Abstract

We report a novel implementation of chirped-pulse amplification (CPA) by dominantly using dispersive multilayer mirrors for chirp control. Our prototyp dispersive-mirror (DMC) compressor has been designed for a kHz Ti:sapphire amplifier and yielded – in a proof-of-concept study – millijoule-energy, sub-20-fs, 790-nm laser pulses with an overall throughput of ~90% and unprecedented spatio-temporal quality. Dispersive-mirror-based CPA permits a dramatic simplification of high-power lasers and affords promise for their advancement to shorter pulse durations, higher peak powers, and higher average powers with user-friendly systems.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Strickland and G. Mourou, “Compression of amplified chirped optical pulses,” Opt. Commun. 56(3), 219–221 (1985).
    [CrossRef]
  2. G. A. Mourou, T. Tajima, and S. V. Bulanov, “Optics in the relativistic regime,” Rev. Mod. Phys. 78(2), 309–371 (2006).
    [CrossRef]
  3. M. D. Perry and G. Mourou, “Terawatt to Petawatt Subpicosecond Lasers,” Science 264(5161), 917–924 (1994).
    [CrossRef] [PubMed]
  4. E. Gerstner, “Laser physics: extreme light,” Nature 446(7131), 16–18 (2007).
    [CrossRef] [PubMed]
  5. F. Krausz and M. Ivanov, “Attosecond physics,” Rev. Mod. Phys. 81(1), 163–234 (2009).
    [CrossRef]
  6. T. Brabec and F. Krausz, “Intense few-cycle laser fields: frontiers of nonlinear optics,” Rev. Mod. Phys. 72(2), 545–591 (2000).
    [CrossRef]
  7. E. B. Treacy, “Optical pulse compression with diffraction gratings,” IEEE J. Quantum Electron. 5(9), 454–458 (1969).
    [CrossRef]
  8. M. Pessot, P. Maine, and G. Mourou, “1000 Times Expansion Compression of Optical Pulses for Chirped Pulse Amplification,” Opt. Commun. 62(6), 419–421 (1987).
    [CrossRef]
  9. Z. Cheng, F. Krausz, and C. Spielmann, “Compression of 2 mJ kilohertz laser pulses to 17.5 fs by pairing double-prism compressor: analysis and performance,” Opt. Commun. 201(1-3), 145–155 (2002).
    [CrossRef]
  10. G. Pretzler, A. Kasper, and K. J. Witte, “Angular chirp and tilted light pulses in CPA lasers,” Appl. Phys. B 70(1), 1–9 (2000).
    [CrossRef]
  11. A. L. Cavalieri, E. Goulielmakis, B. Horvath, W. Helml, M. Schultze, M. Fieß, V. Pervak, L. Veisz, V. S. Yakovlev, M. Uiberacker, A. Apolonski, F. Krausz, and R. Kienberger, “Intense 1.5-cycle near infrared laser waveforms and their use for the generation of ultra-broadband soft-x-ray harmonic continua,” N. J. Phys. 9(7), 242 (2007).
    [CrossRef]
  12. F. Tavella, Y. Nomura, L. Veisz, V. Pervak, A. Marcinkevičius, and F. Krausz, “Dispersion management for a sub-10-fs, 10 TW optical parametric chirped-pulse amplifier,” Opt. Lett. 32(15), 2227–2229 (2007).
    [CrossRef] [PubMed]
  13. R. Szipocs, K. Ferencz, C. Spielmann, and F. Krausz, “Chirped multilayer coatings for broadband dispersion control in femtosecond lasers,” Opt. Lett. 19(3), 201–203 (1994).
    [CrossRef] [PubMed]
  14. F. X. Kärtner, N. Matuschek, T. Schibli, U. Keller, H. A. Haus, C. Heine, R. Morf, V. Scheuer, M. Tilsch, and T. Tschudi, “Design and fabrication of double-chirped mirrors,” Opt. Lett. 22(11), 831–833 (1997).
    [CrossRef] [PubMed]
  15. R. Szipöcs, A. Köházi-Kis, S. Lakó, P. Apai, A. P. Kovács, G. Debell, L. Mott, A. W. Louderback, A. V. Tikhonravov, and M. K. Trubetskov, “Negative dispersion mirrors for dispersion control in femtosecond lasers: chirped dielectric mirrors and multi-cavity Gires-Tournois interferometers,” Appl. Phys. B 70, S51–S57 (2000).
  16. B. Golubovic, R. R. Austin, M. K. Steiner-Shepard, M. K. Reed, S. A. Diddams, D. J. Jones, and A. G. Van Engen, “Double Gires-Tournois interferometer negative-dispersion mirrors for use in tunable mode-locked lasers,” Opt. Lett. 25(4), 275–277 (2000).
    [CrossRef]
  17. N. Matuschek, L. Gallmann, D. H. Sutter, G. Steinmeyer, and U. Keller, “Back-side-coated chirped mirrors with ultra-smooth broadband dispersion characteristics,” Appl. Phys. B 71(4), 509–522 (2000).
    [CrossRef]
  18. G. Tempea, V. Yakovlev, B. Bacovic, F. Krausz, and K. Ferencz, “Tilted-front-interface chirped mirrors,” J. Opt. Soc. Am. B 18(11), 1747–1750 (2001).
    [CrossRef]
  19. P. Baum, M. Breuer, E. Riedle, and G. Steinmeyer, “Brewster-angled chirped mirrors for broadband pulse compression without dispersion oscillations,” Opt. Lett. 31(14), 2220–2222 (2006).
    [CrossRef] [PubMed]
  20. V. Pervak, F. Krausz, and A. Apolonski, “Dispersion control over the ultraviolet-visible-near-infrared spectral range with HfO2/SiO2-chirped dielectric multilayers,” Opt. Lett. 32(9), 1183–1185 (2007).
    [CrossRef] [PubMed]
  21. V. Pervak, C. Teisset, A. Sugita, S. Naumov, F. Krausz, and A. Apolonski, “High-dispersive mirrors for femtosecond lasers,” Opt. Express 16(14), 10220–10233 (2008).
    [CrossRef] [PubMed]
  22. V. Pervak, I. Ahmad, M. K. Trubetskov, A. V. Tikhonravov, and F. Krausz, “Double-angle multilayer mirrors with smooth dispersion characteristics,” Opt. Express 17(10), 7943–7951 (2009).
    [CrossRef] [PubMed]
  23. M. K. Trubetskov, A. V. Tikhonravov, and V. Pervak, “Time-domain approach for designing dispersive mirrors based on the needle optimization technique. Theory,” Opt. Express 16(25), 20637–20647 (2008).
    [CrossRef] [PubMed]
  24. V. Pervak, A. Tikhonravov, M. Trubetskov, S. Naumov, F. Krausz, and A. Apolonski, “1.5-octave chirped mirror for pulse compression down to sub-3 fs,” Appl. Phys. B 87(1), 5–12 (2007).
    [CrossRef]
  25. V. Pervak, I. Ahmad, J. Fulop, M. K. Trubetskov, and A. V. Tikhonravov, “Comparison of dispersive mirrors based on the time-domain and conventional approaches, for sub-5-fs pulses,” Opt. Express 17(4), 2207–2217 (2009).
    [CrossRef] [PubMed]
  26. A. V. Tikhonravov, and M. K. Trubetskov, www.optilayer.com
  27. T. V. Amotchkina, A. V. Tikhonravov, M. K. Trubetskov, D. Grupe, A. Apolonski, and V. Pervak, “Measurement of group delay of dispersive mirrors with white-light interferometer,” Appl. Opt. 48(5), 949–956 (2009).
    [CrossRef] [PubMed]
  28. P. Tournois, “Acousto-optic programmable dispersive filter for adaptive compensation of group delay time dispersion in laser systems,” Opt. Commun. 140(4-6), 245–249 (1997).
    [CrossRef]
  29. S. Sartania, Z. Cheng, M. Lenzner, G. Tempea, Ch. Spielmann, F. Krausz, and K. Ferencz, “Generation of 0.1-TW 5-fs optical pulses at a 1-kHz repetition rate,” Opt. Lett. 22(20), 1562–1564 (1997).
    [CrossRef]
  30. W. Koechner, “Solid State laser engineering, Springer series in Optical Science,” Springer-Verlag Berlin Heidelberg, 4th edition, (1996).

