Abstract

Enhanced ultrafast optical nonlinearities of porous anodized aluminum oxide (AAO) nanostructures, well-known templates for quantum dots fabrication, have been investigated using the differential optical Kerr gate technique at 800 nm. The optical nonlinearity is strongly influenced by the pore number density, the pore size and the shape. Large values of the third-order nonlinear optical susceptibility (χ(3)) of the order of 10−10 esu are measured. The nonlinear response time is faster than or comparable to the laser pulse width (90 fs) used. The origin and variation of such remarkable optical nonlinearities has been discussed by considering the nanoporous AAO as an effective medium and utilizing the extended Maxwell Garnet theory, and by considering the additional influence from pore diameter, pore shape and surface states.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. S. Dneprovskii, V. A. Karavanskii, V. I. Klimov, and A. P. Maslov, “Quantum size effect and pronounced nonlinearities in porous silicon,” JETP Lett. 57, 406–409 (1993).
  2. V. Gayvoronsky, V. Timoshenko, M. Brodyn, A. Galas, S. A. Nepijko, Th. Dittrich, F. Koch, I. Petric, N. Smironova, A. Eremenko, and M. Klimenkov, “Giant nonlinear optical response application for nanoporous titanium dioxide photocatalytic activity monitoring,” Phys. Status. Solidi. 2, 3303–3307 (2005).
    [CrossRef]
  3. C. Simos, L. Rodriguez, V. Skarka, X. N. Phu, N. Errien, G. Froyer, T. P. Nguyen, P. L. Rendu, and P. Pirastesh, “Measurement of the third-order nonlinear properties of conjugated polymers embedded in porous silicon and silica,” Phys. Status. Solidi. 9, 3232–3236 (2005).
  4. I. M. Tiginyanu, I. V. Kravetsky, S. Langa, G. Marowsky, J. Monecke, and H. Foll, “Porous III-V compounds as nonlinear optical materials,” Phys. Status. Solidi. 197, 549–555 (2003).
    [CrossRef]
  5. Q. Wang, S. Wang, W. Huang, Q. Gong, B. Yang, and J. Shi, “Ultrafast and large third-order optical nonlinearity of porous nanosized poly-crystal LiNbO3 film,” J. Phys. D 35(5), 430–432 (2002).
    [CrossRef]
  6. M. Allendorf, P. Hesketh, “Metal organic frameworks for chemical recognition,” SPIE Newsroom, June 2009, 10.1117/2.1200905.1512.
  7. M. Jung, S.-I. Mho, and H. L. Park, “Long-range-ordered CdTe/GaAs nanodot arrays grown as replicas of nanoporous alumina masks,” Appl. Phys. Lett. 88(13), 133121 (2006).
    [CrossRef]
  8. S. Wen, M. Jung, O.-S. Joo, and S.-I. Mho, “EDLC characteristics with high specific capacitance of the CNT electrodes grown on nanoporous alumina templates,” Curr. Appl. Phys. 6(6), 1012–1015 (2006).
    [CrossRef]
  9. H. Pan, W. Chen, Y. P. Feng, W. Ji, and J. Lin, “Optical limiting properties of metal nanowires,” Appl. Phys. Lett. 88(22), 223106 (2006).
    [CrossRef]
  10. R. L. Sutherland, Handbook of Nonlinear Optics, (New York, NY: Marcel Dekker Inc., 2003).
  11. D. McMorrow, W. Lotshaw, and G. A. Kenney-Wallace, “Femtosecond optical Kerr studies on the origin of the nonlinear responses in simple liquids,” IEEE J. Quantum Electron. 24(2), 443–454 (1988).
    [CrossRef]
  12. K. Minoshima, M. Taiji, and T. Kobayashi, “Femtosecond time-resolved interferometry for the determination of complex nonlinear susceptibility,” Opt. Lett. 16(21), 1683–1685 (1991).
    [CrossRef] [PubMed]
  13. A. P. Savintsev and A. I. Temrokov, “On the surface states in Magnesia and Baria,” Tech. Phys. 47(4), 497–498 (2002).
    [CrossRef]
  14. S. K. Morrison and Y. S. Kivshar, “Tamm states and nonlinear surface modes in photonic crystals,” Opt. Commun. 266(1), 323–326 (2006).
    [CrossRef]
  15. J. E. Sipe and R. W. Boyd, “Nonlinear susceptibility of composite optical materials in the Maxwell Garnett model,” Phys. Rev. A 46(3), 1614–1629 (1992).
    [CrossRef] [PubMed]
  16. R. K. Wangsness, Electromagnetic Fields, 2nd Ed., (New York, NY: Wiley, 1986).
  17. O. Apel, K. Mann, and G. Marowsky, “Nonlinear thickness dependence of two-photon absorptance in Al2O3 films,” Appl. Phys., A Mater. Sci. Process. 71(5), 593–596 (2000).
    [CrossRef]
  18. H. Masuda and K. Fukuda, “Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina,” Science 268(5216), 1466–1468 (1995).
    [CrossRef] [PubMed]

