Abstract

We propose to use a combination of intersubband transitions in semiconductor quantum wells with a two dimensional photonic crystal cavity to obtain narrow, strong thermal radiation spectra. Single peak thermal radiation is obtained due to the Lorentzian shape absorption spectrum of the intersubband transition and the single mode cavity embedded within the photonic band gap. We present an analysis based on the quantum Langevin theory. It is shown that local radiance of the narrow emission peak can be maximized to ~80% of the radiation from the blackbody devices when the photon dissipation rates of the cavity mode due to the intersubband absorption and that due to the radiation to the free space modes are equal. Guidelines for concrete device design are introduced, and an example device structure is shown.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Planck, “Ueber das Gesetz der Energieverteilung im Normalspectrum,” Annalen der Physik 309(3), 553–563 (1901).
    [CrossRef]
  2. A. Einstein, “On the Quantum Theory of Radiation,” Verhandlunger der Deuchen Physikalischen Gesellsachaft 18, 318 (1916).
  3. J. F. Waymouth, “Where will the next generation of lamps come from?” J. Light Vis. Environ. 13, 51 (1989).
    [CrossRef]
  4. S. Maruyama, T. Kashiwa, H. Yugami, and M. Esashi, “Thermal radiation from two-dimensionally confined modes in microcavities,” Appl. Phys. Lett. 79(9), 1393 (2001).
    [CrossRef]
  5. H. Sai, Y. Kanamori, and H. Yugami, “High-temperature resistive surface grating for spectral control of thermal radiation,” Appl. Phys. Lett. 82(11), 1685 (2003).
    [CrossRef]
  6. F. Kusunoki, J. Takahara, and T. Kobayashi, “Qualitative change of resonant peaks in thermal emission from periodic array of microcavities,” Electron. Lett. 39(1), 23 (2003).
    [CrossRef]
  7. K. Ikeda, H. T. Miyazaki, T. Kasaya, K. Yamamoto, Y. Inoue, K. Fujimura, T. Kanakugi, M. Okada, K. Hatade, and S. Kitagawa, “Controlled thermal emission of polarized infrared waves from arrayed plasmon nanocavities,” Appl. Phys. Lett. 92(2), 021117 (2008).
    [CrossRef]
  8. P. J. Hesketh, J. N. Zemel, and B. Gebhart, “Organ pipe radiant modes of periodic micromachined silicon surfaces,” Nature 324(6097), 549–551 (1986).
    [CrossRef]
  9. J. G. Fleming, S. Y. Lin, I. El-Kady, R. Biswas, and K. M. Ho, “All-metallic three-dimensional photonic crystals with a large infrared bandgap,” Nature 417(6884), 52–55 (2002).
    [CrossRef] [PubMed]
  10. M. Florescu, H. Lee, A. J. Stimpson, and J. Dowling, “Thermal emission and absorption of radiation in finite inverted-opal photonic crystals,” Phys. Rev. A 72(3), 033821 (2005).
    [CrossRef]
  11. C. Luo, A. Narayanaswamy, G. Chen, and J. D. Joannopoulos, “Thermal radiation from photonic crystals: a direct calculation,” Phys. Rev. Lett. 93(21), 213905 (2004).
    [CrossRef] [PubMed]
  12. M. U. Pralle, N. Moelders, M. P. McNeal, I. Puscasu, A. C. Greenwald, J. T. Daly, E. A. Johnson, T. George, D. S. Choi, I. El-Kady, and R. Biswas, “Photonic crystal enhanced narrow band infrared emitters,” Appl. Phys. Lett. 81(25), 4685 (2002).
    [CrossRef]
  13. J. J. Greffet, R. Carminati, K. Joulain, J. P. Mulet, S. Mainguy, and Y. Chen, “Coherent emission of light by thermal sources,” Nature 416(6876), 61–64 (2002).
    [CrossRef] [PubMed]
  14. M. W. Tsai, T. H. Chuang, C. Y. Meng, Y. T. Chang, and S. C. Lee, “High performance midinfrared narrow-band plasmonic thermal emitter,” Appl. Phys. Lett. 89(17), 173116 (2006).
    [CrossRef]
  15. J. Le Gall, M. Olivier, and J. J. Greffet, “Experimental and theoretical study of reflection and coherent thermal emission by a SiC grating supporting a surface-phonon polariton,” Phys. Rev. B 55(15), 10105–10114 (1997).
    [CrossRef]
  16. H. Sai, H. Yugami, K. Nakamura, N. Nakagawa, H. Ohtsubo, and S. Maruyama, “Selective Emission of Al2O3/Er3Al5O12 Eutectic Composite for Thermophotovoltaic Generation of Electricity,” Jpn. J. Appl. Phys. 39(Part 1, No. 4A), 1957–1961 (2000).
    [CrossRef]
  17. L. C. West and S. J. Eglash, “First observation of an extremely large-dipole infrared transition within the conduction band of a GaAs quantum well,” Appl. Phys. Lett. 46(12), 1156 (1985).
    [CrossRef]
  18. T. Asano, S. Noda, T. Abe, and A. Sasaki, “Near-infrared intersubband transitions in InGaAs/AlAs quantum wells on GaAs substrate,” Jpn. J. Appl. Phys. 35(Part 1, No. 2B), 1285–1291 (1996).
    [CrossRef]
  19. D. Pan, E. Towe, and S. Kennerly, “Normal-incidence intersubband (In, Ga)As/GaAs quantum dot infrared photodetectors,” Appl. Phys. Lett. 73(14), 1937 (1998).
    [CrossRef]
  20. O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-Gap defect mode laser,” Science 284(5421), 1819–1821 (1999).
    [CrossRef] [PubMed]
  21. Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425(6961), 944–947 (2003).
    [CrossRef] [PubMed]
  22. B. S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nat. Mater. 4(3), 207–210 (2005).
    [CrossRef]
  23. I. Protsenko, P. Domokos, V. Lefevre-Seguin, J. Hare, J. M. Raimond, and L. Davidovich, “Quantum theory of a thresholdless laser,” Phys. Rev. A 59(2), 1667–1682 (1999).
    [CrossRef]
  24. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58(20), 2059–2062 (1987).
    [CrossRef] [PubMed]
  25. S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58(23), 2486–2489 (1987).
    [CrossRef] [PubMed]
  26. S. Ogawa, M. Imada, S. Yoshimoto, M. Okano, and S. Noda, “Control of light emission by 3D photonic crystals,” Science 305(5681), 227–229 (2004).
    [CrossRef] [PubMed]
  27. M. Qi, E. Lidorikis, P. T. Rakich, S. G. Johnson, J. D. Joannopoulos, E. P. Ippen, and H. I. Smith, “A three-dimensional optical photonic crystal with designed point defects,” Nature 429(6991), 538–542 (2004).
    [CrossRef] [PubMed]
  28. M. Imada, S. Noda, A. Chutinan, T. Tokuda, M. Murata, and G. Sasaki, “Coherent two-dimensional lasing action in surface-emitting laser with triangular-lattice photonic crystal structure,” Appl. Phys. Lett. 75(3), 316 (1999).
    [CrossRef]
  29. S. Takayama, H. Kitagawa, Y. Tanaka, T. Asano, and S. Noda, “Experimental demonstration of complete photonic band gap in two-dimensional photonic crystal slabs,” Appl. Phys. Lett. 87(6), 061107 (2005).
    [CrossRef]
  30. K. Mochizuki, unpublished master’s thesis, Kyoto University, Electronic Science and Engineering, (2007).
  31. |gcav,21i|=[ωcav/2ℏVcavε0εrmax]1/2|M→|for the best position (see Eq. (28)). If we substitute εrmax = 3.4, Vcav=(λcav/2)3,ωcav=2πc/λcav and use λcav = 10μm and |M→| = 21eÅ 32, |gcav,21i|is evaluated to be ~5ns−1. In contrast, γSis reported to be of the order of 10~20 ps−1 even at 300 K and becomes larger for higher temperatures [33, 34]. Thus γS>>|gcav,21i| holds true for the devices under analysis.
  32. E. J. Roan and S. L. Chuang, “Linear and nonlinear intersubband electroabsorptions in a modulation-doped quantum well,” J. Appl. Phys. 69(5), 3249 (1991).
    [CrossRef]
  33. S. K. Lyo, “Quasihole lifetimes in electron gases and electron-hole plasmas in semiconductor quantum wells,” Phys. Rev. B 43(9), 7091–7101 (1991).
    [CrossRef]
  34. R. Binder, D. Scott, A. E. Paul, M. Lindberg, K. Henneberger, and S. W. Koch, “Carrier-carrier scattering and optical dephasing in highly excited semiconductors,” Phys. Rev. B 45(3), 1107–1115 (1992).
    [CrossRef]

