Abstract

A wavelength converter based on counterpropagating quasi-phase matched cascaded sum and difference frequency generation in lossy lithium niobate waveguide is numerically evaluated and compared to a single-pass scheme assuming a large pump wavelength difference of 75 nm. A double-pass device is proposed to improve the conversion efficiency while the response flattening is accomplished by increasing the wavelength tuning of one pump. The criteria for the design of the low-loss waveguide length, and the assignment of power in the pumps to achieve the desired efficiency, ripple and bandwidth are presented.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Q. Xu, H. Okayama, K. Shinozaki, K. Watanabe, and M. Kawahara, “Wavelength conversions ~1.5 µm by difference frequency generation in periodically domain-inverted LiNbO3 channel waveguides,” Appl. Phys. Lett. 63(9), 1170–1172 (1993).
    [CrossRef]
  2. M. H. Chou, J. Hauden, M. A. Arbore, and M. M. Fejer, “1.5-µm-band wavelength conversion based on difference-frequency generation in LiNbO3 waveguides with integrated coupling structures,” Opt. Lett. 23(13), 1004–1006 (1998).
    [CrossRef]
  3. K. Gallo and G. Assanto, “Analysis of lithium niobate all-optical wavelength shifters for the third spectral window,” J. Opt. Soc. Am. B 16(5), 741–753 (1999).
    [CrossRef]
  4. I. Brener, M. H. Chou, D. Peale, and M. M. Fejer, “Cascaded χ(2) wavelength converter in LiNbO3 waveguides with counter-propagating beams,” Electron. Lett. 35(14), 1155–1157 (1999).
    [CrossRef]
  5. M. H. Chou, I. Brener, M. M. Fejer, E. E. Chaban, and S. B. Christman, “1.5-µm-Band Wavelength Conversion Based on Cascaded Second-Order Nonlinearity in LiNbO3 Waveguides,” Photonics Technol. Lett. 11(6), 653–655 (1999).
    [CrossRef]
  6. X. Liu, H. Zhang, and Y. Guo, “Theoretical analyses and optimizations for wavelength conversion by quasi-phase-matching difference frequency generation,” J. Lightwave Technol. 19(11), 1785–1792 (2001).
    [CrossRef]
  7. W. Liu, J. Sun, and J. Kurz, “Bandwidth and tunability enhancement of wavelength conversion by quasi-phase-matching difference frequency generation,” Opt. Commun. 216(1-3), 239–246 (2003).
    [CrossRef]
  8. T. Umeki, M. Asobe, Y. Nishida, O. Tadanaga, K. Magari, T. Yanagawa, and H. Suzuki, “Widely tunable 3.4 µm band difference frequency generation using apodized χ(2) grating,” Opt. Lett. 32(9), 1129–1131 (2007).
    [CrossRef] [PubMed]
  9. A. Tehranchi and R. Kashyap, “Design of novel unapodized and apodized step-chirped quasi-phase matched gratings for broadband frequency converters based on second harmonic generation,” IEEE J. Lightwave Technol. 26(3), 343–349 (2008).
    [CrossRef]