2006 (4)

M. Jung, S.-I. Mho, and H. L. Park, “Long-range-ordered CdTe/GaAs nanodot arrays grown as replicas of nanoporous alumina masks,” Appl. Phys. Lett. 88(13), 133121 (2006).
[CrossRef]

S. Wen, M. Jung, O.-S. Joo, and S.-I. Mho, “EDLC characteristics with high specific capacitance of the CNT electrodes grown on nanoporous alumina templates,” Curr. Appl. Phys. 6(6), 1012–1015 (2006).
[CrossRef]

H. Pan, W. Chen, Y. P. Feng, W. Ji, and J. Lin, “Optical limiting properties of metal nanowires,” Appl. Phys. Lett. 88(22), 223106 (2006).
[CrossRef]

S. K. Morrison and Y. S. Kivshar, “Tamm states and nonlinear surface modes in photonic crystals,” Opt. Commun. 266(1), 323–326 (2006).
[CrossRef]

2005 (2)

V. Gayvoronsky, V. Timoshenko, M. Brodyn, A. Galas, S. A. Nepijko, Th. Dittrich, F. Koch, I. Petric, N. Smironova, A. Eremenko, and M. Klimenkov, “Giant nonlinear optical response application for nanoporous titanium dioxide photocatalytic activity monitoring,” Phys. Status. Solidi. 2, 3303–3307 (2005).
[CrossRef]

C. Simos, L. Rodriguez, V. Skarka, X. N. Phu, N. Errien, G. Froyer, T. P. Nguyen, P. L. Rendu, and P. Pirastesh, “Measurement of the third-order nonlinear properties of conjugated polymers embedded in porous silicon and silica,” Phys. Status. Solidi. 9, 3232–3236 (2005).

2003 (1)

I. M. Tiginyanu, I. V. Kravetsky, S. Langa, G. Marowsky, J. Monecke, and H. Foll, “Porous III-V compounds as nonlinear optical materials,” Phys. Status. Solidi. 197, 549–555 (2003).
[CrossRef]

2002 (2)

Q. Wang, S. Wang, W. Huang, Q. Gong, B. Yang, and J. Shi, “Ultrafast and large third-order optical nonlinearity of porous nanosized poly-crystal LiNbO3 film,” J. Phys. D 35(5), 430–432 (2002).
[CrossRef]

A. P. Savintsev and A. I. Temrokov, “On the surface states in Magnesia and Baria,” Tech. Phys. 47(4), 497–498 (2002).
[CrossRef]

2000 (1)

O. Apel, K. Mann, and G. Marowsky, “Nonlinear thickness dependence of two-photon absorptance in Al2O3 films,” Appl. Phys., A Mater. Sci. Process. 71(5), 593–596 (2000).
[CrossRef]

1995 (1)

H. Masuda and K. Fukuda, “Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina,” Science 268(5216), 1466–1468 (1995).
[CrossRef] [PubMed]

1993 (1)

V. S. Dneprovskii, V. A. Karavanskii, V. I. Klimov, and A. P. Maslov, “Quantum size effect and pronounced nonlinearities in porous silicon,” JETP Lett. 57, 406–409 (1993).