2008

K. Ikeda, H. T. Miyazaki, T. Kasaya, K. Yamamoto, Y. Inoue, K. Fujimura, T. Kanakugi, M. Okada, K. Hatade, and S. Kitagawa, “Controlled thermal emission of polarized infrared waves from arrayed plasmon nanocavities,” Appl. Phys. Lett. 92(2), 021117 (2008).
[CrossRef]

2006

M. W. Tsai, T. H. Chuang, C. Y. Meng, Y. T. Chang, and S. C. Lee, “High performance midinfrared narrow-band plasmonic thermal emitter,” Appl. Phys. Lett. 89(17), 173116 (2006).
[CrossRef]

2005

M. Florescu, H. Lee, A. J. Stimpson, and J. Dowling, “Thermal emission and absorption of radiation in finite inverted-opal photonic crystals,” Phys. Rev. A 72(3), 033821 (2005).
[CrossRef]

B. S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nat. Mater. 4(3), 207–210 (2005).
[CrossRef]

S. Takayama, H. Kitagawa, Y. Tanaka, T. Asano, and S. Noda, “Experimental demonstration of complete photonic band gap in two-dimensional photonic crystal slabs,” Appl. Phys. Lett. 87(6), 061107 (2005).
[CrossRef]

2004

S. Ogawa, M. Imada, S. Yoshimoto, M. Okano, and S. Noda, “Control of light emission by 3D photonic crystals,” Science 305(5681), 227–229 (2004).
[CrossRef] [PubMed]

M. Qi, E. Lidorikis, P. T. Rakich, S. G. Johnson, J. D. Joannopoulos, E. P. Ippen, and H. I. Smith, “A three-dimensional optical photonic crystal with designed point defects,” Nature 429(6991), 538–542 (2004).
[CrossRef] [PubMed]

C. Luo, A. Narayanaswamy, G. Chen, and J. D. Joannopoulos, “Thermal radiation from photonic crystals: a direct calculation,” Phys. Rev. Lett. 93(21), 213905 (2004).
[CrossRef] [PubMed]

2003

H. Sai, Y. Kanamori, and H. Yugami, “High-temperature resistive surface grating for spectral control of thermal radiation,” Appl. Phys. Lett. 82(11), 1685 (2003).
[CrossRef]

F. Kusunoki, J. Takahara, and T. Kobayashi, “Qualitative change of resonant peaks in thermal emission from periodic array of microcavities,” Electron. Lett. 39(1), 23 (2003).
[CrossRef]

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425(6961), 944–947 (2003).
[CrossRef] [PubMed]

2002

J. G. Fleming, S. Y. Lin, I. El-Kady, R. Biswas, and K. M. Ho, “All-metallic three-dimensional photonic crystals with a large infrared bandgap,” Nature 417(6884), 52–55 (2002).
[CrossRef] [PubMed]

M. U. Pralle, N. Moelders, M. P. McNeal, I. Puscasu, A. C. Greenwald, J. T. Daly, E. A. Johnson, T. George, D. S. Choi, I. El-Kady, and R. Biswas, “Photonic crystal enhanced narrow band infrared emitters,” Appl. Phys. Lett. 81(25), 4685 (2002).
[CrossRef]

J. J. Greffet, R. Carminati, K. Joulain, J. P. Mulet, S. Mainguy, and Y. Chen, “Coherent emission of light by thermal sources,” Nature 416(6876), 61–64 (2002).
[CrossRef] [PubMed]

2001

S. Maruyama, T. Kashiwa, H. Yugami, and M. Esashi, “Thermal radiation from two-dimensionally confined modes in microcavities,” Appl. Phys. Lett. 79(9), 1393 (2001).
[CrossRef]

2000

H. Sai, H. Yugami, K. Nakamura, N. Nakagawa, H. Ohtsubo, and S. Maruyama, “Selective Emission of Al2O3/Er3Al5O12 Eutectic Composite for Thermophotovoltaic Generation of Electricity,” Jpn. J. Appl. Phys. 39(Part 1, No. 4A), 1957–1961 (2000).
[CrossRef]

1999

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-Gap defect mode laser,” Science 284(5421), 1819–1821 (1999).
[CrossRef] [PubMed]

I. Protsenko, P. Domokos, V. Lefevre-Seguin, J. Hare, J. M. Raimond, and L. Davidovich, “Quantum theory of a thresholdless laser,” Phys. Rev. A 59(2), 1667–1682 (1999).
[CrossRef]

M. Imada, S. Noda, A. Chutinan, T. Tokuda, M. Murata, and G. Sasaki, “Coherent two-dimensional lasing action in surface-emitting laser with triangular-lattice photonic crystal structure,” Appl. Phys. Lett. 75(3), 316 (1999).
[CrossRef]

1998

D. Pan, E. Towe, and S. Kennerly, “Normal-incidence intersubband (In, Ga)As/GaAs quantum dot infrared photodetectors,” Appl. Phys. Lett. 73(14), 1937 (1998).
[CrossRef]

1997

J. Le Gall, M. Olivier, and J. J. Greffet, “Experimental and theoretical study of reflection and coherent thermal emission by a SiC grating supporting a surface-phonon polariton,” Phys. Rev. B 55(15), 10105–10114 (1997).
[CrossRef]

1996

T. Asano, S. Noda, T. Abe, and A. Sasaki, “Near-infrared intersubband transitions in InGaAs/AlAs quantum wells on GaAs substrate,” Jpn. J. Appl. Phys. 35(Part 1, No. 2B), 1285–1291 (1996).
[CrossRef]

1992

R. Binder, D. Scott, A. E. Paul, M. Lindberg, K. Henneberger, and S. W. Koch, “Carrier-carrier scattering and optical dephasing in highly excited semiconductors,” Phys. Rev. B 45(3), 1107–1115 (1992).
[CrossRef]

1991

E. J. Roan and S. L. Chuang, “Linear and nonlinear intersubband electroabsorptions in a modulation-doped quantum well,” J. Appl. Phys. 69(5), 3249 (1991).
[CrossRef]

S. K. Lyo, “Quasihole lifetimes in electron gases and electron-hole plasmas in semiconductor quantum wells,” Phys. Rev. B 43(9), 7091–7101 (1991).
[CrossRef]

1989

J. F. Waymouth, “Where will the next generation of lamps come from?” J. Light Vis. Environ. 13, 51 (1989).
[CrossRef]

1987

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58(20), 2059–2062 (1987).
[CrossRef] [PubMed]

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58(23), 2486–2489 (1987).
[CrossRef] [PubMed]

1986

P. J. Hesketh, J. N. Zemel, and B. Gebhart, “Organ pipe radiant modes of periodic micromachined silicon surfaces,” Nature 324(6097), 549–551 (1986).
[CrossRef]

1985

L. C. West and S. J. Eglash, “First observation of an extremely large-dipole infrared transition within the conduction band of a GaAs quantum well,” Appl. Phys. Lett. 46(12), 1156 (1985).
[CrossRef]

1916

A. Einstein, “On the Quantum Theory of Radiation,” Verhandlunger der Deuchen Physikalischen Gesellsachaft 18, 318 (1916).

1901

M. Planck, “Ueber das Gesetz der Energieverteilung im Normalspectrum,” Annalen der Physik 309(3), 553–563 (1901).
[CrossRef]

Abe, T.

T. Asano, S. Noda, T. Abe, and A. Sasaki, “Near-infrared intersubband transitions in InGaAs/AlAs quantum wells on GaAs substrate,” Jpn. J. Appl. Phys. 35(Part 1, No. 2B), 1285–1291 (1996).
[CrossRef]

Akahane, Y.

B. S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nat. Mater. 4(3), 207–210 (2005).
[CrossRef]

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425(6961), 944–947 (2003).
[CrossRef] [PubMed]

Asano, T.

B. S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nat. Mater. 4(3), 207–210 (2005).
[CrossRef]

S. Takayama, H. Kitagawa, Y. Tanaka, T. Asano, and S. Noda, “Experimental demonstration of complete photonic band gap in two-dimensional photonic crystal slabs,” Appl. Phys. Lett. 87(6), 061107 (2005).
[CrossRef]

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425(6961), 944–947 (2003).
[CrossRef] [PubMed]

T. Asano, S. Noda, T. Abe, and A. Sasaki, “Near-infrared intersubband transitions in InGaAs/AlAs quantum wells on GaAs substrate,” Jpn. J. Appl. Phys. 35(Part 1, No. 2B), 1285–1291 (1996).
[CrossRef]

Binder, R.