2009 (4)

2008 (2)

2007 (5)

V. Pervak, F. Krausz, and A. Apolonski, “Dispersion control over the ultraviolet-visible-near-infrared spectral range with HfO2/SiO2-chirped dielectric multilayers,” Opt. Lett. 32(9), 1183–1185 (2007).
[CrossRef] [PubMed]

V. Pervak, A. Tikhonravov, M. Trubetskov, S. Naumov, F. Krausz, and A. Apolonski, “1.5-octave chirped mirror for pulse compression down to sub-3 fs,” Appl. Phys. B 87(1), 5–12 (2007).
[CrossRef]

E. Gerstner, “Laser physics: extreme light,” Nature 446(7131), 16–18 (2007).
[CrossRef] [PubMed]

A. L. Cavalieri, E. Goulielmakis, B. Horvath, W. Helml, M. Schultze, M. Fieß, V. Pervak, L. Veisz, V. S. Yakovlev, M. Uiberacker, A. Apolonski, F. Krausz, and R. Kienberger, “Intense 1.5-cycle near infrared laser waveforms and their use for the generation of ultra-broadband soft-x-ray harmonic continua,” N. J. Phys. 9(7), 242 (2007).
[CrossRef]

F. Tavella, Y. Nomura, L. Veisz, V. Pervak, A. Marcinkevičius, and F. Krausz, “Dispersion management for a sub-10-fs, 10 TW optical parametric chirped-pulse amplifier,” Opt. Lett. 32(15), 2227–2229 (2007).
[CrossRef] [PubMed]

2006 (2)

2002 (1)

Z. Cheng, F. Krausz, and C. Spielmann, “Compression of 2 mJ kilohertz laser pulses to 17.5 fs by pairing double-prism compressor: analysis and performance,” Opt. Commun. 201(1-3), 145–155 (2002).
[CrossRef]

2001 (1)

2000 (5)

R. Szipöcs, A. Köházi-Kis, S. Lakó, P. Apai, A. P. Kovács, G. Debell, L. Mott, A. W. Louderback, A. V. Tikhonravov, and M. K. Trubetskov, “Negative dispersion mirrors for dispersion control in femtosecond lasers: chirped dielectric mirrors and multi-cavity Gires-Tournois interferometers,” Appl. Phys. B 70, S51–S57 (2000).

B. Golubovic, R. R. Austin, M. K. Steiner-Shepard, M. K. Reed, S. A. Diddams, D. J. Jones, and A. G. Van Engen, “Double Gires-Tournois interferometer negative-dispersion mirrors for use in tunable mode-locked lasers,” Opt. Lett. 25(4), 275–277 (2000).
[CrossRef]

N. Matuschek, L. Gallmann, D. H. Sutter, G. Steinmeyer, and U. Keller, “Back-side-coated chirped mirrors with ultra-smooth broadband dispersion characteristics,” Appl. Phys. B 71(4), 509–522 (2000).
[CrossRef]

G. Pretzler, A. Kasper, and K. J. Witte, “Angular chirp and tilted light pulses in CPA lasers,” Appl. Phys. B 70(1), 1–9 (2000).
[CrossRef]

T. Brabec and F. Krausz, “Intense few-cycle laser fields: frontiers of nonlinear optics,” Rev. Mod. Phys. 72(2), 545–591 (2000).
[CrossRef]

1997 (3)

1994 (2)

1987 (1)

M. Pessot, P. Maine, and G. Mourou, “1000 Times Expansion Compression of Optical Pulses for Chirped Pulse Amplification,” Opt. Commun. 62(6), 419–421 (1987).
[CrossRef]

1985 (1)

D. Strickland and G. Mourou, “Compression of amplified chirped optical pulses,” Opt. Commun. 56(3), 219–221 (1985).
[CrossRef]

1969 (1)

E. B. Treacy, “Optical pulse compression with diffraction gratings,” IEEE J. Quantum Electron. 5(9), 454–458 (1969).
[CrossRef]

Ahmad, I.