1992 (1)

J. E. Sipe and R. W. Boyd, “Nonlinear susceptibility of composite optical materials in the Maxwell Garnett model,” Phys. Rev. A 46(3), 1614–1629 (1992).
[CrossRef] [PubMed]

1991 (1)

1988 (1)

D. McMorrow, W. Lotshaw, and G. A. Kenney-Wallace, “Femtosecond optical Kerr studies on the origin of the nonlinear responses in simple liquids,” IEEE J. Quantum Electron. 24(2), 443–454 (1988).
[CrossRef]

Apel, O.

O. Apel, K. Mann, and G. Marowsky, “Nonlinear thickness dependence of two-photon absorptance in Al2O3 films,” Appl. Phys., A Mater. Sci. Process. 71(5), 593–596 (2000).
[CrossRef]

Boyd, R. W.

J. E. Sipe and R. W. Boyd, “Nonlinear susceptibility of composite optical materials in the Maxwell Garnett model,” Phys. Rev. A 46(3), 1614–1629 (1992).
[CrossRef] [PubMed]

Brodyn, M.

V. Gayvoronsky, V. Timoshenko, M. Brodyn, A. Galas, S. A. Nepijko, Th. Dittrich, F. Koch, I. Petric, N. Smironova, A. Eremenko, and M. Klimenkov, “Giant nonlinear optical response application for nanoporous titanium dioxide photocatalytic activity monitoring,” Phys. Status. Solidi. 2, 3303–3307 (2005).
[CrossRef]

Chen, W.

H. Pan, W. Chen, Y. P. Feng, W. Ji, and J. Lin, “Optical limiting properties of metal nanowires,” Appl. Phys. Lett. 88(22), 223106 (2006).
[CrossRef]

Dittrich, Th.

V. Gayvoronsky, V. Timoshenko, M. Brodyn, A. Galas, S. A. Nepijko, Th. Dittrich, F. Koch, I. Petric, N. Smironova, A. Eremenko, and M. Klimenkov, “Giant nonlinear optical response application for nanoporous titanium dioxide photocatalytic activity monitoring,” Phys. Status. Solidi. 2, 3303–3307 (2005).
[CrossRef]

Dneprovskii, V. S.

V. S. Dneprovskii, V. A. Karavanskii, V. I. Klimov, and A. P. Maslov, “Quantum size effect and pronounced nonlinearities in porous silicon,” JETP Lett. 57, 406–409 (1993).

Eremenko, A.

V. Gayvoronsky, V. Timoshenko, M. Brodyn, A. Galas, S. A. Nepijko, Th. Dittrich, F. Koch, I. Petric, N. Smironova, A. Eremenko, and M. Klimenkov, “Giant nonlinear optical response application for nanoporous titanium dioxide photocatalytic activity monitoring,” Phys. Status. Solidi. 2, 3303–3307 (2005).
[CrossRef]

Errien, N.

C. Simos, L. Rodriguez, V. Skarka, X. N. Phu, N. Errien, G. Froyer, T. P. Nguyen, P. L. Rendu, and P. Pirastesh, “Measurement of the third-order nonlinear properties of conjugated polymers embedded in porous silicon and silica,” Phys. Status. Solidi. 9, 3232–3236 (2005).

Feng, Y. P.

H. Pan, W. Chen, Y. P. Feng, W. Ji, and J. Lin, “Optical limiting properties of metal nanowires,” Appl. Phys. Lett. 88(22), 223106 (2006).
[CrossRef]

Foll, H.

I. M. Tiginyanu, I. V. Kravetsky, S. Langa, G. Marowsky, J. Monecke, and H. Foll, “Porous III-V compounds as nonlinear optical materials,” Phys. Status. Solidi. 197, 549–555 (2003).
[CrossRef]

Froyer, G.