R. Binder, D. Scott, A. E. Paul, M. Lindberg, K. Henneberger, and S. W. Koch, “Carrier-carrier scattering and optical dephasing in highly excited semiconductors,” Phys. Rev. B 45(3), 1107–1115 (1992).
[CrossRef]

Biswas, R.

J. G. Fleming, S. Y. Lin, I. El-Kady, R. Biswas, and K. M. Ho, “All-metallic three-dimensional photonic crystals with a large infrared bandgap,” Nature 417(6884), 52–55 (2002).
[CrossRef] [PubMed]

M. U. Pralle, N. Moelders, M. P. McNeal, I. Puscasu, A. C. Greenwald, J. T. Daly, E. A. Johnson, T. George, D. S. Choi, I. El-Kady, and R. Biswas, “Photonic crystal enhanced narrow band infrared emitters,” Appl. Phys. Lett. 81(25), 4685 (2002).
[CrossRef]

Carminati, R.

J. J. Greffet, R. Carminati, K. Joulain, J. P. Mulet, S. Mainguy, and Y. Chen, “Coherent emission of light by thermal sources,” Nature 416(6876), 61–64 (2002).
[CrossRef] [PubMed]

Chang, Y. T.

M. W. Tsai, T. H. Chuang, C. Y. Meng, Y. T. Chang, and S. C. Lee, “High performance midinfrared narrow-band plasmonic thermal emitter,” Appl. Phys. Lett. 89(17), 173116 (2006).
[CrossRef]

Chen, G.

C. Luo, A. Narayanaswamy, G. Chen, and J. D. Joannopoulos, “Thermal radiation from photonic crystals: a direct calculation,” Phys. Rev. Lett. 93(21), 213905 (2004).
[CrossRef] [PubMed]

Chen, Y.

J. J. Greffet, R. Carminati, K. Joulain, J. P. Mulet, S. Mainguy, and Y. Chen, “Coherent emission of light by thermal sources,” Nature 416(6876), 61–64 (2002).
[CrossRef] [PubMed]

Choi, D. S.

M. U. Pralle, N. Moelders, M. P. McNeal, I. Puscasu, A. C. Greenwald, J. T. Daly, E. A. Johnson, T. George, D. S. Choi, I. El-Kady, and R. Biswas, “Photonic crystal enhanced narrow band infrared emitters,” Appl. Phys. Lett. 81(25), 4685 (2002).
[CrossRef]

Chuang, S. L.

E. J. Roan and S. L. Chuang, “Linear and nonlinear intersubband electroabsorptions in a modulation-doped quantum well,” J. Appl. Phys. 69(5), 3249 (1991).
[CrossRef]

Chuang, T. H.

M. W. Tsai, T. H. Chuang, C. Y. Meng, Y. T. Chang, and S. C. Lee, “High performance midinfrared narrow-band plasmonic thermal emitter,” Appl. Phys. Lett. 89(17), 173116 (2006).
[CrossRef]

Chutinan, A.

M. Imada, S. Noda, A. Chutinan, T. Tokuda, M. Murata, and G. Sasaki, “Coherent two-dimensional lasing action in surface-emitting laser with triangular-lattice photonic crystal structure,” Appl. Phys. Lett. 75(3), 316 (1999).
[CrossRef]

Daly, J. T.

M. U. Pralle, N. Moelders, M. P. McNeal, I. Puscasu, A. C. Greenwald, J. T. Daly, E. A. Johnson, T. George, D. S. Choi, I. El-Kady, and R. Biswas, “Photonic crystal enhanced narrow band infrared emitters,” Appl. Phys. Lett. 81(25), 4685 (2002).
[CrossRef]

Dapkus, P. D.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-Gap defect mode laser,” Science 284(5421), 1819–1821 (1999).
[CrossRef] [PubMed]

Davidovich, L.

I. Protsenko, P. Domokos, V. Lefevre-Seguin, J. Hare, J. M. Raimond, and L. Davidovich, “Quantum theory of a thresholdless laser,” Phys. Rev. A 59(2), 1667–1682 (1999).
[CrossRef]

Domokos, P.

I. Protsenko, P. Domokos, V. Lefevre-Seguin, J. Hare, J. M. Raimond, and L. Davidovich, “Quantum theory of a thresholdless laser,” Phys. Rev. A 59(2), 1667–1682 (1999).
[CrossRef]

Dowling, J.

M. Florescu, H. Lee, A. J. Stimpson, and J. Dowling, “Thermal emission and absorption of radiation in finite inverted-opal photonic crystals,” Phys. Rev. A 72(3), 033821 (2005).
[CrossRef]

Eglash, S. J.

L. C. West and S. J. Eglash, “First observation of an extremely large-dipole infrared transition within the conduction band of a GaAs quantum well,” Appl. Phys. Lett. 46(12), 1156 (1985).
[CrossRef]

Einstein, A.

A. Einstein, “On the Quantum Theory of Radiation,” Verhandlunger der Deuchen Physikalischen Gesellsachaft 18, 318 (1916).

El-Kady, I.

J. G. Fleming, S. Y. Lin, I. El-Kady, R. Biswas, and K. M. Ho, “All-metallic three-dimensional photonic crystals with a large infrared bandgap,” Nature 417(6884), 52–55 (2002).
[CrossRef] [PubMed]

M. U. Pralle, N. Moelders, M. P. McNeal, I. Puscasu, A. C. Greenwald, J. T. Daly, E. A. Johnson, T. George, D. S. Choi, I. El-Kady, and R. Biswas, “Photonic crystal enhanced narrow band infrared emitters,” Appl. Phys. Lett. 81(25), 4685 (2002).
[CrossRef]

Esashi, M.

S. Maruyama, T. Kashiwa, H. Yugami, and M. Esashi, “Thermal radiation from two-dimensionally confined modes in microcavities,” Appl. Phys. Lett. 79(9), 1393 (2001).
[CrossRef]

Fleming, J. G.

J. G. Fleming, S. Y. Lin, I. El-Kady, R. Biswas, and K. M. Ho, “All-metallic three-dimensional photonic crystals with a large infrared bandgap,” Nature 417(6884), 52–55 (2002).
[CrossRef] [PubMed]

Florescu, M.

M. Florescu, H. Lee, A. J. Stimpson, and J. Dowling, “Thermal emission and absorption of radiation in finite inverted-opal photonic crystals,” Phys. Rev. A 72(3), 033821 (2005).
[CrossRef]

Fujimura, K.

K. Ikeda, H. T. Miyazaki, T. Kasaya, K. Yamamoto, Y. Inoue, K. Fujimura, T. Kanakugi, M. Okada, K. Hatade, and S. Kitagawa, “Controlled thermal emission of polarized infrared waves from arrayed plasmon nanocavities,” Appl. Phys. Lett. 92(2), 021117 (2008).
[CrossRef]

Gebhart, B.

P. J. Hesketh, J. N. Zemel, and B. Gebhart, “Organ pipe radiant modes of periodic micromachined silicon surfaces,” Nature 324(6097), 549–551 (1986).
[CrossRef]

George, T.

M. U. Pralle, N. Moelders, M. P. McNeal, I. Puscasu, A. C. Greenwald, J. T. Daly, E. A. Johnson, T. George, D. S. Choi, I. El-Kady, and R. Biswas, “Photonic crystal enhanced narrow band infrared emitters,” Appl. Phys. Lett. 81(25), 4685 (2002).
[CrossRef]

Greenwald, A. C.

M. U. Pralle, N. Moelders, M. P. McNeal, I. Puscasu, A. C. Greenwald, J. T. Daly, E. A. Johnson, T. George, D. S. Choi, I. El-Kady, and R. Biswas, “Photonic crystal enhanced narrow band infrared emitters,” Appl. Phys. Lett. 81(25), 4685 (2002).
[CrossRef]

Greffet, J. J.

J. J. Greffet, R. Carminati, K. Joulain, J. P. Mulet, S. Mainguy, and Y. Chen, “Coherent emission of light by thermal sources,” Nature 416(6876), 61–64 (2002).
[CrossRef] [PubMed]

J. Le Gall, M. Olivier, and J. J. Greffet, “Experimental and theoretical study of reflection and coherent thermal emission by a SiC grating supporting a surface-phonon polariton,” Phys. Rev. B 55(15), 10105–10114 (1997).
[CrossRef]

Hare, J.