  10. A. Tehranchi, and R. Kashyap, “Engineered gratings for flat broadening of second-harmonic phase-matching bandwidth in MgO-doped lithium niobate waveguides,” Opt. Express 16, 18970–75 (2008). http://www.opticsinfobase.org/abstract.cfm?uri=oe-16-23-18970
  11. A. Tehranchi and R. Kashyap, “Novel designs for efficient broadband frequency doublers using singly pump-resonant waveguide and engineered chirped gratings,” IEEE J. Quantum Electron. 45(2), 187–194 (2009).
    [CrossRef]
  12. S. J. B. Yoo, “Wavelength conversion technologies for WDM network applications,” IEEE J. Lightwave Technol. 14(6), 955–966 (1996).
    [CrossRef]
  13. B. Chen and C.-Q. Xu, “Analysis of novel cascaded χ(2) (SFG+DFG) wavelength conversions in quasi-phase-matched waveguides,” IEEE J. Quantum Electron. 40, 256–261 (2004).
    [CrossRef]
  14. Y. Wang, B. Chen, and C.-Q. Xu, “Polarisation-insensitive QPM wavelength converter with out-of-band pump,” Electron. Lett. 40(3), 189–191 (2004).
    [CrossRef]
  15. Y. L. Lee, B. Yu, C. Jung, Y. Noh, J. Lee, and D. Ko, “All-optical wavelength conversion and tuning by the cascaded sum- and difference frequency generation (cSFG/DFG) in a temperature gradient controlled Ti:PPLN channel waveguide,” Opt. Express 13, 2988–93 (2005). http://www.opticsinfobase.org/abstract.cfm?uri=oe-13-8-2988
  16. J. Wang, J. Q. Sun, C. H. Luo, and Q. Z. Sun, “Experimental demonstration of wavelength conversion between ps-pulses based on cascaded sum- and difference frequency generation (SFG+DFG) in LiNbO3 waveguides,” Opt. Express 13, 7405–14 (2005). http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-13-19-7405
  17. S. Gao, C. Yang, X. Xiao, Y. Tian, Z. You, and G. Jin, “Bandwidth enhancement and response flattening of cascaded sum- and difference-frequency generation-based wavelength conversion,” Opt. Commun. 266(1), 296–301 (2006).
    [CrossRef]
  18. S. Yu and W. Gu, “Wavelength conversions in quasi-phase matched LiNbO3 waveguide based on double-pass cascaded χ(2) SFG+DFG interactions,” IEEE J. Quantum Electron. 40(12), 1744 (2004).
    [CrossRef]
  19. S. Yu and W. Gu, “A tunable wavelength conversion and wavelength add/drop scheme based on cascaded second-order nonlinearity with double-pass configuration,” IEEE J. Quantum Electron. 41(7), 1007–1012 (2005).
    [CrossRef]
  20. S. Gao, C. Yang, X. Xiao, Y. Tian, Z. You, and G. Jin, “Performance evaluation of tunable channel-selective wavelength shift by cascaded sum- and difference-frequency generation in periodically poled lithium niobate waveguides,” IEEE J. Lightwave Technol. 25(3), 710–718 (2007).
    [CrossRef]
  21. G. Imeshev, M. Proctor, and M. M. Fejer, “Phase correction in double-pass quasi-phase-matched second-harmonic generation with a wedged crystal,” Opt. Lett. 23(3), 165–167 (1998).
    [CrossRef]