C. Simos, L. Rodriguez, V. Skarka, X. N. Phu, N. Errien, G. Froyer, T. P. Nguyen, P. L. Rendu, and P. Pirastesh, “Measurement of the third-order nonlinear properties of conjugated polymers embedded in porous silicon and silica,” Phys. Status. Solidi. 9, 3232–3236 (2005).

Fukuda, K.

H. Masuda and K. Fukuda, “Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina,” Science 268(5216), 1466–1468 (1995).
[CrossRef] [PubMed]

Galas, A.

V. Gayvoronsky, V. Timoshenko, M. Brodyn, A. Galas, S. A. Nepijko, Th. Dittrich, F. Koch, I. Petric, N. Smironova, A. Eremenko, and M. Klimenkov, “Giant nonlinear optical response application for nanoporous titanium dioxide photocatalytic activity monitoring,” Phys. Status. Solidi. 2, 3303–3307 (2005).
[CrossRef]

Gayvoronsky, V.

V. Gayvoronsky, V. Timoshenko, M. Brodyn, A. Galas, S. A. Nepijko, Th. Dittrich, F. Koch, I. Petric, N. Smironova, A. Eremenko, and M. Klimenkov, “Giant nonlinear optical response application for nanoporous titanium dioxide photocatalytic activity monitoring,” Phys. Status. Solidi. 2, 3303–3307 (2005).
[CrossRef]

Gong, Q.

Q. Wang, S. Wang, W. Huang, Q. Gong, B. Yang, and J. Shi, “Ultrafast and large third-order optical nonlinearity of porous nanosized poly-crystal LiNbO3 film,” J. Phys. D 35(5), 430–432 (2002).
[CrossRef]

Huang, W.

Q. Wang, S. Wang, W. Huang, Q. Gong, B. Yang, and J. Shi, “Ultrafast and large third-order optical nonlinearity of porous nanosized poly-crystal LiNbO3 film,” J. Phys. D 35(5), 430–432 (2002).
[CrossRef]

Ji, W.

H. Pan, W. Chen, Y. P. Feng, W. Ji, and J. Lin, “Optical limiting properties of metal nanowires,” Appl. Phys. Lett. 88(22), 223106 (2006).
[CrossRef]

Joo, O.-S.

S. Wen, M. Jung, O.-S. Joo, and S.-I. Mho, “EDLC characteristics with high specific capacitance of the CNT electrodes grown on nanoporous alumina templates,” Curr. Appl. Phys. 6(6), 1012–1015 (2006).
[CrossRef]

Jung, M.

S. Wen, M. Jung, O.-S. Joo, and S.-I. Mho, “EDLC characteristics with high specific capacitance of the CNT electrodes grown on nanoporous alumina templates,” Curr. Appl. Phys. 6(6), 1012–1015 (2006).
[CrossRef]

M. Jung, S.-I. Mho, and H. L. Park, “Long-range-ordered CdTe/GaAs nanodot arrays grown as replicas of nanoporous alumina masks,” Appl. Phys. Lett. 88(13), 133121 (2006).
[CrossRef]

Karavanskii, V. A.

V. S. Dneprovskii, V. A. Karavanskii, V. I. Klimov, and A. P. Maslov, “Quantum size effect and pronounced nonlinearities in porous silicon,” JETP Lett. 57, 406–409 (1993).

Kenney-Wallace, G. A.

D. McMorrow, W. Lotshaw, and G. A. Kenney-Wallace, “Femtosecond optical Kerr studies on the origin of the nonlinear responses in simple liquids,” IEEE J. Quantum Electron. 24(2), 443–454 (1988).
[CrossRef]

Kivshar, Y. S.

S. K. Morrison and Y. S. Kivshar, “Tamm states and nonlinear surface modes in photonic crystals,” Opt. Commun. 266(1), 323–326 (2006).
[CrossRef]

Klimenkov, M.