Amotchkina, T. V.

Apai, P.

R. Szipöcs, A. Köházi-Kis, S. Lakó, P. Apai, A. P. Kovács, G. Debell, L. Mott, A. W. Louderback, A. V. Tikhonravov, and M. K. Trubetskov, “Negative dispersion mirrors for dispersion control in femtosecond lasers: chirped dielectric mirrors and multi-cavity Gires-Tournois interferometers,” Appl. Phys. B 70, S51–S57 (2000).

Apolonski, A.

T. V. Amotchkina, A. V. Tikhonravov, M. K. Trubetskov, D. Grupe, A. Apolonski, and V. Pervak, “Measurement of group delay of dispersive mirrors with white-light interferometer,” Appl. Opt. 48(5), 949–956 (2009).
[CrossRef] [PubMed]

V. Pervak, C. Teisset, A. Sugita, S. Naumov, F. Krausz, and A. Apolonski, “High-dispersive mirrors for femtosecond lasers,” Opt. Express 16(14), 10220–10233 (2008).
[CrossRef] [PubMed]

V. Pervak, F. Krausz, and A. Apolonski, “Dispersion control over the ultraviolet-visible-near-infrared spectral range with HfO2/SiO2-chirped dielectric multilayers,” Opt. Lett. 32(9), 1183–1185 (2007).
[CrossRef] [PubMed]

V. Pervak, A. Tikhonravov, M. Trubetskov, S. Naumov, F. Krausz, and A. Apolonski, “1.5-octave chirped mirror for pulse compression down to sub-3 fs,” Appl. Phys. B 87(1), 5–12 (2007).
[CrossRef]

A. L. Cavalieri, E. Goulielmakis, B. Horvath, W. Helml, M. Schultze, M. Fieß, V. Pervak, L. Veisz, V. S. Yakovlev, M. Uiberacker, A. Apolonski, F. Krausz, and R. Kienberger, “Intense 1.5-cycle near infrared laser waveforms and their use for the generation of ultra-broadband soft-x-ray harmonic continua,” N. J. Phys. 9(7), 242 (2007).
[CrossRef]

Austin, R. R.

Bacovic, B.

Baum, P.

Brabec, T.

T. Brabec and F. Krausz, “Intense few-cycle laser fields: frontiers of nonlinear optics,” Rev. Mod. Phys. 72(2), 545–591 (2000).
[CrossRef]

Breuer, M.

Bulanov, S. V.

G. A. Mourou, T. Tajima, and S. V. Bulanov, “Optics in the relativistic regime,” Rev. Mod. Phys. 78(2), 309–371 (2006).
[CrossRef]

Cavalieri, A. L.

A. L. Cavalieri, E. Goulielmakis, B. Horvath, W. Helml, M. Schultze, M. Fieß, V. Pervak, L. Veisz, V. S. Yakovlev, M. Uiberacker, A. Apolonski, F. Krausz, and R. Kienberger, “Intense 1.5-cycle near infrared laser waveforms and their use for the generation of ultra-broadband soft-x-ray harmonic continua,” N. J. Phys. 9(7), 242 (2007).
[CrossRef]

Cheng, Z.

Z. Cheng, F. Krausz, and C. Spielmann, “Compression of 2 mJ kilohertz laser pulses to 17.5 fs by pairing double-prism compressor: analysis and performance,” Opt. Commun. 201(1-3), 145–155 (2002).
[CrossRef]

S. Sartania, Z. Cheng, M. Lenzner, G. Tempea, Ch. Spielmann, F. Krausz, and K. Ferencz, “Generation of 0.1-TW 5-fs optical pulses at a 1-kHz repetition rate,” Opt. Lett. 22(20), 1562–1564 (1997).
[CrossRef]

Debell, G.

R. Szipöcs, A. Köházi-Kis, S. Lakó, P. Apai, A. P. Kovács, G. Debell, L. Mott, A. W. Louderback, A. V. Tikhonravov, and M. K. Trubetskov, “Negative dispersion mirrors for dispersion control in femtosecond lasers: chirped dielectric mirrors and multi-cavity Gires-Tournois interferometers,” Appl. Phys. B 70, S51–S57 (2000).

Diddams, S. A.

Ferencz, K.

Fieß, M.

A. L. Cavalieri, E. Goulielmakis, B. Horvath, W. Helml, M. Schultze, M. Fieß, V. Pervak, L. Veisz, V. S. Yakovlev, M. Uiberacker, A. Apolonski, F. Krausz, and R. Kienberger, “Intense 1.5-cycle near infrared laser waveforms and their use for the generation of ultra-broadband soft-x-ray harmonic continua,” N. J. Phys. 9(7), 242 (2007).
[CrossRef]

Fulop, J.

Gallmann, L.

N. Matuschek, L. Gallmann, D. H. Sutter, G. Steinmeyer, and U. Keller, “Back-side-coated chirped mirrors with ultra-smooth broadband dispersion characteristics,” Appl. Phys. B 71(4), 509–522 (2000).
[CrossRef]

Gerstner, E.

E. Gerstner, “Laser physics: extreme light,” Nature 446(7131), 16–18 (2007).
[CrossRef] [PubMed]

Golubovic, B.

Goulielmakis, E.

A. L. Cavalieri, E. Goulielmakis, B. Horvath, W. Helml, M. Schultze, M. Fieß, V. Pervak, L. Veisz, V. S. Yakovlev, M. Uiberacker, A. Apolonski, F. Krausz, and R. Kienberger, “Intense 1.5-cycle near infrared laser waveforms and their use for the generation of ultra-broadband soft-x-ray harmonic continua,” N. J. Phys. 9(7), 242 (2007).
[CrossRef]

Grupe, D.