2009 (1)

A. Tehranchi and R. Kashyap, “Novel designs for efficient broadband frequency doublers using singly pump-resonant waveguide and engineered chirped gratings,” IEEE J. Quantum Electron. 45(2), 187–194 (2009).
[CrossRef]

2008 (1)

A. Tehranchi and R. Kashyap, “Design of novel unapodized and apodized step-chirped quasi-phase matched gratings for broadband frequency converters based on second harmonic generation,” IEEE J. Lightwave Technol. 26(3), 343–349 (2008).
[CrossRef]

2007 (2)

S. Gao, C. Yang, X. Xiao, Y. Tian, Z. You, and G. Jin, “Performance evaluation of tunable channel-selective wavelength shift by cascaded sum- and difference-frequency generation in periodically poled lithium niobate waveguides,” IEEE J. Lightwave Technol. 25(3), 710–718 (2007).
[CrossRef]

T. Umeki, M. Asobe, Y. Nishida, O. Tadanaga, K. Magari, T. Yanagawa, and H. Suzuki, “Widely tunable 3.4 µm band difference frequency generation using apodized χ(2) grating,” Opt. Lett. 32(9), 1129–1131 (2007).
[CrossRef] [PubMed]

2006 (1)

S. Gao, C. Yang, X. Xiao, Y. Tian, Z. You, and G. Jin, “Bandwidth enhancement and response flattening of cascaded sum- and difference-frequency generation-based wavelength conversion,” Opt. Commun. 266(1), 296–301 (2006).
[CrossRef]

2005 (1)

S. Yu and W. Gu, “A tunable wavelength conversion and wavelength add/drop scheme based on cascaded second-order nonlinearity with double-pass configuration,” IEEE J. Quantum Electron. 41(7), 1007–1012 (2005).
[CrossRef]

2004 (3)

S. Yu and W. Gu, “Wavelength conversions in quasi-phase matched LiNbO3 waveguide based on double-pass cascaded χ(2) SFG+DFG interactions,” IEEE J. Quantum Electron. 40(12), 1744 (2004).
[CrossRef]

B. Chen and C.-Q. Xu, “Analysis of novel cascaded χ(2) (SFG+DFG) wavelength conversions in quasi-phase-matched waveguides,” IEEE J. Quantum Electron. 40, 256–261 (2004).
[CrossRef]

Y. Wang, B. Chen, and C.-Q. Xu, “Polarisation-insensitive QPM wavelength converter with out-of-band pump,” Electron. Lett. 40(3), 189–191 (2004).
[CrossRef]

2003 (1)

W. Liu, J. Sun, and J. Kurz, “Bandwidth and tunability enhancement of wavelength conversion by quasi-phase-matching difference frequency generation,” Opt. Commun. 216(1-3), 239–246 (2003).
[CrossRef]

2001 (1)

1999 (3)

K. Gallo and G. Assanto, “Analysis of lithium niobate all-optical wavelength shifters for the third spectral window,” J. Opt. Soc. Am. B 16(5), 741–753 (1999).
[CrossRef]

I. Brener, M. H. Chou, D. Peale, and M. M. Fejer, “Cascaded χ(2) wavelength converter in LiNbO3 waveguides with counter-propagating beams,” Electron. Lett. 35(14), 1155–1157 (1999).
[CrossRef]

M. H. Chou, I. Brener, M. M. Fejer, E. E. Chaban, and S. B. Christman, “1.5-µm-Band Wavelength Conversion Based on Cascaded Second-Order Nonlinearity in LiNbO3 Waveguides,” Photonics Technol. Lett. 11(6), 653–655 (1999).
[CrossRef]

1998 (2)

1996 (1)

S. J. B. Yoo, “Wavelength conversion technologies for WDM network applications,” IEEE J. Lightwave Technol. 14(6), 955–966 (1996).
[CrossRef]

1993 (1)

C. Q. Xu, H. Okayama, K. Shinozaki, K. Watanabe, and M. Kawahara, “Wavelength conversions ~1.5 µm by difference frequency generation in periodically domain-inverted LiNbO3 channel waveguides,” Appl. Phys. Lett. 63(9), 1170–1172 (1993).
[CrossRef]

Arbore, M. A.

Asobe, M.

Assanto, G.

Brener, I.

I. Brener, M. H. Chou, D. Peale, and M. M. Fejer, “Cascaded χ(2) wavelength converter in LiNbO3 waveguides with counter-propagating beams,” Electron. Lett. 35(14), 1155–1157 (1999).
[CrossRef]

M. H. Chou, I. Brener, M. M. Fejer, E. E. Chaban, and S. B. Christman, “1.5-µm-Band Wavelength Conversion Based on Cascaded Second-Order Nonlinearity in LiNbO3 Waveguides,” Photonics Technol. Lett. 11(6), 653–655 (1999).
[CrossRef]

Chaban, E. E.

M. H. Chou, I. Brener, M. M. Fejer, E. E. Chaban, and S. B. Christman, “1.5-µm-Band Wavelength Conversion Based on Cascaded Second-Order Nonlinearity in LiNbO3 Waveguides,” Photonics Technol. Lett. 11(6), 653–655 (1999).
[CrossRef]

Chen, B.