I. Protsenko, P. Domokos, V. Lefevre-Seguin, J. Hare, J. M. Raimond, and L. Davidovich, “Quantum theory of a thresholdless laser,” Phys. Rev. A 59(2), 1667–1682 (1999).
[CrossRef]

Hatade, K.

K. Ikeda, H. T. Miyazaki, T. Kasaya, K. Yamamoto, Y. Inoue, K. Fujimura, T. Kanakugi, M. Okada, K. Hatade, and S. Kitagawa, “Controlled thermal emission of polarized infrared waves from arrayed plasmon nanocavities,” Appl. Phys. Lett. 92(2), 021117 (2008).
[CrossRef]

Henneberger, K.

R. Binder, D. Scott, A. E. Paul, M. Lindberg, K. Henneberger, and S. W. Koch, “Carrier-carrier scattering and optical dephasing in highly excited semiconductors,” Phys. Rev. B 45(3), 1107–1115 (1992).
[CrossRef]

Hesketh, P. J.

P. J. Hesketh, J. N. Zemel, and B. Gebhart, “Organ pipe radiant modes of periodic micromachined silicon surfaces,” Nature 324(6097), 549–551 (1986).
[CrossRef]

Ho, K. M.

J. G. Fleming, S. Y. Lin, I. El-Kady, R. Biswas, and K. M. Ho, “All-metallic three-dimensional photonic crystals with a large infrared bandgap,” Nature 417(6884), 52–55 (2002).
[CrossRef] [PubMed]

Ikeda, K.

K. Ikeda, H. T. Miyazaki, T. Kasaya, K. Yamamoto, Y. Inoue, K. Fujimura, T. Kanakugi, M. Okada, K. Hatade, and S. Kitagawa, “Controlled thermal emission of polarized infrared waves from arrayed plasmon nanocavities,” Appl. Phys. Lett. 92(2), 021117 (2008).
[CrossRef]

Imada, M.

S. Ogawa, M. Imada, S. Yoshimoto, M. Okano, and S. Noda, “Control of light emission by 3D photonic crystals,” Science 305(5681), 227–229 (2004).
[CrossRef] [PubMed]

M. Imada, S. Noda, A. Chutinan, T. Tokuda, M. Murata, and G. Sasaki, “Coherent two-dimensional lasing action in surface-emitting laser with triangular-lattice photonic crystal structure,” Appl. Phys. Lett. 75(3), 316 (1999).
[CrossRef]

Inoue, Y.

K. Ikeda, H. T. Miyazaki, T. Kasaya, K. Yamamoto, Y. Inoue, K. Fujimura, T. Kanakugi, M. Okada, K. Hatade, and S. Kitagawa, “Controlled thermal emission of polarized infrared waves from arrayed plasmon nanocavities,” Appl. Phys. Lett. 92(2), 021117 (2008).
[CrossRef]

Ippen, E. P.

M. Qi, E. Lidorikis, P. T. Rakich, S. G. Johnson, J. D. Joannopoulos, E. P. Ippen, and H. I. Smith, “A three-dimensional optical photonic crystal with designed point defects,” Nature 429(6991), 538–542 (2004).
[CrossRef] [PubMed]

Joannopoulos, J. D.

M. Qi, E. Lidorikis, P. T. Rakich, S. G. Johnson, J. D. Joannopoulos, E. P. Ippen, and H. I. Smith, “A three-dimensional optical photonic crystal with designed point defects,” Nature 429(6991), 538–542 (2004).
[CrossRef] [PubMed]

C. Luo, A. Narayanaswamy, G. Chen, and J. D. Joannopoulos, “Thermal radiation from photonic crystals: a direct calculation,” Phys. Rev. Lett. 93(21), 213905 (2004).
[CrossRef] [PubMed]

John, S.

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58(23), 2486–2489 (1987).
[CrossRef] [PubMed]

Johnson, E. A.

M. U. Pralle, N. Moelders, M. P. McNeal, I. Puscasu, A. C. Greenwald, J. T. Daly, E. A. Johnson, T. George, D. S. Choi, I. El-Kady, and R. Biswas, “Photonic crystal enhanced narrow band infrared emitters,” Appl. Phys. Lett. 81(25), 4685 (2002).
[CrossRef]

Johnson, S. G.

M. Qi, E. Lidorikis, P. T. Rakich, S. G. Johnson, J. D. Joannopoulos, E. P. Ippen, and H. I. Smith, “A three-dimensional optical photonic crystal with designed point defects,” Nature 429(6991), 538–542 (2004).
[CrossRef] [PubMed]

Joulain, K.

J. J. Greffet, R. Carminati, K. Joulain, J. P. Mulet, S. Mainguy, and Y. Chen, “Coherent emission of light by thermal sources,” Nature 416(6876), 61–64 (2002).
[CrossRef] [PubMed]

Kanakugi, T.

K. Ikeda, H. T. Miyazaki, T. Kasaya, K. Yamamoto, Y. Inoue, K. Fujimura, T. Kanakugi, M. Okada, K. Hatade, and S. Kitagawa, “Controlled thermal emission of polarized infrared waves from arrayed plasmon nanocavities,” Appl. Phys. Lett. 92(2), 021117 (2008).
[CrossRef]

Kanamori, Y.

H. Sai, Y. Kanamori, and H. Yugami, “High-temperature resistive surface grating for spectral control of thermal radiation,” Appl. Phys. Lett. 82(11), 1685 (2003).
[CrossRef]

Kasaya, T.

K. Ikeda, H. T. Miyazaki, T. Kasaya, K. Yamamoto, Y. Inoue, K. Fujimura, T. Kanakugi, M. Okada, K. Hatade, and S. Kitagawa, “Controlled thermal emission of polarized infrared waves from arrayed plasmon nanocavities,” Appl. Phys. Lett. 92(2), 021117 (2008).
[CrossRef]

Kashiwa, T.

S. Maruyama, T. Kashiwa, H. Yugami, and M. Esashi, “Thermal radiation from two-dimensionally confined modes in microcavities,” Appl. Phys. Lett. 79(9), 1393 (2001).
[CrossRef]

Kennerly, S.

D. Pan, E. Towe, and S. Kennerly, “Normal-incidence intersubband (In, Ga)As/GaAs quantum dot infrared photodetectors,” Appl. Phys. Lett. 73(14), 1937 (1998).
[CrossRef]

Kim, I.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-Gap defect mode laser,” Science 284(5421), 1819–1821 (1999).
[CrossRef] [PubMed]

Kitagawa, H.

S. Takayama, H. Kitagawa, Y. Tanaka, T. Asano, and S. Noda, “Experimental demonstration of complete photonic band gap in two-dimensional photonic crystal slabs,” Appl. Phys. Lett. 87(6), 061107 (2005).
[CrossRef]

Kitagawa, S.

K. Ikeda, H. T. Miyazaki, T. Kasaya, K. Yamamoto, Y. Inoue, K. Fujimura, T. Kanakugi, M. Okada, K. Hatade, and S. Kitagawa, “Controlled thermal emission of polarized infrared waves from arrayed plasmon nanocavities,” Appl. Phys. Lett. 92(2), 021117 (2008).
[CrossRef]

Kobayashi, T.

F. Kusunoki, J. Takahara, and T. Kobayashi, “Qualitative change of resonant peaks in thermal emission from periodic array of microcavities,” Electron. Lett. 39(1), 23 (2003).
[CrossRef]

Koch, S. W.

R. Binder, D. Scott, A. E. Paul, M. Lindberg, K. Henneberger, and S. W. Koch, “Carrier-carrier scattering and optical dephasing in highly excited semiconductors,” Phys. Rev. B 45(3), 1107–1115 (1992).
[CrossRef]

Kusunoki, F.

F. Kusunoki, J. Takahara, and T. Kobayashi, “Qualitative change of resonant peaks in thermal emission from periodic array of microcavities,” Electron. Lett. 39(1), 23 (2003).
[CrossRef]

Le Gall, J.

J. Le Gall, M. Olivier, and J. J. Greffet, “Experimental and theoretical study of reflection and coherent thermal emission by a SiC grating supporting a surface-phonon polariton,” Phys. Rev. B 55(15), 10105–10114 (1997).
[CrossRef]

Lee, H.