Haus, H. A.

Heine, C.

Helml, W.

A. L. Cavalieri, E. Goulielmakis, B. Horvath, W. Helml, M. Schultze, M. Fieß, V. Pervak, L. Veisz, V. S. Yakovlev, M. Uiberacker, A. Apolonski, F. Krausz, and R. Kienberger, “Intense 1.5-cycle near infrared laser waveforms and their use for the generation of ultra-broadband soft-x-ray harmonic continua,” N. J. Phys. 9(7), 242 (2007).
[CrossRef]

Horvath, B.

A. L. Cavalieri, E. Goulielmakis, B. Horvath, W. Helml, M. Schultze, M. Fieß, V. Pervak, L. Veisz, V. S. Yakovlev, M. Uiberacker, A. Apolonski, F. Krausz, and R. Kienberger, “Intense 1.5-cycle near infrared laser waveforms and their use for the generation of ultra-broadband soft-x-ray harmonic continua,” N. J. Phys. 9(7), 242 (2007).
[CrossRef]

Ivanov, M.

F. Krausz and M. Ivanov, “Attosecond physics,” Rev. Mod. Phys. 81(1), 163–234 (2009).
[CrossRef]

Jones, D. J.

Kärtner, F. X.

Kasper, A.

G. Pretzler, A. Kasper, and K. J. Witte, “Angular chirp and tilted light pulses in CPA lasers,” Appl. Phys. B 70(1), 1–9 (2000).
[CrossRef]

Keller, U.

N. Matuschek, L. Gallmann, D. H. Sutter, G. Steinmeyer, and U. Keller, “Back-side-coated chirped mirrors with ultra-smooth broadband dispersion characteristics,” Appl. Phys. B 71(4), 509–522 (2000).
[CrossRef]

F. X. Kärtner, N. Matuschek, T. Schibli, U. Keller, H. A. Haus, C. Heine, R. Morf, V. Scheuer, M. Tilsch, and T. Tschudi, “Design and fabrication of double-chirped mirrors,” Opt. Lett. 22(11), 831–833 (1997).
[CrossRef] [PubMed]

Kienberger, R.

A. L. Cavalieri, E. Goulielmakis, B. Horvath, W. Helml, M. Schultze, M. Fieß, V. Pervak, L. Veisz, V. S. Yakovlev, M. Uiberacker, A. Apolonski, F. Krausz, and R. Kienberger, “Intense 1.5-cycle near infrared laser waveforms and their use for the generation of ultra-broadband soft-x-ray harmonic continua,” N. J. Phys. 9(7), 242 (2007).
[CrossRef]

Köházi-Kis, A.

R. Szipöcs, A. Köházi-Kis, S. Lakó, P. Apai, A. P. Kovács, G. Debell, L. Mott, A. W. Louderback, A. V. Tikhonravov, and M. K. Trubetskov, “Negative dispersion mirrors for dispersion control in femtosecond lasers: chirped dielectric mirrors and multi-cavity Gires-Tournois interferometers,” Appl. Phys. B 70, S51–S57 (2000).

Kovács, A. P.

R. Szipöcs, A. Köházi-Kis, S. Lakó, P. Apai, A. P. Kovács, G. Debell, L. Mott, A. W. Louderback, A. V. Tikhonravov, and M. K. Trubetskov, “Negative dispersion mirrors for dispersion control in femtosecond lasers: chirped dielectric mirrors and multi-cavity Gires-Tournois interferometers,” Appl. Phys. B 70, S51–S57 (2000).

Krausz, F.

F. Krausz and M. Ivanov, “Attosecond physics,” Rev. Mod. Phys. 81(1), 163–234 (2009).
[CrossRef]

V. Pervak, I. Ahmad, M. K. Trubetskov, A. V. Tikhonravov, and F. Krausz, “Double-angle multilayer mirrors with smooth dispersion characteristics,” Opt. Express 17(10), 7943–7951 (2009).
[CrossRef] [PubMed]

V. Pervak, C. Teisset, A. Sugita, S. Naumov, F. Krausz, and A. Apolonski, “High-dispersive mirrors for femtosecond lasers,” Opt. Express 16(14), 10220–10233 (2008).
[CrossRef] [PubMed]

V. Pervak, F. Krausz, and A. Apolonski, “Dispersion control over the ultraviolet-visible-near-infrared spectral range with HfO2/SiO2-chirped dielectric multilayers,” Opt. Lett. 32(9), 1183–1185 (2007).
[CrossRef] [PubMed]

V. Pervak, A. Tikhonravov, M. Trubetskov, S. Naumov, F. Krausz, and A. Apolonski, “1.5-octave chirped mirror for pulse compression down to sub-3 fs,” Appl. Phys. B 87(1), 5–12 (2007).
[CrossRef]

A. L. Cavalieri, E. Goulielmakis, B. Horvath, W. Helml, M. Schultze, M. Fieß, V. Pervak, L. Veisz, V. S. Yakovlev, M. Uiberacker, A. Apolonski, F. Krausz, and R. Kienberger, “Intense 1.5-cycle near infrared laser waveforms and their use for the generation of ultra-broadband soft-x-ray harmonic continua,” N. J. Phys. 9(7), 242 (2007).
[CrossRef]

F. Tavella, Y. Nomura, L. Veisz, V. Pervak, A. Marcinkevičius, and F. Krausz, “Dispersion management for a sub-10-fs, 10 TW optical parametric chirped-pulse amplifier,” Opt. Lett. 32(15), 2227–2229 (2007).
[CrossRef] [PubMed]

Z. Cheng, F. Krausz, and C. Spielmann, “Compression of 2 mJ kilohertz laser pulses to 17.5 fs by pairing double-prism compressor: analysis and performance,” Opt. Commun. 201(1-3), 145–155 (2002).
[CrossRef]