B. Chen and C.-Q. Xu, “Analysis of novel cascaded χ(2) (SFG+DFG) wavelength conversions in quasi-phase-matched waveguides,” IEEE J. Quantum Electron. 40, 256–261 (2004).
[CrossRef]

Y. Wang, B. Chen, and C.-Q. Xu, “Polarisation-insensitive QPM wavelength converter with out-of-band pump,” Electron. Lett. 40(3), 189–191 (2004).
[CrossRef]

Chou, M. H.

I. Brener, M. H. Chou, D. Peale, and M. M. Fejer, “Cascaded χ(2) wavelength converter in LiNbO3 waveguides with counter-propagating beams,” Electron. Lett. 35(14), 1155–1157 (1999).
[CrossRef]

M. H. Chou, I. Brener, M. M. Fejer, E. E. Chaban, and S. B. Christman, “1.5-µm-Band Wavelength Conversion Based on Cascaded Second-Order Nonlinearity in LiNbO3 Waveguides,” Photonics Technol. Lett. 11(6), 653–655 (1999).
[CrossRef]

M. H. Chou, J. Hauden, M. A. Arbore, and M. M. Fejer, “1.5-µm-band wavelength conversion based on difference-frequency generation in LiNbO3 waveguides with integrated coupling structures,” Opt. Lett. 23(13), 1004–1006 (1998).
[CrossRef]

Christman, S. B.

M. H. Chou, I. Brener, M. M. Fejer, E. E. Chaban, and S. B. Christman, “1.5-µm-Band Wavelength Conversion Based on Cascaded Second-Order Nonlinearity in LiNbO3 Waveguides,” Photonics Technol. Lett. 11(6), 653–655 (1999).
[CrossRef]

Fejer, M. M.

M. H. Chou, I. Brener, M. M. Fejer, E. E. Chaban, and S. B. Christman, “1.5-µm-Band Wavelength Conversion Based on Cascaded Second-Order Nonlinearity in LiNbO3 Waveguides,” Photonics Technol. Lett. 11(6), 653–655 (1999).
[CrossRef]

I. Brener, M. H. Chou, D. Peale, and M. M. Fejer, “Cascaded χ(2) wavelength converter in LiNbO3 waveguides with counter-propagating beams,” Electron. Lett. 35(14), 1155–1157 (1999).
[CrossRef]

M. H. Chou, J. Hauden, M. A. Arbore, and M. M. Fejer, “1.5-µm-band wavelength conversion based on difference-frequency generation in LiNbO3 waveguides with integrated coupling structures,” Opt. Lett. 23(13), 1004–1006 (1998).
[CrossRef]

G. Imeshev, M. Proctor, and M. M. Fejer, “Phase correction in double-pass quasi-phase-matched second-harmonic generation with a wedged crystal,” Opt. Lett. 23(3), 165–167 (1998).
[CrossRef]

Gallo, K.

Gao, S.

S. Gao, C. Yang, X. Xiao, Y. Tian, Z. You, and G. Jin, “Performance evaluation of tunable channel-selective wavelength shift by cascaded sum- and difference-frequency generation in periodically poled lithium niobate waveguides,” IEEE J. Lightwave Technol. 25(3), 710–718 (2007).
[CrossRef]

S. Gao, C. Yang, X. Xiao, Y. Tian, Z. You, and G. Jin, “Bandwidth enhancement and response flattening of cascaded sum- and difference-frequency generation-based wavelength conversion,” Opt. Commun. 266(1), 296–301 (2006).
[CrossRef]

Gu, W.

S. Yu and W. Gu, “A tunable wavelength conversion and wavelength add/drop scheme based on cascaded second-order nonlinearity with double-pass configuration,” IEEE J. Quantum Electron. 41(7), 1007–1012 (2005).
[CrossRef]

S. Yu and W. Gu, “Wavelength conversions in quasi-phase matched LiNbO3 waveguide based on double-pass cascaded χ(2) SFG+DFG interactions,” IEEE J. Quantum Electron. 40(12), 1744 (2004).
[CrossRef]

Guo, Y.