M. Florescu, H. Lee, A. J. Stimpson, and J. Dowling, “Thermal emission and absorption of radiation in finite inverted-opal photonic crystals,” Phys. Rev. A 72(3), 033821 (2005).
[CrossRef]

Lee, R. K.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-Gap defect mode laser,” Science 284(5421), 1819–1821 (1999).
[CrossRef] [PubMed]

Lee, S. C.

M. W. Tsai, T. H. Chuang, C. Y. Meng, Y. T. Chang, and S. C. Lee, “High performance midinfrared narrow-band plasmonic thermal emitter,” Appl. Phys. Lett. 89(17), 173116 (2006).
[CrossRef]

Lefevre-Seguin, V.

I. Protsenko, P. Domokos, V. Lefevre-Seguin, J. Hare, J. M. Raimond, and L. Davidovich, “Quantum theory of a thresholdless laser,” Phys. Rev. A 59(2), 1667–1682 (1999).
[CrossRef]

Lidorikis, E.

M. Qi, E. Lidorikis, P. T. Rakich, S. G. Johnson, J. D. Joannopoulos, E. P. Ippen, and H. I. Smith, “A three-dimensional optical photonic crystal with designed point defects,” Nature 429(6991), 538–542 (2004).
[CrossRef] [PubMed]

Lin, S. Y.

J. G. Fleming, S. Y. Lin, I. El-Kady, R. Biswas, and K. M. Ho, “All-metallic three-dimensional photonic crystals with a large infrared bandgap,” Nature 417(6884), 52–55 (2002).
[CrossRef] [PubMed]

Lindberg, M.

R. Binder, D. Scott, A. E. Paul, M. Lindberg, K. Henneberger, and S. W. Koch, “Carrier-carrier scattering and optical dephasing in highly excited semiconductors,” Phys. Rev. B 45(3), 1107–1115 (1992).
[CrossRef]

Luo, C.

C. Luo, A. Narayanaswamy, G. Chen, and J. D. Joannopoulos, “Thermal radiation from photonic crystals: a direct calculation,” Phys. Rev. Lett. 93(21), 213905 (2004).
[CrossRef] [PubMed]

Lyo, S. K.

S. K. Lyo, “Quasihole lifetimes in electron gases and electron-hole plasmas in semiconductor quantum wells,” Phys. Rev. B 43(9), 7091–7101 (1991).
[CrossRef]

Mainguy, S.

J. J. Greffet, R. Carminati, K. Joulain, J. P. Mulet, S. Mainguy, and Y. Chen, “Coherent emission of light by thermal sources,” Nature 416(6876), 61–64 (2002).
[CrossRef] [PubMed]

Maruyama, S.

S. Maruyama, T. Kashiwa, H. Yugami, and M. Esashi, “Thermal radiation from two-dimensionally confined modes in microcavities,” Appl. Phys. Lett. 79(9), 1393 (2001).
[CrossRef]

H. Sai, H. Yugami, K. Nakamura, N. Nakagawa, H. Ohtsubo, and S. Maruyama, “Selective Emission of Al2O3/Er3Al5O12 Eutectic Composite for Thermophotovoltaic Generation of Electricity,” Jpn. J. Appl. Phys. 39(Part 1, No. 4A), 1957–1961 (2000).
[CrossRef]

McNeal, M. P.

M. U. Pralle, N. Moelders, M. P. McNeal, I. Puscasu, A. C. Greenwald, J. T. Daly, E. A. Johnson, T. George, D. S. Choi, I. El-Kady, and R. Biswas, “Photonic crystal enhanced narrow band infrared emitters,” Appl. Phys. Lett. 81(25), 4685 (2002).
[CrossRef]

Meng, C. Y.

M. W. Tsai, T. H. Chuang, C. Y. Meng, Y. T. Chang, and S. C. Lee, “High performance midinfrared narrow-band plasmonic thermal emitter,” Appl. Phys. Lett. 89(17), 173116 (2006).
[CrossRef]

Miyazaki, H. T.

K. Ikeda, H. T. Miyazaki, T. Kasaya, K. Yamamoto, Y. Inoue, K. Fujimura, T. Kanakugi, M. Okada, K. Hatade, and S. Kitagawa, “Controlled thermal emission of polarized infrared waves from arrayed plasmon nanocavities,” Appl. Phys. Lett. 92(2), 021117 (2008).
[CrossRef]

Moelders, N.

M. U. Pralle, N. Moelders, M. P. McNeal, I. Puscasu, A. C. Greenwald, J. T. Daly, E. A. Johnson, T. George, D. S. Choi, I. El-Kady, and R. Biswas, “Photonic crystal enhanced narrow band infrared emitters,” Appl. Phys. Lett. 81(25), 4685 (2002).
[CrossRef]

Mulet, J. P.

J. J. Greffet, R. Carminati, K. Joulain, J. P. Mulet, S. Mainguy, and Y. Chen, “Coherent emission of light by thermal sources,” Nature 416(6876), 61–64 (2002).
[CrossRef] [PubMed]

Murata, M.

M. Imada, S. Noda, A. Chutinan, T. Tokuda, M. Murata, and G. Sasaki, “Coherent two-dimensional lasing action in surface-emitting laser with triangular-lattice photonic crystal structure,” Appl. Phys. Lett. 75(3), 316 (1999).
[CrossRef]

Nakagawa, N.

H. Sai, H. Yugami, K. Nakamura, N. Nakagawa, H. Ohtsubo, and S. Maruyama, “Selective Emission of Al2O3/Er3Al5O12 Eutectic Composite for Thermophotovoltaic Generation of Electricity,” Jpn. J. Appl. Phys. 39(Part 1, No. 4A), 1957–1961 (2000).
[CrossRef]

Nakamura, K.

H. Sai, H. Yugami, K. Nakamura, N. Nakagawa, H. Ohtsubo, and S. Maruyama, “Selective Emission of Al2O3/Er3Al5O12 Eutectic Composite for Thermophotovoltaic Generation of Electricity,” Jpn. J. Appl. Phys. 39(Part 1, No. 4A), 1957–1961 (2000).
[CrossRef]

Narayanaswamy, A.

C. Luo, A. Narayanaswamy, G. Chen, and J. D. Joannopoulos, “Thermal radiation from photonic crystals: a direct calculation,” Phys. Rev. Lett. 93(21), 213905 (2004).
[CrossRef] [PubMed]

Noda, S.

B. S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nat. Mater. 4(3), 207–210 (2005).
[CrossRef]

S. Takayama, H. Kitagawa, Y. Tanaka, T. Asano, and S. Noda, “Experimental demonstration of complete photonic band gap in two-dimensional photonic crystal slabs,” Appl. Phys. Lett. 87(6), 061107 (2005).
[CrossRef]

S. Ogawa, M. Imada, S. Yoshimoto, M. Okano, and S. Noda, “Control of light emission by 3D photonic crystals,” Science 305(5681), 227–229 (2004).
[CrossRef] [PubMed]

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425(6961), 944–947 (2003).
[CrossRef] [PubMed]

M. Imada, S. Noda, A. Chutinan, T. Tokuda, M. Murata, and G. Sasaki, “Coherent two-dimensional lasing action in surface-emitting laser with triangular-lattice photonic crystal structure,” Appl. Phys. Lett. 75(3), 316 (1999).
[CrossRef]

T. Asano, S. Noda, T. Abe, and A. Sasaki, “Near-infrared intersubband transitions in InGaAs/AlAs quantum wells on GaAs substrate,” Jpn. J. Appl. Phys. 35(Part 1, No. 2B), 1285–1291 (1996).
[CrossRef]

O’Brien, J. D.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-Gap defect mode laser,” Science 284(5421), 1819–1821 (1999).
[CrossRef] [PubMed]

Ogawa, S.

S. Ogawa, M. Imada, S. Yoshimoto, M. Okano, and S. Noda, “Control of light emission by 3D photonic crystals,” Science 305(5681), 227–229 (2004).
[CrossRef] [PubMed]

Ohtsubo, H.

H. Sai, H. Yugami, K. Nakamura, N. Nakagawa, H. Ohtsubo, and S. Maruyama, “Selective Emission of Al2O3/Er3Al5O12 Eutectic Composite for Thermophotovoltaic Generation of Electricity,” Jpn. J. Appl. Phys. 39(Part 1, No. 4A), 1957–1961 (2000).
[CrossRef]

Okada, M.