V. Gayvoronsky, V. Timoshenko, M. Brodyn, A. Galas, S. A. Nepijko, Th. Dittrich, F. Koch, I. Petric, N. Smironova, A. Eremenko, and M. Klimenkov, “Giant nonlinear optical response application for nanoporous titanium dioxide photocatalytic activity monitoring,” Phys. Status. Solidi. 2, 3303–3307 (2005).
[CrossRef]

Klimov, V. I.

V. S. Dneprovskii, V. A. Karavanskii, V. I. Klimov, and A. P. Maslov, “Quantum size effect and pronounced nonlinearities in porous silicon,” JETP Lett. 57, 406–409 (1993).

Kobayashi, T.

Koch, F.

V. Gayvoronsky, V. Timoshenko, M. Brodyn, A. Galas, S. A. Nepijko, Th. Dittrich, F. Koch, I. Petric, N. Smironova, A. Eremenko, and M. Klimenkov, “Giant nonlinear optical response application for nanoporous titanium dioxide photocatalytic activity monitoring,” Phys. Status. Solidi. 2, 3303–3307 (2005).
[CrossRef]

Kravetsky, I. V.

I. M. Tiginyanu, I. V. Kravetsky, S. Langa, G. Marowsky, J. Monecke, and H. Foll, “Porous III-V compounds as nonlinear optical materials,” Phys. Status. Solidi. 197, 549–555 (2003).
[CrossRef]

Langa, S.

I. M. Tiginyanu, I. V. Kravetsky, S. Langa, G. Marowsky, J. Monecke, and H. Foll, “Porous III-V compounds as nonlinear optical materials,” Phys. Status. Solidi. 197, 549–555 (2003).
[CrossRef]

Lin, J.

H. Pan, W. Chen, Y. P. Feng, W. Ji, and J. Lin, “Optical limiting properties of metal nanowires,” Appl. Phys. Lett. 88(22), 223106 (2006).
[CrossRef]

Lotshaw, W.

D. McMorrow, W. Lotshaw, and G. A. Kenney-Wallace, “Femtosecond optical Kerr studies on the origin of the nonlinear responses in simple liquids,” IEEE J. Quantum Electron. 24(2), 443–454 (1988).
[CrossRef]

Mann, K.

O. Apel, K. Mann, and G. Marowsky, “Nonlinear thickness dependence of two-photon absorptance in Al2O3 films,” Appl. Phys., A Mater. Sci. Process. 71(5), 593–596 (2000).
[CrossRef]

Marowsky, G.

I. M. Tiginyanu, I. V. Kravetsky, S. Langa, G. Marowsky, J. Monecke, and H. Foll, “Porous III-V compounds as nonlinear optical materials,” Phys. Status. Solidi. 197, 549–555 (2003).
[CrossRef]

O. Apel, K. Mann, and G. Marowsky, “Nonlinear thickness dependence of two-photon absorptance in Al2O3 films,” Appl. Phys., A Mater. Sci. Process. 71(5), 593–596 (2000).
[CrossRef]

Maslov, A. P.

V. S. Dneprovskii, V. A. Karavanskii, V. I. Klimov, and A. P. Maslov, “Quantum size effect and pronounced nonlinearities in porous silicon,” JETP Lett. 57, 406–409 (1993).

Masuda, H.

H. Masuda and K. Fukuda, “Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina,” Science 268(5216), 1466–1468 (1995).
[CrossRef] [PubMed]

McMorrow, D.

D. McMorrow, W. Lotshaw, and G. A. Kenney-Wallace, “Femtosecond optical Kerr studies on the origin of the nonlinear responses in simple liquids,” IEEE J. Quantum Electron. 24(2), 443–454 (1988).
[CrossRef]

Mho, S.-I.

M. Jung, S.-I. Mho, and H. L. Park, “Long-range-ordered CdTe/GaAs nanodot arrays grown as replicas of nanoporous alumina masks,” Appl. Phys. Lett. 88(13), 133121 (2006).
[CrossRef]

S. Wen, M. Jung, O.-S. Joo, and S.-I. Mho, “EDLC characteristics with high specific capacitance of the CNT electrodes grown on nanoporous alumina templates,” Curr. Appl. Phys. 6(6), 1012–1015 (2006).
[CrossRef]

Minoshima, K.