Hauden, J.

Imeshev, G.

Jin, G.

S. Gao, C. Yang, X. Xiao, Y. Tian, Z. You, and G. Jin, “Performance evaluation of tunable channel-selective wavelength shift by cascaded sum- and difference-frequency generation in periodically poled lithium niobate waveguides,” IEEE J. Lightwave Technol. 25(3), 710–718 (2007).
[CrossRef]

S. Gao, C. Yang, X. Xiao, Y. Tian, Z. You, and G. Jin, “Bandwidth enhancement and response flattening of cascaded sum- and difference-frequency generation-based wavelength conversion,” Opt. Commun. 266(1), 296–301 (2006).
[CrossRef]

Kashyap, R.

A. Tehranchi and R. Kashyap, “Novel designs for efficient broadband frequency doublers using singly pump-resonant waveguide and engineered chirped gratings,” IEEE J. Quantum Electron. 45(2), 187–194 (2009).
[CrossRef]

A. Tehranchi and R. Kashyap, “Design of novel unapodized and apodized step-chirped quasi-phase matched gratings for broadband frequency converters based on second harmonic generation,” IEEE J. Lightwave Technol. 26(3), 343–349 (2008).
[CrossRef]

Kawahara, M.

C. Q. Xu, H. Okayama, K. Shinozaki, K. Watanabe, and M. Kawahara, “Wavelength conversions ~1.5 µm by difference frequency generation in periodically domain-inverted LiNbO3 channel waveguides,” Appl. Phys. Lett. 63(9), 1170–1172 (1993).
[CrossRef]

Kurz, J.

W. Liu, J. Sun, and J. Kurz, “Bandwidth and tunability enhancement of wavelength conversion by quasi-phase-matching difference frequency generation,” Opt. Commun. 216(1-3), 239–246 (2003).
[CrossRef]

Liu, W.

W. Liu, J. Sun, and J. Kurz, “Bandwidth and tunability enhancement of wavelength conversion by quasi-phase-matching difference frequency generation,” Opt. Commun. 216(1-3), 239–246 (2003).
[CrossRef]

Liu, X.

Magari, K.

Nishida, Y.

Okayama, H.

C. Q. Xu, H. Okayama, K. Shinozaki, K. Watanabe, and M. Kawahara, “Wavelength conversions ~1.5 µm by difference frequency generation in periodically domain-inverted LiNbO3 channel waveguides,” Appl. Phys. Lett. 63(9), 1170–1172 (1993).
[CrossRef]

Peale, D.

I. Brener, M. H. Chou, D. Peale, and M. M. Fejer, “Cascaded χ(2) wavelength converter in LiNbO3 waveguides with counter-propagating beams,” Electron. Lett. 35(14), 1155–1157 (1999).
[CrossRef]

Proctor, M.

Shinozaki, K.

C. Q. Xu, H. Okayama, K. Shinozaki, K. Watanabe, and M. Kawahara, “Wavelength conversions ~1.5 µm by difference frequency generation in periodically domain-inverted LiNbO3 channel waveguides,” Appl. Phys. Lett. 63(9), 1170–1172 (1993).
[CrossRef]

Sun, J.

W. Liu, J. Sun, and J. Kurz, “Bandwidth and tunability enhancement of wavelength conversion by quasi-phase-matching difference frequency generation,” Opt. Commun. 216(1-3), 239–246 (2003).
[CrossRef]

Suzuki, H.

Tadanaga, O.

Tehranchi, A.

A. Tehranchi and R. Kashyap, “Novel designs for efficient broadband frequency doublers using singly pump-resonant waveguide and engineered chirped gratings,” IEEE J. Quantum Electron. 45(2), 187–194 (2009).
[CrossRef]

A. Tehranchi and R. Kashyap, “Design of novel unapodized and apodized step-chirped quasi-phase matched gratings for broadband frequency converters based on second harmonic generation,” IEEE J. Lightwave Technol. 26(3), 343–349 (2008).
[CrossRef]

Tian, Y.