G. Tempea, V. Yakovlev, B. Bacovic, F. Krausz, and K. Ferencz, “Tilted-front-interface chirped mirrors,” J. Opt. Soc. Am. B 18(11), 1747–1750 (2001).
[CrossRef]

T. Brabec and F. Krausz, “Intense few-cycle laser fields: frontiers of nonlinear optics,” Rev. Mod. Phys. 72(2), 545–591 (2000).
[CrossRef]

S. Sartania, Z. Cheng, M. Lenzner, G. Tempea, Ch. Spielmann, F. Krausz, and K. Ferencz, “Generation of 0.1-TW 5-fs optical pulses at a 1-kHz repetition rate,” Opt. Lett. 22(20), 1562–1564 (1997).
[CrossRef]

R. Szipocs, K. Ferencz, C. Spielmann, and F. Krausz, “Chirped multilayer coatings for broadband dispersion control in femtosecond lasers,” Opt. Lett. 19(3), 201–203 (1994).
[CrossRef] [PubMed]

Lakó, S.

R. Szipöcs, A. Köházi-Kis, S. Lakó, P. Apai, A. P. Kovács, G. Debell, L. Mott, A. W. Louderback, A. V. Tikhonravov, and M. K. Trubetskov, “Negative dispersion mirrors for dispersion control in femtosecond lasers: chirped dielectric mirrors and multi-cavity Gires-Tournois interferometers,” Appl. Phys. B 70, S51–S57 (2000).

Lenzner, M.

Louderback, A. W.

R. Szipöcs, A. Köházi-Kis, S. Lakó, P. Apai, A. P. Kovács, G. Debell, L. Mott, A. W. Louderback, A. V. Tikhonravov, and M. K. Trubetskov, “Negative dispersion mirrors for dispersion control in femtosecond lasers: chirped dielectric mirrors and multi-cavity Gires-Tournois interferometers,” Appl. Phys. B 70, S51–S57 (2000).

Maine, P.

M. Pessot, P. Maine, and G. Mourou, “1000 Times Expansion Compression of Optical Pulses for Chirped Pulse Amplification,” Opt. Commun. 62(6), 419–421 (1987).
[CrossRef]

Marcinkevicius, A.

Matuschek, N.

N. Matuschek, L. Gallmann, D. H. Sutter, G. Steinmeyer, and U. Keller, “Back-side-coated chirped mirrors with ultra-smooth broadband dispersion characteristics,” Appl. Phys. B 71(4), 509–522 (2000).
[CrossRef]

F. X. Kärtner, N. Matuschek, T. Schibli, U. Keller, H. A. Haus, C. Heine, R. Morf, V. Scheuer, M. Tilsch, and T. Tschudi, “Design and fabrication of double-chirped mirrors,” Opt. Lett. 22(11), 831–833 (1997).
[CrossRef] [PubMed]

Morf, R.

Mott, L.

R. Szipöcs, A. Köházi-Kis, S. Lakó, P. Apai, A. P. Kovács, G. Debell, L. Mott, A. W. Louderback, A. V. Tikhonravov, and M. K. Trubetskov, “Negative dispersion mirrors for dispersion control in femtosecond lasers: chirped dielectric mirrors and multi-cavity Gires-Tournois interferometers,” Appl. Phys. B 70, S51–S57 (2000).

Mourou, G.

M. D. Perry and G. Mourou, “Terawatt to Petawatt Subpicosecond Lasers,” Science 264(5161), 917–924 (1994).
[CrossRef] [PubMed]

M. Pessot, P. Maine, and G. Mourou, “1000 Times Expansion Compression of Optical Pulses for Chirped Pulse Amplification,” Opt. Commun. 62(6), 419–421 (1987).
[CrossRef]

D. Strickland and G. Mourou, “Compression of amplified chirped optical pulses,” Opt. Commun. 56(3), 219–221 (1985).
[CrossRef]

Mourou, G. A.

G. A. Mourou, T. Tajima, and S. V. Bulanov, “Optics in the relativistic regime,” Rev. Mod. Phys. 78(2), 309–371 (2006).
[CrossRef]

Naumov, S.

V. Pervak, C. Teisset, A. Sugita, S. Naumov, F. Krausz, and A. Apolonski, “High-dispersive mirrors for femtosecond lasers,” Opt. Express 16(14), 10220–10233 (2008).
[CrossRef] [PubMed]

V. Pervak, A. Tikhonravov, M. Trubetskov, S. Naumov, F. Krausz, and A. Apolonski, “1.5-octave chirped mirror for pulse compression down to sub-3 fs,” Appl. Phys. B 87(1), 5–12 (2007).
[CrossRef]

Nomura, Y.

Perry, M. D.

M. D. Perry and G. Mourou, “Terawatt to Petawatt Subpicosecond Lasers,” Science 264(5161), 917–924 (1994).
[CrossRef] [PubMed]

Pervak, V.

V. Pervak, I. Ahmad, M. K. Trubetskov, A. V. Tikhonravov, and F. Krausz, “Double-angle multilayer mirrors with smooth dispersion characteristics,” Opt. Express 17(10), 7943–7951 (2009).
[CrossRef] [PubMed]

T. V. Amotchkina, A. V. Tikhonravov, M. K. Trubetskov, D. Grupe, A. Apolonski, and V. Pervak, “Measurement of group delay of dispersive mirrors with white-light interferometer,” Appl. Opt. 48(5), 949–956 (2009).
[CrossRef] [PubMed]

V. Pervak, I. Ahmad, J. Fulop, M. K. Trubetskov, and A. V. Tikhonravov, “Comparison of dispersive mirrors based on the time-domain and conventional approaches, for sub-5-fs pulses,” Opt. Express 17(4), 2207–2217 (2009).
[CrossRef] [PubMed]