K. Ikeda, H. T. Miyazaki, T. Kasaya, K. Yamamoto, Y. Inoue, K. Fujimura, T. Kanakugi, M. Okada, K. Hatade, and S. Kitagawa, “Controlled thermal emission of polarized infrared waves from arrayed plasmon nanocavities,” Appl. Phys. Lett. 92(2), 021117 (2008).
[CrossRef]

Okano, M.

S. Ogawa, M. Imada, S. Yoshimoto, M. Okano, and S. Noda, “Control of light emission by 3D photonic crystals,” Science 305(5681), 227–229 (2004).
[CrossRef] [PubMed]

Olivier, M.

J. Le Gall, M. Olivier, and J. J. Greffet, “Experimental and theoretical study of reflection and coherent thermal emission by a SiC grating supporting a surface-phonon polariton,” Phys. Rev. B 55(15), 10105–10114 (1997).
[CrossRef]

Painter, O.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-Gap defect mode laser,” Science 284(5421), 1819–1821 (1999).
[CrossRef] [PubMed]

Pan, D.

D. Pan, E. Towe, and S. Kennerly, “Normal-incidence intersubband (In, Ga)As/GaAs quantum dot infrared photodetectors,” Appl. Phys. Lett. 73(14), 1937 (1998).
[CrossRef]

Paul, A. E.

R. Binder, D. Scott, A. E. Paul, M. Lindberg, K. Henneberger, and S. W. Koch, “Carrier-carrier scattering and optical dephasing in highly excited semiconductors,” Phys. Rev. B 45(3), 1107–1115 (1992).
[CrossRef]

Planck, M.

M. Planck, “Ueber das Gesetz der Energieverteilung im Normalspectrum,” Annalen der Physik 309(3), 553–563 (1901).
[CrossRef]

Pralle, M. U.

M. U. Pralle, N. Moelders, M. P. McNeal, I. Puscasu, A. C. Greenwald, J. T. Daly, E. A. Johnson, T. George, D. S. Choi, I. El-Kady, and R. Biswas, “Photonic crystal enhanced narrow band infrared emitters,” Appl. Phys. Lett. 81(25), 4685 (2002).
[CrossRef]

Protsenko, I.

I. Protsenko, P. Domokos, V. Lefevre-Seguin, J. Hare, J. M. Raimond, and L. Davidovich, “Quantum theory of a thresholdless laser,” Phys. Rev. A 59(2), 1667–1682 (1999).
[CrossRef]

Puscasu, I.

M. U. Pralle, N. Moelders, M. P. McNeal, I. Puscasu, A. C. Greenwald, J. T. Daly, E. A. Johnson, T. George, D. S. Choi, I. El-Kady, and R. Biswas, “Photonic crystal enhanced narrow band infrared emitters,” Appl. Phys. Lett. 81(25), 4685 (2002).
[CrossRef]

Qi, M.

M. Qi, E. Lidorikis, P. T. Rakich, S. G. Johnson, J. D. Joannopoulos, E. P. Ippen, and H. I. Smith, “A three-dimensional optical photonic crystal with designed point defects,” Nature 429(6991), 538–542 (2004).
[CrossRef] [PubMed]

Raimond, J. M.

I. Protsenko, P. Domokos, V. Lefevre-Seguin, J. Hare, J. M. Raimond, and L. Davidovich, “Quantum theory of a thresholdless laser,” Phys. Rev. A 59(2), 1667–1682 (1999).
[CrossRef]

Rakich, P. T.

M. Qi, E. Lidorikis, P. T. Rakich, S. G. Johnson, J. D. Joannopoulos, E. P. Ippen, and H. I. Smith, “A three-dimensional optical photonic crystal with designed point defects,” Nature 429(6991), 538–542 (2004).
[CrossRef] [PubMed]

Roan, E. J.

E. J. Roan and S. L. Chuang, “Linear and nonlinear intersubband electroabsorptions in a modulation-doped quantum well,” J. Appl. Phys. 69(5), 3249 (1991).
[CrossRef]

Sai, H.

H. Sai, Y. Kanamori, and H. Yugami, “High-temperature resistive surface grating for spectral control of thermal radiation,” Appl. Phys. Lett. 82(11), 1685 (2003).
[CrossRef]

H. Sai, H. Yugami, K. Nakamura, N. Nakagawa, H. Ohtsubo, and S. Maruyama, “Selective Emission of Al2O3/Er3Al5O12 Eutectic Composite for Thermophotovoltaic Generation of Electricity,” Jpn. J. Appl. Phys. 39(Part 1, No. 4A), 1957–1961 (2000).
[CrossRef]

Sasaki, A.

T. Asano, S. Noda, T. Abe, and A. Sasaki, “Near-infrared intersubband transitions in InGaAs/AlAs quantum wells on GaAs substrate,” Jpn. J. Appl. Phys. 35(Part 1, No. 2B), 1285–1291 (1996).
[CrossRef]

Sasaki, G.

M. Imada, S. Noda, A. Chutinan, T. Tokuda, M. Murata, and G. Sasaki, “Coherent two-dimensional lasing action in surface-emitting laser with triangular-lattice photonic crystal structure,” Appl. Phys. Lett. 75(3), 316 (1999).
[CrossRef]

Scherer, A.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-Gap defect mode laser,” Science 284(5421), 1819–1821 (1999).
[CrossRef] [PubMed]

Scott, D.

R. Binder, D. Scott, A. E. Paul, M. Lindberg, K. Henneberger, and S. W. Koch, “Carrier-carrier scattering and optical dephasing in highly excited semiconductors,” Phys. Rev. B 45(3), 1107–1115 (1992).
[CrossRef]

Smith, H. I.

M. Qi, E. Lidorikis, P. T. Rakich, S. G. Johnson, J. D. Joannopoulos, E. P. Ippen, and H. I. Smith, “A three-dimensional optical photonic crystal with designed point defects,” Nature 429(6991), 538–542 (2004).
[CrossRef] [PubMed]

Song, B. S.

B. S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nat. Mater. 4(3), 207–210 (2005).
[CrossRef]

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425(6961), 944–947 (2003).
[CrossRef] [PubMed]

Stimpson, A. J.

M. Florescu, H. Lee, A. J. Stimpson, and J. Dowling, “Thermal emission and absorption of radiation in finite inverted-opal photonic crystals,” Phys. Rev. A 72(3), 033821 (2005).
[CrossRef]

Takahara, J.

F. Kusunoki, J. Takahara, and T. Kobayashi, “Qualitative change of resonant peaks in thermal emission from periodic array of microcavities,” Electron. Lett. 39(1), 23 (2003).
[CrossRef]

Takayama, S.

S. Takayama, H. Kitagawa, Y. Tanaka, T. Asano, and S. Noda, “Experimental demonstration of complete photonic band gap in two-dimensional photonic crystal slabs,” Appl. Phys. Lett. 87(6), 061107 (2005).
[CrossRef]

Tanaka, Y.

S. Takayama, H. Kitagawa, Y. Tanaka, T. Asano, and S. Noda, “Experimental demonstration of complete photonic band gap in two-dimensional photonic crystal slabs,” Appl. Phys. Lett. 87(6), 061107 (2005).
[CrossRef]

Tokuda, T.

M. Imada, S. Noda, A. Chutinan, T. Tokuda, M. Murata, and G. Sasaki, “Coherent two-dimensional lasing action in surface-emitting laser with triangular-lattice photonic crystal structure,” Appl. Phys. Lett. 75(3), 316 (1999).
[CrossRef]

Towe, E.

D. Pan, E. Towe, and S. Kennerly, “Normal-incidence intersubband (In, Ga)As/GaAs quantum dot infrared photodetectors,” Appl. Phys. Lett. 73(14), 1937 (1998).
[CrossRef]

Tsai, M. W.

M. W. Tsai, T. H. Chuang, C. Y. Meng, Y. T. Chang, and S. C. Lee, “High performance midinfrared narrow-band plasmonic thermal emitter,” Appl. Phys. Lett. 89(17), 173116 (2006).
[CrossRef]

Waymouth, J. F.

J. F. Waymouth, “Where will the next generation of lamps come from?” J. Light Vis. Environ. 13, 51 (1989).
[CrossRef]

West, L. C.

L. C. West and S. J. Eglash, “First observation of an extremely large-dipole infrared transition within the conduction band of a GaAs quantum well,” Appl. Phys. Lett. 46(12), 1156 (1985).
[CrossRef]

Yablonovitch, E.

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58(20), 2059–2062 (1987).
[CrossRef] [PubMed]

Yamamoto, K.