S. Gao, C. Yang, X. Xiao, Y. Tian, Z. You, and G. Jin, “Performance evaluation of tunable channel-selective wavelength shift by cascaded sum- and difference-frequency generation in periodically poled lithium niobate waveguides,” IEEE J. Lightwave Technol. 25(3), 710–718 (2007).
[CrossRef]

S. Gao, C. Yang, X. Xiao, Y. Tian, Z. You, and G. Jin, “Bandwidth enhancement and response flattening of cascaded sum- and difference-frequency generation-based wavelength conversion,” Opt. Commun. 266(1), 296–301 (2006).
[CrossRef]

Umeki, T.

Wang, Y.

Y. Wang, B. Chen, and C.-Q. Xu, “Polarisation-insensitive QPM wavelength converter with out-of-band pump,” Electron. Lett. 40(3), 189–191 (2004).
[CrossRef]

Watanabe, K.

C. Q. Xu, H. Okayama, K. Shinozaki, K. Watanabe, and M. Kawahara, “Wavelength conversions ~1.5 µm by difference frequency generation in periodically domain-inverted LiNbO3 channel waveguides,” Appl. Phys. Lett. 63(9), 1170–1172 (1993).
[CrossRef]

Xiao, X.

S. Gao, C. Yang, X. Xiao, Y. Tian, Z. You, and G. Jin, “Performance evaluation of tunable channel-selective wavelength shift by cascaded sum- and difference-frequency generation in periodically poled lithium niobate waveguides,” IEEE J. Lightwave Technol. 25(3), 710–718 (2007).
[CrossRef]

S. Gao, C. Yang, X. Xiao, Y. Tian, Z. You, and G. Jin, “Bandwidth enhancement and response flattening of cascaded sum- and difference-frequency generation-based wavelength conversion,” Opt. Commun. 266(1), 296–301 (2006).
[CrossRef]

Xu, C. Q.

C. Q. Xu, H. Okayama, K. Shinozaki, K. Watanabe, and M. Kawahara, “Wavelength conversions ~1.5 µm by difference frequency generation in periodically domain-inverted LiNbO3 channel waveguides,” Appl. Phys. Lett. 63(9), 1170–1172 (1993).
[CrossRef]

Xu, C.-Q.

B. Chen and C.-Q. Xu, “Analysis of novel cascaded χ(2) (SFG+DFG) wavelength conversions in quasi-phase-matched waveguides,” IEEE J. Quantum Electron. 40, 256–261 (2004).
[CrossRef]

Y. Wang, B. Chen, and C.-Q. Xu, “Polarisation-insensitive QPM wavelength converter with out-of-band pump,” Electron. Lett. 40(3), 189–191 (2004).
[CrossRef]

Yanagawa, T.

Yang, C.

S. Gao, C. Yang, X. Xiao, Y. Tian, Z. You, and G. Jin, “Performance evaluation of tunable channel-selective wavelength shift by cascaded sum- and difference-frequency generation in periodically poled lithium niobate waveguides,” IEEE J. Lightwave Technol. 25(3), 710–718 (2007).
[CrossRef]

S. Gao, C. Yang, X. Xiao, Y. Tian, Z. You, and G. Jin, “Bandwidth enhancement and response flattening of cascaded sum- and difference-frequency generation-based wavelength conversion,” Opt. Commun. 266(1), 296–301 (2006).
[CrossRef]

Yoo, S. J. B.

S. J. B. Yoo, “Wavelength conversion technologies for WDM network applications,” IEEE J. Lightwave Technol. 14(6), 955–966 (1996).
[CrossRef]

You, Z.

