–778 (1948).
[CrossRef] [PubMed]

Opt. Express (5)

Opt. Lett. (3)

The Hydrographic Journal (1)

R. Ostnes, V. Abbottand, and S. Lavender, “Visualisation techniques: An overview - Part 1,” The Hydrographic Journal (113), 3–7 (2004).

Other (1)

S. Inoue and R. Oldenbourg, Handbook of Optics(McGrawHill, 1995), Chap. 17.

Supplementary Material (4)

» Media 1: MOV (494 KB)     
» Media 2: MOV (544 KB)     
» Media 3: MOV (671 KB)     
» Media 4: MOV (764 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Structure of the IIM

Fig. 2
Fig. 2

Disparity between the neighboring elemental images. f 1 = 20mm, f 2 = 200mm, l = 105mm, g = 2.6087mm, d = 30mm.

Fig. 3
Fig. 3

Concept of orthographic view reconstruction method (a) pixel mapping (b) apparent view difference between reconstructed orthographic views

Fig. 4
Fig. 4

Concept of CIIR

Fig. 5
Fig. 5

Relationship between the spatial density and the FOV of the elemental images (a) FOV = a˚, (b) FOV = 1/2 a˚.

Fig. 6
Fig. 6

Principle of lens shift method (a) stationary micro lens array and the captured elemental images (b) lens array shifted to horizontal direction by ϕ/m and captured elemental images (c) high spatial density elemental images combined from the m 2 sets of the elemental images captured with lens array shifts (d) x × y orthographic view images reconstructed from the synthesized high spatial density elemental images.

Fig. 7
Fig. 7

Experimental setup: (a) experimental setup and (b) its schematic.

Fig. 8
Fig. 8

2-D image of the object captured without micro lens array

Fig. 9
Fig. 9

Experimental results (a) single set of the elemental image captured with stationary lens array (b) reconstructed orthographic view images. Pixel count of each orthographic view is 45 × 45 and the number of view images is 15x15.

Fig. 12
Fig. 12

Movie of depth slice images generated from (a) (Media 3) one set of the elemental images captured by a stationary lens array (Fig. 7) and (b) (Media 4) high density elemental images obtained by using lens array shifting (Fig. 8).

Fig. 10
Fig. 10

Experimental results (a) high spatial density elemental images combined from 25 sets of the elemental images that were captured by a lens array shift (b) reconstructed orthographic view images. The pixel count of each orthographic view is 225 × 225 and the number of view images is15x15.

Fig. 11
Fig. 11

Movie of the orthographic view images that was reconstructed by using (a) (Media 1) one set of the elemental images that was captured with a stationary lens array (Fig. 9) and (b) (Media 2) high density elemental images obtained by using lens array shifting (Fig. 10).

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

(u,v)=(f1f2z(lf2)f12x,f1f2z(lf2)f12y),
(s,t)=(kxϕg(z(lf2)f12)gf1f2xz(d(lf2)f22)df12,kyϕg(z(lf2)f12)gf1f2yz(d(lf2)f22)df12),
dIIM=ϕg(z(lf2)f12)z(d(lf2)f22)df12.

Metrics