M. K. Trubetskov, A. V. Tikhonravov, and V. Pervak, “Time-domain approach for designing dispersive mirrors based on the needle optimization technique. Theory,” Opt. Express 16(25), 20637–20647 (2008).
[CrossRef] [PubMed]

V. Pervak, C. Teisset, A. Sugita, S. Naumov, F. Krausz, and A. Apolonski, “High-dispersive mirrors for femtosecond lasers,” Opt. Express 16(14), 10220–10233 (2008).
[CrossRef] [PubMed]

V. Pervak, F. Krausz, and A. Apolonski, “Dispersion control over the ultraviolet-visible-near-infrared spectral range with HfO2/SiO2-chirped dielectric multilayers,” Opt. Lett. 32(9), 1183–1185 (2007).
[CrossRef] [PubMed]

V. Pervak, A. Tikhonravov, M. Trubetskov, S. Naumov, F. Krausz, and A. Apolonski, “1.5-octave chirped mirror for pulse compression down to sub-3 fs,” Appl. Phys. B 87(1), 5–12 (2007).
[CrossRef]

A. L. Cavalieri, E. Goulielmakis, B. Horvath, W. Helml, M. Schultze, M. Fieß, V. Pervak, L. Veisz, V. S. Yakovlev, M. Uiberacker, A. Apolonski, F. Krausz, and R. Kienberger, “Intense 1.5-cycle near infrared laser waveforms and their use for the generation of ultra-broadband soft-x-ray harmonic continua,” N. J. Phys. 9(7), 242 (2007).
[CrossRef]

F. Tavella, Y. Nomura, L. Veisz, V. Pervak, A. Marcinkevičius, and F. Krausz, “Dispersion management for a sub-10-fs, 10 TW optical parametric chirped-pulse amplifier,” Opt. Lett. 32(15), 2227–2229 (2007).
[CrossRef] [PubMed]

Pessot, M.

M. Pessot, P. Maine, and G. Mourou, “1000 Times Expansion Compression of Optical Pulses for Chirped Pulse Amplification,” Opt. Commun. 62(6), 419–421 (1987).
[CrossRef]

Pretzler, G.

G. Pretzler, A. Kasper, and K. J. Witte, “Angular chirp and tilted light pulses in CPA lasers,” Appl. Phys. B 70(1), 1–9 (2000).
[CrossRef]

Reed, M. K.

Riedle, E.

Sartania, S.

Scheuer, V.

Schibli, T.

Schultze, M.

A. L. Cavalieri, E. Goulielmakis, B. Horvath, W. Helml, M. Schultze, M. Fieß, V. Pervak, L. Veisz, V. S. Yakovlev, M. Uiberacker, A. Apolonski, F. Krausz, and R. Kienberger, “Intense 1.5-cycle near infrared laser waveforms and their use for the generation of ultra-broadband soft-x-ray harmonic continua,” N. J. Phys. 9(7), 242 (2007).
[CrossRef]

Spielmann, C.

Z. Cheng, F. Krausz, and C. Spielmann, “Compression of 2 mJ kilohertz laser pulses to 17.5 fs by pairing double-prism compressor: analysis and performance,” Opt. Commun. 201(1-3), 145–155 (2002).
[CrossRef]

R. Szipocs, K. Ferencz, C. Spielmann, and F. Krausz, “Chirped multilayer coatings for broadband dispersion control in femtosecond lasers,” Opt. Lett. 19(3), 201–203 (1994).
[CrossRef] [PubMed]

Spielmann, Ch.

Steiner-Shepard, M. K.

Steinmeyer, G.

P. Baum, M. Breuer, E. Riedle, and G. Steinmeyer, “Brewster-angled chirped mirrors for broadband pulse compression without dispersion oscillations,” Opt. Lett. 31(14), 2220–2222 (2006).
[CrossRef] [PubMed]

N. Matuschek, L. Gallmann, D. H. Sutter, G. Steinmeyer, and U. Keller, “Back-side-coated chirped mirrors with ultra-smooth broadband dispersion characteristics,” Appl. Phys. B 71(4), 509–522 (2000).
[CrossRef]

Strickland, D.

D. Strickland and G. Mourou, “Compression of amplified chirped optical pulses,” Opt. Commun. 56(3), 219–221 (1985).
[CrossRef]

Sugita, A.

Sutter, D. H.

N. Matuschek, L. Gallmann, D. H. Sutter, G. Steinmeyer, and U. Keller, “Back-side-coated chirped mirrors with ultra-smooth broadband dispersion characteristics,” Appl. Phys. B 71(4), 509–522 (2000).
[CrossRef]

Szipocs, R.

Szipöcs, R.

R. Szipöcs, A. Köházi-Kis, S. Lakó, P. Apai, A. P. Kovács, G. Debell, L. Mott, A. W. Louderback, A. V. Tikhonravov, and M. K. Trubetskov, “Negative dispersion mirrors for dispersion control in femtosecond lasers: chirped dielectric mirrors and multi-cavity Gires-Tournois interferometers,” Appl. Phys. B 70, S51–S57 (2000).

Tajima, T.

G. A. Mourou, T. Tajima, and S. V. Bulanov, “Optics in the relativistic regime,” Rev. Mod. Phys. 78(2), 309–371 (2006).
[CrossRef]

Tavella, F.

Teisset, C.

Tempea, G.

Tikhonravov, A.

V. Pervak, A. Tikhonravov, M. Trubetskov, S. Naumov, F. Krausz, and A. Apolonski, “1.5-octave chirped mirror for pulse compression down to sub-3 fs,” Appl. Phys. B 87(1), 5–12 (2007).
[CrossRef]

Tikhonravov, A. V.

Tilsch, M.

Tournois, P.

P. Tournois, “Acousto-optic programmable dispersive filter for adaptive compensation of group delay time dispersion in laser systems,” Opt. Commun. 140(4-6), 245–249 (1997).
[CrossRef]

Treacy, E. B.