S. Gao, C. Yang, X. Xiao, Y. Tian, Z. You, and G. Jin, “Performance evaluation of tunable channel-selective wavelength shift by cascaded sum- and difference-frequency generation in periodically poled lithium niobate waveguides,” IEEE J. Lightwave Technol. 25(3), 710–718 (2007).
[CrossRef]

S. Gao, C. Yang, X. Xiao, Y. Tian, Z. You, and G. Jin, “Bandwidth enhancement and response flattening of cascaded sum- and difference-frequency generation-based wavelength conversion,” Opt. Commun. 266(1), 296–301 (2006).
[CrossRef]

Yu, S.

S. Yu and W. Gu, “A tunable wavelength conversion and wavelength add/drop scheme based on cascaded second-order nonlinearity with double-pass configuration,” IEEE J. Quantum Electron. 41(7), 1007–1012 (2005).
[CrossRef]

S. Yu and W. Gu, “Wavelength conversions in quasi-phase matched LiNbO3 waveguide based on double-pass cascaded χ(2) SFG+DFG interactions,” IEEE J. Quantum Electron. 40(12), 1744 (2004).
[CrossRef]

Zhang, H.

Appl. Phys. Lett. (1)

C. Q. Xu, H. Okayama, K. Shinozaki, K. Watanabe, and M. Kawahara, “Wavelength conversions ~1.5 µm by difference frequency generation in periodically domain-inverted LiNbO3 channel waveguides,” Appl. Phys. Lett. 63(9), 1170–1172 (1993).
[CrossRef]

Electron. Lett. (2)

I. Brener, M. H. Chou, D. Peale, and M. M. Fejer, “Cascaded χ(2) wavelength converter in LiNbO3 waveguides with counter-propagating beams,” Electron. Lett. 35(14), 1155–1157 (1999).
[CrossRef]

Y. Wang, B. Chen, and C.-Q. Xu, “Polarisation-insensitive QPM wavelength converter with out-of-band pump,” Electron. Lett. 40(3), 189–191 (2004).
[CrossRef]

IEEE J. Lightwave Technol. (3)

A. Tehranchi and R. Kashyap, “Design of novel unapodized and apodized step-chirped quasi-phase matched gratings for broadband frequency converters based on second harmonic generation,” IEEE J. Lightwave Technol. 26(3), 343–349 (2008).
[CrossRef]

S. J. B. Yoo, “Wavelength conversion technologies for WDM network applications,” IEEE J. Lightwave Technol. 14(6), 955–966 (1996).
[CrossRef]

S. Gao, C. Yang, X. Xiao, Y. Tian, Z. You, and G. Jin, “Performance evaluation of tunable channel-selective wavelength shift by cascaded sum- and difference-frequency generation in periodically poled lithium niobate waveguides,” IEEE J. Lightwave Technol. 25(3), 710–718 (2007).
[CrossRef]

IEEE J. Quantum Electron. (4)

S. Yu and W. Gu, “Wavelength conversions in quasi-phase matched LiNbO3 waveguide based on double-pass cascaded χ(2) SFG+DFG interactions,” IEEE J. Quantum Electron. 40(12), 1744 (2004).
[CrossRef]

S. Yu and W. Gu, “A tunable wavelength conversion and wavelength add/drop scheme based on cascaded second-order nonlinearity with double-pass configuration,” IEEE J. Quantum Electron. 41(7), 1007–1012 (2005).
[CrossRef]

B. Chen and C.-Q. Xu, “Analysis of novel cascaded χ(2) (SFG+DFG) wavelength conversions in quasi-phase-matched waveguides,” IEEE J. Quantum Electron. 40, 256–261 (2004).
[CrossRef]

A. Tehranchi and R. Kashyap, “Novel designs for efficient broadband frequency doublers using singly pump-resonant waveguide and engineered chirped gratings,” IEEE J. Quantum Electron. 45(2), 187–194 (2009).
[CrossRef]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. B (1)

Opt. Commun. (2)