Monecke, J.

I. M. Tiginyanu, I. V. Kravetsky, S. Langa, G. Marowsky, J. Monecke, and H. Foll, “Porous III-V compounds as nonlinear optical materials,” Phys. Status. Solidi. 197, 549–555 (2003).
[CrossRef]

Morrison, S. K.

S. K. Morrison and Y. S. Kivshar, “Tamm states and nonlinear surface modes in photonic crystals,” Opt. Commun. 266(1), 323–326 (2006).
[CrossRef]

Nepijko, S. A.

V. Gayvoronsky, V. Timoshenko, M. Brodyn, A. Galas, S. A. Nepijko, Th. Dittrich, F. Koch, I. Petric, N. Smironova, A. Eremenko, and M. Klimenkov, “Giant nonlinear optical response application for nanoporous titanium dioxide photocatalytic activity monitoring,” Phys. Status. Solidi. 2, 3303–3307 (2005).
[CrossRef]

Nguyen, T. P.

C. Simos, L. Rodriguez, V. Skarka, X. N. Phu, N. Errien, G. Froyer, T. P. Nguyen, P. L. Rendu, and P. Pirastesh, “Measurement of the third-order nonlinear properties of conjugated polymers embedded in porous silicon and silica,” Phys. Status. Solidi. 9, 3232–3236 (2005).

Pan, H.

H. Pan, W. Chen, Y. P. Feng, W. Ji, and J. Lin, “Optical limiting properties of metal nanowires,” Appl. Phys. Lett. 88(22), 223106 (2006).
[CrossRef]

Park, H. L.

M. Jung, S.-I. Mho, and H. L. Park, “Long-range-ordered CdTe/GaAs nanodot arrays grown as replicas of nanoporous alumina masks,” Appl. Phys. Lett. 88(13), 133121 (2006).
[CrossRef]

Petric, I.

V. Gayvoronsky, V. Timoshenko, M. Brodyn, A. Galas, S. A. Nepijko, Th. Dittrich, F. Koch, I. Petric, N. Smironova, A. Eremenko, and M. Klimenkov, “Giant nonlinear optical response application for nanoporous titanium dioxide photocatalytic activity monitoring,” Phys. Status. Solidi. 2, 3303–3307 (2005).
[CrossRef]

Phu, X. N.

C. Simos, L. Rodriguez, V. Skarka, X. N. Phu, N. Errien, G. Froyer, T. P. Nguyen, P. L. Rendu, and P. Pirastesh, “Measurement of the third-order nonlinear properties of conjugated polymers embedded in porous silicon and silica,” Phys. Status. Solidi. 9, 3232–3236 (2005).

Pirastesh, P.

C. Simos, L. Rodriguez, V. Skarka, X. N. Phu, N. Errien, G. Froyer, T. P. Nguyen, P. L. Rendu, and P. Pirastesh, “Measurement of the third-order nonlinear properties of conjugated polymers embedded in porous silicon and silica,” Phys. Status. Solidi. 9, 3232–3236 (2005).

Rendu, P. L.

C. Simos, L. Rodriguez, V. Skarka, X. N. Phu, N. Errien, G. Froyer, T. P. Nguyen, P. L. Rendu, and P. Pirastesh, “Measurement of the third-order nonlinear properties of conjugated polymers embedded in porous silicon and silica,” Phys. Status. Solidi. 9, 3232–3236 (2005).

Rodriguez, L.

C. Simos, L. Rodriguez, V. Skarka, X. N. Phu, N. Errien, G. Froyer, T. P. Nguyen, P. L. Rendu, and P. Pirastesh, “Measurement of the third-order nonlinear properties of conjugated polymers embedded in porous silicon and silica,” Phys. Status. Solidi. 9, 3232–3236 (2005).