E. B. Treacy, “Optical pulse compression with diffraction gratings,” IEEE J. Quantum Electron. 5(9), 454–458 (1969).
[CrossRef]

Trubetskov, M.

V. Pervak, A. Tikhonravov, M. Trubetskov, S. Naumov, F. Krausz, and A. Apolonski, “1.5-octave chirped mirror for pulse compression down to sub-3 fs,” Appl. Phys. B 87(1), 5–12 (2007).
[CrossRef]

Trubetskov, M. K.

Tschudi, T.

Uiberacker, M.

A. L. Cavalieri, E. Goulielmakis, B. Horvath, W. Helml, M. Schultze, M. Fieß, V. Pervak, L. Veisz, V. S. Yakovlev, M. Uiberacker, A. Apolonski, F. Krausz, and R. Kienberger, “Intense 1.5-cycle near infrared laser waveforms and their use for the generation of ultra-broadband soft-x-ray harmonic continua,” N. J. Phys. 9(7), 242 (2007).
[CrossRef]

Van Engen, A. G.

Veisz, L.

F. Tavella, Y. Nomura, L. Veisz, V. Pervak, A. Marcinkevičius, and F. Krausz, “Dispersion management for a sub-10-fs, 10 TW optical parametric chirped-pulse amplifier,” Opt. Lett. 32(15), 2227–2229 (2007).
[CrossRef] [PubMed]

A. L. Cavalieri, E. Goulielmakis, B. Horvath, W. Helml, M. Schultze, M. Fieß, V. Pervak, L. Veisz, V. S. Yakovlev, M. Uiberacker, A. Apolonski, F. Krausz, and R. Kienberger, “Intense 1.5-cycle near infrared laser waveforms and their use for the generation of ultra-broadband soft-x-ray harmonic continua,” N. J. Phys. 9(7), 242 (2007).
[CrossRef]

Witte, K. J.

G. Pretzler, A. Kasper, and K. J. Witte, “Angular chirp and tilted light pulses in CPA lasers,” Appl. Phys. B 70(1), 1–9 (2000).
[CrossRef]

Yakovlev, V.

Yakovlev, V. S.

A. L. Cavalieri, E. Goulielmakis, B. Horvath, W. Helml, M. Schultze, M. Fieß, V. Pervak, L. Veisz, V. S. Yakovlev, M. Uiberacker, A. Apolonski, F. Krausz, and R. Kienberger, “Intense 1.5-cycle near infrared laser waveforms and their use for the generation of ultra-broadband soft-x-ray harmonic continua,” N. J. Phys. 9(7), 242 (2007).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. B (4)

V. Pervak, A. Tikhonravov, M. Trubetskov, S. Naumov, F. Krausz, and A. Apolonski, “1.5-octave chirped mirror for pulse compression down to sub-3 fs,” Appl. Phys. B 87(1), 5–12 (2007).
[CrossRef]

G. Pretzler, A. Kasper, and K. J. Witte, “Angular chirp and tilted light pulses in CPA lasers,” Appl. Phys. B 70(1), 1–9 (2000).
[CrossRef]

R. Szipöcs, A. Köházi-Kis, S. Lakó, P. Apai, A. P. Kovács, G. Debell, L. Mott, A. W. Louderback, A. V. Tikhonravov, and M. K. Trubetskov, “Negative dispersion mirrors for dispersion control in femtosecond lasers: chirped dielectric mirrors and multi-cavity Gires-Tournois interferometers,” Appl. Phys. B 70, S51–S57 (2000).

N. Matuschek, L. Gallmann, D. H. Sutter, G. Steinmeyer, and U. Keller, “Back-side-coated chirped mirrors with ultra-smooth broadband dispersion characteristics,” Appl. Phys. B 71(4), 509–522 (2000).
[CrossRef]

IEEE J. Quantum Electron. (1)

E. B. Treacy, “Optical pulse compression with diffraction gratings,” IEEE J. Quantum Electron. 5(9), 454–458 (1969).
[CrossRef]

J. Opt. Soc. Am. B (1)

N. J. Phys. (1)

A. L. Cavalieri, E. Goulielmakis, B. Horvath, W. Helml, M. Schultze, M. Fieß, V. Pervak, L. Veisz, V. S. Yakovlev, M. Uiberacker, A. Apolonski, F. Krausz, and R. Kienberger, “Intense 1.5-cycle near infrared laser waveforms and their use for the generation of ultra-broadband soft-x-ray harmonic continua,” N. J. Phys. 9(7), 242 (2007).
[CrossRef]

Nature (1)

E. Gerstner, “Laser physics: extreme light,” Nature 446(7131), 16–18 (2007).
[CrossRef] [PubMed]

Opt. Commun. (4)

D. Strickland and G. Mourou, “Compression of amplified chirped optical pulses,” Opt. Commun. 56(3), 219–221 (1985).
[CrossRef]

M. Pessot, P. Maine, and G. Mourou, “1000 Times Expansion Compression of Optical Pulses for Chirped Pulse Amplification,” Opt. Commun. 62(6), 419–421 (1987).
[CrossRef]

Z. Cheng, F. Krausz, and C. Spielmann, “Compression of 2 mJ kilohertz laser pulses to 17.5 fs by pairing double-prism compressor: analysis and performance,” Opt. Commun. 201(1-3), 145–155 (2002).
[CrossRef]

P. Tournois, “Acousto-optic programmable dispersive filter for adaptive compensation of group delay time dispersion in laser systems,” Opt. Commun. 140(4-6), 245–249 (1997).
[CrossRef]

Opt. Express (4)

Opt. Lett. (7)

S. Sartania, Z. Cheng, M. Lenzner, G. Tempea, Ch. Spielmann, F. Krausz, and K. Ferencz, “Generation of 0.1-TW 5-fs optical pulses at a 1-kHz repetition rate,” Opt. Lett. 22(20), 1562–1564 (1997).
[CrossRef]