W. Liu, J. Sun, and J. Kurz, “Bandwidth and tunability enhancement of wavelength conversion by quasi-phase-matching difference frequency generation,” Opt. Commun. 216(1-3), 239–246 (2003).
[CrossRef]

S. Gao, C. Yang, X. Xiao, Y. Tian, Z. You, and G. Jin, “Bandwidth enhancement and response flattening of cascaded sum- and difference-frequency generation-based wavelength conversion,” Opt. Commun. 266(1), 296–301 (2006).
[CrossRef]

Opt. Lett. (3)

Photonics Technol. Lett. (1)

M. H. Chou, I. Brener, M. M. Fejer, E. E. Chaban, and S. B. Christman, “1.5-µm-Band Wavelength Conversion Based on Cascaded Second-Order Nonlinearity in LiNbO3 Waveguides,” Photonics Technol. Lett. 11(6), 653–655 (1999).
[CrossRef]

Other (3)

Y. L. Lee, B. Yu, C. Jung, Y. Noh, J. Lee, and D. Ko, “All-optical wavelength conversion and tuning by the cascaded sum- and difference frequency generation (cSFG/DFG) in a temperature gradient controlled Ti:PPLN channel waveguide,” Opt. Express 13, 2988–93 (2005). http://www.opticsinfobase.org/abstract.cfm?uri=oe-13-8-2988

J. Wang, J. Q. Sun, C. H. Luo, and Q. Z. Sun, “Experimental demonstration of wavelength conversion between ps-pulses based on cascaded sum- and difference frequency generation (SFG+DFG) in LiNbO3 waveguides,” Opt. Express 13, 7405–14 (2005). http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-13-19-7405

A. Tehranchi, and R. Kashyap, “Engineered gratings for flat broadening of second-harmonic phase-matching bandwidth in MgO-doped lithium niobate waveguides,” Opt. Express 16, 18970–75 (2008). http://www.opticsinfobase.org/abstract.cfm?uri=oe-16-23-18970

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic description of the double-pass SFG + DFG wavelength conversion.

Fig. 2
Fig. 2

Efficiency of (a) single-pass and (b) double-pass SFG + DFG device versus signal wavelength for different pump detuning Δλp 2 when the pumps are set at 1512.5 nm and 1587.5 + Δλp 2 nm; and the length, SF loss and total pump power are 2.5 cm, 0.70 dB/cm and 500 mW.

Fig. 3
Fig. 3

Conversion efficiency of wavelength detuned single-pass (Δλp 2 = 0.450 nm) and double-pass (Δλp 2 = 0.225 nm) SFG + DFG device versus signal wavelength for different loss when the length and total pump power are (a) 2.5 cm and 100 mW and (b) 1.25 cm and 400 mW.

Fig. 4
Fig. 4

Contour map of efficiency, peak-to-peak ripple and bandwidth of the cascaded double-pass SFG + DFG device versus length and total power for the SF loss of 0.70 dB/cm when the pumps are set at 1512.5 nm and 1587.5 + Δλp 2 nm for (a) Δλp 2 = 0 and (b) Δλp 2 = 0.225 nm.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

ddxAp1(x)=jωp1κSFGAp2(x)ASF(x)exp(jΔkSFGx)12αp1Ap1(x)
ddxAp2(x)=jωp2κSFGAp1(x)ASF(x)exp(jΔkSFGx)12αp2Ap2(x)
ddxASF(x)=jωSFκSFGAp1(x)Ap2(x)exp(jΔkSFGx)12αSFASF(x)
ddxASF(x)=jωSFκDFGAs(x)Ac(x)exp(jΔkDFGx)12αSFASF(x)
ddxAs(x)=jωsκDFGASF(x)Ac(x)exp(jΔkDFGx)12αsAs(x)
ddxAc(x)=jωcκDFGASF(x)As(x)exp(jΔkDFGx)12αcAc(x)

Metrics