K. Ikeda, H. T. Miyazaki, T. Kasaya, K. Yamamoto, Y. Inoue, K. Fujimura, T. Kanakugi, M. Okada, K. Hatade, and S. Kitagawa, “Controlled thermal emission of polarized infrared waves from arrayed plasmon nanocavities,” Appl. Phys. Lett. 92(2), 021117 (2008).
[CrossRef]

Yariv, A.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-Gap defect mode laser,” Science 284(5421), 1819–1821 (1999).
[CrossRef] [PubMed]

Yoshimoto, S.

S. Ogawa, M. Imada, S. Yoshimoto, M. Okano, and S. Noda, “Control of light emission by 3D photonic crystals,” Science 305(5681), 227–229 (2004).
[CrossRef] [PubMed]

Yugami, H.

H. Sai, Y. Kanamori, and H. Yugami, “High-temperature resistive surface grating for spectral control of thermal radiation,” Appl. Phys. Lett. 82(11), 1685 (2003).
[CrossRef]

S. Maruyama, T. Kashiwa, H. Yugami, and M. Esashi, “Thermal radiation from two-dimensionally confined modes in microcavities,” Appl. Phys. Lett. 79(9), 1393 (2001).
[CrossRef]

H. Sai, H. Yugami, K. Nakamura, N. Nakagawa, H. Ohtsubo, and S. Maruyama, “Selective Emission of Al2O3/Er3Al5O12 Eutectic Composite for Thermophotovoltaic Generation of Electricity,” Jpn. J. Appl. Phys. 39(Part 1, No. 4A), 1957–1961 (2000).
[CrossRef]

Zemel, J. N.

P. J. Hesketh, J. N. Zemel, and B. Gebhart, “Organ pipe radiant modes of periodic micromachined silicon surfaces,” Nature 324(6097), 549–551 (1986).
[CrossRef]

Annalen der Physik

M. Planck, “Ueber das Gesetz der Energieverteilung im Normalspectrum,” Annalen der Physik 309(3), 553–563 (1901).
[CrossRef]

Appl. Phys. Lett.

S. Maruyama, T. Kashiwa, H. Yugami, and M. Esashi, “Thermal radiation from two-dimensionally confined modes in microcavities,” Appl. Phys. Lett. 79(9), 1393 (2001).
[CrossRef]

H. Sai, Y. Kanamori, and H. Yugami, “High-temperature resistive surface grating for spectral control of thermal radiation,” Appl. Phys. Lett. 82(11), 1685 (2003).
[CrossRef]

K. Ikeda, H. T. Miyazaki, T. Kasaya, K. Yamamoto, Y. Inoue, K. Fujimura, T. Kanakugi, M. Okada, K. Hatade, and S. Kitagawa, “Controlled thermal emission of polarized infrared waves from arrayed plasmon nanocavities,” Appl. Phys. Lett. 92(2), 021117 (2008).
[CrossRef]

M. U. Pralle, N. Moelders, M. P. McNeal, I. Puscasu, A. C. Greenwald, J. T. Daly, E. A. Johnson, T. George, D. S. Choi, I. El-Kady, and R. Biswas, “Photonic crystal enhanced narrow band infrared emitters,” Appl. Phys. Lett. 81(25), 4685 (2002).
[CrossRef]

M. W. Tsai, T. H. Chuang, C. Y. Meng, Y. T. Chang, and S. C. Lee, “High performance midinfrared narrow-band plasmonic thermal emitter,” Appl. Phys. Lett. 89(17), 173116 (2006).
[CrossRef]

L. C. West and S. J. Eglash, “First observation of an extremely large-dipole infrared transition within the conduction band of a GaAs quantum well,” Appl. Phys. Lett. 46(12), 1156 (1985).
[CrossRef]

D. Pan, E. Towe, and S. Kennerly, “Normal-incidence intersubband (In, Ga)As/GaAs quantum dot infrared photodetectors,” Appl. Phys. Lett. 73(14), 1937 (1998).
[CrossRef]

M. Imada, S. Noda, A. Chutinan, T. Tokuda, M. Murata, and G. Sasaki, “Coherent two-dimensional lasing action in surface-emitting laser with triangular-lattice photonic crystal structure,” Appl. Phys. Lett. 75(3), 316 (1999).
[CrossRef]

S. Takayama, H. Kitagawa, Y. Tanaka, T. Asano, and S. Noda, “Experimental demonstration of complete photonic band gap in two-dimensional photonic crystal slabs,” Appl. Phys. Lett. 87(6), 061107 (2005).
[CrossRef]

Electron. Lett.

F. Kusunoki, J. Takahara, and T. Kobayashi, “Qualitative change of resonant peaks in thermal emission from periodic array of microcavities,” Electron. Lett. 39(1), 23 (2003).
[CrossRef]

J. Appl. Phys.

E. J. Roan and S. L. Chuang, “Linear and nonlinear intersubband electroabsorptions in a modulation-doped quantum well,” J. Appl. Phys. 69(5), 3249 (1991).
[CrossRef]

J. Light Vis. Environ.

J. F. Waymouth, “Where will the next generation of lamps come from?” J. Light Vis. Environ. 13, 51 (1989).
[CrossRef]

Jpn. J. Appl. Phys.

H. Sai, H. Yugami, K. Nakamura, N. Nakagawa, H. Ohtsubo, and S. Maruyama, “Selective Emission of Al2O3/Er3Al5O12 Eutectic Composite for Thermophotovoltaic Generation of Electricity,” Jpn. J. Appl. Phys. 39(Part 1, No. 4A), 1957–1961 (2000).
[CrossRef]

T. Asano, S. Noda, T. Abe, and A. Sasaki, “Near-infrared intersubband transitions in InGaAs/AlAs quantum wells on GaAs substrate,” Jpn. J. Appl. Phys. 35(Part 1, No. 2B), 1285–1291 (1996).
[CrossRef]

Nat. Mater.

B. S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nat. Mater. 4(3), 207–210 (2005).
[CrossRef]

Nature

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425(6961), 944–947 (2003).
[CrossRef] [PubMed]

M. Qi, E. Lidorikis, P. T. Rakich, S. G. Johnson, J. D. Joannopoulos, E. P. Ippen, and H. I. Smith, “A three-dimensional optical photonic crystal with designed point defects,” Nature 429(6991), 538–542 (2004).
[CrossRef] [PubMed]

J. J. Greffet, R. Carminati, K. Joulain, J. P. Mulet, S. Mainguy, and Y. Chen, “Coherent emission of light by thermal sources,” Nature 416(6876), 61–64 (2002).
[CrossRef] [PubMed]

P. J. Hesketh, J. N. Zemel, and B. Gebhart, “Organ pipe radiant modes of periodic micromachined silicon surfaces,” Nature 324(6097), 549–551 (1986).
[CrossRef]

J. G. Fleming, S. Y. Lin, I. El-Kady, R. Biswas, and K. M. Ho, “All-metallic three-dimensional photonic crystals with a large infrared bandgap,” Nature 417(6884), 52–55 (2002).
[CrossRef] [PubMed]

Phys. Rev. A

M. Florescu, H. Lee, A. J. Stimpson, and J. Dowling, “Thermal emission and absorption of radiation in finite inverted-opal photonic crystals,” Phys. Rev. A 72(3), 033821 (2005).
[CrossRef]

I. Protsenko, P. Domokos, V. Lefevre-Seguin, J. Hare, J. M. Raimond, and L. Davidovich, “Quantum theory of a thresholdless laser,” Phys. Rev. A 59(2), 1667–1682 (1999).
[CrossRef]

Phys. Rev. B

S. K. Lyo, “Quasihole lifetimes in electron gases and electron-hole plasmas in semiconductor quantum wells,” Phys. Rev. B 43(9), 7091–7101 (1991).
[CrossRef]

R. Binder, D. Scott, A. E. Paul, M. Lindberg, K. Henneberger, and S. W. Koch, “Carrier-carrier scattering and optical dephasing in highly excited semiconductors,” Phys. Rev. B 45(3), 1107–1115 (1992).
[CrossRef]

J. Le Gall, M. Olivier, and J. J. Greffet, “Experimental and theoretical study of reflection and coherent thermal emission by a SiC grating supporting a surface-phonon polariton,” Phys. Rev. B 55(15), 10105–10114 (1997).
[CrossRef]

Phys. Rev. Lett.