B. Golubovic, R. R. Austin, M. K. Steiner-Shepard, M. K. Reed, S. A. Diddams, D. J. Jones, and A. G. Van Engen, “Double Gires-Tournois interferometer negative-dispersion mirrors for use in tunable mode-locked lasers,” Opt. Lett. 25(4), 275–277 (2000).
[CrossRef]

P. Baum, M. Breuer, E. Riedle, and G. Steinmeyer, “Brewster-angled chirped mirrors for broadband pulse compression without dispersion oscillations,” Opt. Lett. 31(14), 2220–2222 (2006).
[CrossRef] [PubMed]

V. Pervak, F. Krausz, and A. Apolonski, “Dispersion control over the ultraviolet-visible-near-infrared spectral range with HfO2/SiO2-chirped dielectric multilayers,” Opt. Lett. 32(9), 1183–1185 (2007).
[CrossRef] [PubMed]

F. Tavella, Y. Nomura, L. Veisz, V. Pervak, A. Marcinkevičius, and F. Krausz, “Dispersion management for a sub-10-fs, 10 TW optical parametric chirped-pulse amplifier,” Opt. Lett. 32(15), 2227–2229 (2007).
[CrossRef] [PubMed]

R. Szipocs, K. Ferencz, C. Spielmann, and F. Krausz, “Chirped multilayer coatings for broadband dispersion control in femtosecond lasers,” Opt. Lett. 19(3), 201–203 (1994).
[CrossRef] [PubMed]

F. X. Kärtner, N. Matuschek, T. Schibli, U. Keller, H. A. Haus, C. Heine, R. Morf, V. Scheuer, M. Tilsch, and T. Tschudi, “Design and fabrication of double-chirped mirrors,” Opt. Lett. 22(11), 831–833 (1997).
[CrossRef] [PubMed]

Rev. Mod. Phys. (3)

G. A. Mourou, T. Tajima, and S. V. Bulanov, “Optics in the relativistic regime,” Rev. Mod. Phys. 78(2), 309–371 (2006).
[CrossRef]

F. Krausz and M. Ivanov, “Attosecond physics,” Rev. Mod. Phys. 81(1), 163–234 (2009).
[CrossRef]

T. Brabec and F. Krausz, “Intense few-cycle laser fields: frontiers of nonlinear optics,” Rev. Mod. Phys. 72(2), 545–591 (2000).
[CrossRef]

Science (1)

M. D. Perry and G. Mourou, “Terawatt to Petawatt Subpicosecond Lasers,” Science 264(5161), 917–924 (1994).
[CrossRef] [PubMed]

Other (2)

W. Koechner, “Solid State laser engineering, Springer series in Optical Science,” Springer-Verlag Berlin Heidelberg, 4th edition, (1996).

A. V. Tikhonravov, and M. K. Trubetskov, www.optilayer.com

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

GDD via wavelength-dependent penetration (a) and resonant storage (b). (a) The optical thickness of individual layers changes gradually in a chirped dielectric multilayer structure. This causes wavepackets of different carrier wavelengths to penetrate to a different extent and hence acquire different group delays. In this example, longer wavelengths penetrate deeper, resulting in negative GDD. (b) Two interfaces separated by an optical distance corresponding to the half wavelength of the incident radiation resonantly enclose the impinging wave. Such nanoscale Fabry-Perot-interferometers embedded in the multilayer structure can introduce large group delays at selected wavelengths. The new HDMs reported in this work make use of a combination of both effects.

Fig. 2
Fig. 2

Structure and characteristics of our multilayer HDM. (a) Physical thicknesses of the alternate layers of tantalum pentoxide (Ta2O5) and silicon dioxide (SiO2) are shown with yellow and pink columns, respectively. Individual layer thicknesses range between 35 nm and 210 nm and the total physical thickness of the structure is approximately 10 µm. The structure can be represented as a combination of eight mirrors (M1−M8) and seven resonant cavities (C1−C7) resulting in GDD originating from the penetration and resonance effects, respectively. In general the cavities C1−C7 consist of several layers of different materials. (b) The distribution of the modulus-square of the electric field (|E|2) displaying the penetration in the HDM structure shown in panel (a). The storage effect of the cavities manifests itself in localized enhancements of the trapped fields. The yellow line plots the GD variation introduced by the penetration effect only. (c) Calculated reflectance (red) and GDD (blue) curve of the HDM for the designed angle of incidence of 10°. Measured GDD with white light interferometer (magenta crosses). The green area represents the probable range of GDD values, see text for details.

Fig. 3
Fig. 3

Schematic layout of the experimental setup. The seed pulses from a Ti:sapphire oscillator are stretched by 30 mm of SF57-glass and an acousto-optic programmable dispersive filter (DAZZLER), which provides fine dispersion control. The amplifier delivers 1.4-mJ pulses at 1 kHz. After amplification, a total of 52 reflections on HDMs are used to compress these pulses down to ~19 fs.

Fig. 4
Fig. 4

Temporal characterization of the compressed pulses. Pulse characterization is performed using the GRENOUILLE (Swamp Optics) and 2nd order interferometric autocorrelator (Femtolasers GmbH) devices. (a) The FROG trace without phase file in the DAZZLER, showing satellite pulses due to uncompensated phase oscillations. (b) The FROG trace of the compressed pulses after DAZZLER compensation. (c) The spectrum (black) and the phase of the compressed pulse (blue). The residual phase oscillations after 52 reflections on HDMs (red) before compensation by the DAZZLER (see text). This fine correction reduces the pulse duration by ca. 3 fs. (d) The measured 2nd order interferometric autocorrelation showing 13.8 fringes which corresponds to 19.1 fs assuming a sech-squared temporal shape.

Fig. 5
Fig. 5

Beam profile of pulses compressed with the DCM. (a) The beam profile in the far-field of a 1.5 m focal length lens showing an excellent beam quality with >96% ellipticity for a 1/e2 spot size of 250 µm. (b) The near-field beam profile with >85% ellipicity for a 1/e2 spot size of 3.5 mm.

Metrics