C. Luo, A. Narayanaswamy, G. Chen, and J. D. Joannopoulos, “Thermal radiation from photonic crystals: a direct calculation,” Phys. Rev. Lett. 93(21), 213905 (2004).
[CrossRef] [PubMed]

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58(20), 2059–2062 (1987).
[CrossRef] [PubMed]

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58(23), 2486–2489 (1987).
[CrossRef] [PubMed]

Science

S. Ogawa, M. Imada, S. Yoshimoto, M. Okano, and S. Noda, “Control of light emission by 3D photonic crystals,” Science 305(5681), 227–229 (2004).
[CrossRef] [PubMed]

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-Gap defect mode laser,” Science 284(5421), 1819–1821 (1999).
[CrossRef] [PubMed]

Verhandlunger der Deuchen Physikalischen Gesellsachaft

A. Einstein, “On the Quantum Theory of Radiation,” Verhandlunger der Deuchen Physikalischen Gesellsachaft 18, 318 (1916).

Other

K. Mochizuki, unpublished master’s thesis, Kyoto University, Electronic Science and Engineering, (2007).

|gcav,21i|=[ωcav/2ℏVcavε0εrmax]1/2|M→|for the best position (see Eq. (28)). If we substitute εrmax = 3.4, Vcav=(λcav/2)3,ωcav=2πc/λcav and use λcav = 10μm and |M→| = 21eÅ 32, |gcav,21i|is evaluated to be ~5ns−1. In contrast, γSis reported to be of the order of 10~20 ps−1 even at 300 K and becomes larger for higher temperatures [33, 34]. Thus γS>>|gcav,21i| holds true for the devices under analysis.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematics of proposed thermal emission devices. (a) Combination of the point defect cavities in 2D-PC slab with the ISB-Ts in QWs. (b) Combination of the bandedge modes of 2D-PC slab with the ISB-Ts in QWs.

Fig. 2
Fig. 2

Model for analysis of thermal radiation from the proposed device.

Fig. 3
Fig. 3

Peak spectral power plotted as a function of the ratio of cavity photon decay rate due to the radiation and that due to absorption.

Fig. 4
Fig. 4

Emissivity of the proposed thermal emission device: (a) γcav=0.001ωcav , (b) γcav=0.01ωcav , (c) γcav=0.1ωcav . Solid, dotted, and dashed lines show the cases for γabs=0.001ωcav , 0.01ωcav , and 0.1ωcav , respectively.

Fig. 5
Fig. 5

Point defect cavity for thermal radiation control in which TM-like polarization light can be confined. The cavity structure consists of three stacked PC layers with a lattice constant of a. (a) Upper layer: triangular lattice air-hole array (thickness = 0.2a, air-hole radius = 0.32a). (b) Middle layer: triangular lattice of dielectric-rod array (thickness = 0.4a, air-rod radius = 0.32a). (c) Lower layer: triangular lattice of air-hole array (thickness = 0.2a, air-hole radius = 0.32a). (d),(e) The electric and magnetic fields perpendicular to the slab of the middle layer cavity mode (E z and H z), respectively. Vertical dashed line in (d) is the y-z plane of the cross-sectional view in Fig. 6.

Fig. 6
Fig. 6

Cross-sectional view (y-z plane) of the cavity mode in the plane shown by dashed line in Fig. 5 (d): (a) The electric field perpendicular to the cross-sectional plane (Ex). (b) The electric field perpendicular to the slab plane (Ez). The solid lines show the upper and lower surface of the slab of which total thickness is 0.8a.

Fig. 7
Fig. 7

Local radiation spectrum of the designed cavity (solid line) at 600K. Blackbody radiation at the same temperature is also shown for comparison (dashed line).

Tables (1)

Tables Icon

Table 1 Parameters of an example device designed according to the described strategy.

Equations (43)

Equations on this page are rendered with MathJax. Learn more.

H^=i(ω2iσ^i+σ^i+ω1iσ^iσ^i+)+ωcava^cav+a^cav+iλωλb^iλ+b^iλ+μωμd^μ+d^μ+i(gcav,21iσ^i+a^cav+gcav,21i*a^cav+σ^i)+μ(gμ,cavd^μa^cav++gμ,cav*d^μ+a^cav)+iλ(g21i,iλσ^i+b^iλ+g21i,iλ*b^iλ+σ^i)
S^˙i(t)=γSiS^i(t)igcav,21i(N^1i(t)N^2i(t))A^(t)exp(+iω21i,cavt)+F^Si(t),
N^˙1i(t)=+2γSiN^2i(t)2γSin¯TBi(N^1i(t)N^2i(t))igcav,21iS^i+(t)A^cav(t)exp(+iω21i,cavt)+igcav,21i*A^cav+(t)S^i(t)exp(iω21i,cavt)+F^N1i(t),
N^˙2i(t)=2γSiN^2i(t)+2γSin¯TBi(N^i1(t)N^2i(t))+igcav,21iS^i+(t)A^cav(t)exp(+iω21i,cavt)igcav,21i*A^cav+(t)S^i(t)exp(iω21i,cavt)+F^N2i(t),
A^˙cav(t)=γcavA^cav(t)iigcav,21i*S^i(t)exp(iω21i,cavt)+F^Acav(t),
F^μ(t)=0,
F^μ(t)F^ν(t')=2D^μνδ(tt'),
2D^Si+,Si=2γSin¯TBiN^1iN^2i,
2D^Si,Si+=2γSi2γSin¯TBiN^1iN^2i,
2D^Acav+,Acav=2γcavn¯FS,
2D^Acav,Acav+=2γcav(n¯FS+1),
2D^N1i,N1i=2D^N2i,N2i=+2γSin¯TBi+2γSiN^2i,
Si(t)=igcav,21iγS(N^1i(t)N^2i(t))A^cav(t)+t0tF^Si(τ)exp(γS(tτ))dτ.
A^˙cav(t)=γcavA^cav(t)1γSi|gcav,21i|2(N^1i(t)N^2i(t))A^cav(t)igcav,21it0tF^Si(τ)exp(γS(tτ))dτ+F^Acav(t)
N1iN2i=N^1i(t)N^2i(t).
N1iN2i=[(2n¯TB+1)+2|gcav,21i|2γS2A^cav+(t)A^cav(t)]11(2n¯TB+1)
γabs=1γSi|gcav,21i|2(N1iN2i)1γS(2n¯TB+1)i|gcav,21i|2=Ng¯2γS(2n¯TB+1).
g¯=(1Ni|gcav,21i|2)1/2.
F^S(t)=igcav,21it0tF^Si(τ)exp(γS(tτ))dτ.
F^S+(t)F^S(t')=γabsγSn¯TBexp(γS|tt'|).
A^˙cav(t)=(γcav+γabs)A^cav(t)+F^S(t)+F^Acav(t)
a^cav(t)=t0t(F^S(τ)+F^Acav(τ))exp{(γcav+γabs)(tτ)}dτexp((iωcavt).
U(ω)=+a^cav+(t)a^cav(t+τ)exp(iωτ)dτ=γabsγS2n¯TBγS2(γcav+γabs)2[1(ωωcav)2+(γcav+γabs)21(ωωcav)2+γS2].
U(ω)=γabsn¯TB(ωωcav)2+(γcav+γabs)2.
P(ω)=2ωγcavγabsn¯TB(ωωcav)2+(γcav+γabs)2.
γcav=γabs
Pmax=ωcavn¯TB/2.
Γ=2γcav+2γabs.
IBB(ω)=ω34π3c21exp(ω/kTTB)1.
Δθ=λ/πr,
ΔΩ=λ2/πr2
I(ω)=ωcavω24π2c2γcavγabs(ωωcav)2+(γcav+γabs)2n¯TB.
ε(ω)=πωcavωγcavγabs(ωωcav)2+(γcav+γabs)2n¯TB{exp(ω/kTTB)1}
Γtarget/4=γcav=Ng¯2γS(2n¯TB+1)
Q=2ωcav/Γtarget.
gcav,21i=ωcav2Vcavε0εrmaxMEcav(xi),
g¯2=1Niωcav|MEcav(xi)|22Vcavε0εrmax
g¯2=ωcav|M|22Vcavε0εrmaxVcav|M|M|Ecav(x)|2ρ(x)dx
Λ=Vcav|M|M|Ecav(x)|2ρ(x)dx.
g¯2=ωcav|M|2Λ2Vcavε0εrmax.
Γtarget4=NγS(2n¯TB+1)ωcav|M|2Λ2Vcavε0εrmax.
N=ndopeScavtQWΘ.
Γtarget4=ωcav|M|22γSε0εrmaxndopeΘΛ(2n¯TB+1)tQWtcav.

Metrics