Savintsev, A. P.

A. P. Savintsev and A. I. Temrokov, “On the surface states in Magnesia and Baria,” Tech. Phys. 47(4), 497–498 (2002).
[CrossRef]

Shi, J.

Q. Wang, S. Wang, W. Huang, Q. Gong, B. Yang, and J. Shi, “Ultrafast and large third-order optical nonlinearity of porous nanosized poly-crystal LiNbO3 film,” J. Phys. D 35(5), 430–432 (2002).
[CrossRef]

Simos, C.

C. Simos, L. Rodriguez, V. Skarka, X. N. Phu, N. Errien, G. Froyer, T. P. Nguyen, P. L. Rendu, and P. Pirastesh, “Measurement of the third-order nonlinear properties of conjugated polymers embedded in porous silicon and silica,” Phys. Status. Solidi. 9, 3232–3236 (2005).

Sipe, J. E.

J. E. Sipe and R. W. Boyd, “Nonlinear susceptibility of composite optical materials in the Maxwell Garnett model,” Phys. Rev. A 46(3), 1614–1629 (1992).
[CrossRef] [PubMed]

Skarka, V.

C. Simos, L. Rodriguez, V. Skarka, X. N. Phu, N. Errien, G. Froyer, T. P. Nguyen, P. L. Rendu, and P. Pirastesh, “Measurement of the third-order nonlinear properties of conjugated polymers embedded in porous silicon and silica,” Phys. Status. Solidi. 9, 3232–3236 (2005).

Smironova, N.

V. Gayvoronsky, V. Timoshenko, M. Brodyn, A. Galas, S. A. Nepijko, Th. Dittrich, F. Koch, I. Petric, N. Smironova, A. Eremenko, and M. Klimenkov, “Giant nonlinear optical response application for nanoporous titanium dioxide photocatalytic activity monitoring,” Phys. Status. Solidi. 2, 3303–3307 (2005).
[CrossRef]

Taiji, M.

Temrokov, A. I.

A. P. Savintsev and A. I. Temrokov, “On the surface states in Magnesia and Baria,” Tech. Phys. 47(4), 497–498 (2002).
[CrossRef]

Tiginyanu, I. M.

I. M. Tiginyanu, I. V. Kravetsky, S. Langa, G. Marowsky, J. Monecke, and H. Foll, “Porous III-V compounds as nonlinear optical materials,” Phys. Status. Solidi. 197, 549–555 (2003).
[CrossRef]

Timoshenko, V.

V. Gayvoronsky, V. Timoshenko, M. Brodyn, A. Galas, S. A. Nepijko, Th. Dittrich, F. Koch, I. Petric, N. Smironova, A. Eremenko, and M. Klimenkov, “Giant nonlinear optical response application for nanoporous titanium dioxide photocatalytic activity monitoring,” Phys. Status. Solidi. 2, 3303–3307 (2005).
[CrossRef]

Wang, Q.

Q. Wang, S. Wang, W. Huang, Q. Gong, B. Yang, and J. Shi, “Ultrafast and large third-order optical nonlinearity of porous nanosized poly-crystal LiNbO3 film,” J. Phys. D 35(5), 430–432 (2002).
[CrossRef]

Wang, S.

Q. Wang, S. Wang, W. Huang, Q. Gong, B. Yang, and J. Shi, “Ultrafast and large third-order optical nonlinearity of porous nanosized poly-crystal LiNbO3 film,” J. Phys. D 35(5), 430–432 (2002).
[CrossRef]

Wen, S.

S. Wen, M. Jung, O.-S. Joo, and S.-I. Mho, “EDLC characteristics with high specific capacitance of the CNT electrodes grown on nanoporous alumina templates,” Curr. Appl. Phys. 6(6), 1012–1015 (2006).
[CrossRef]

Yang, B.

Q. Wang, S. Wang, W. Huang, Q. Gong, B. Yang, and J. Shi, “Ultrafast and large third-order optical nonlinearity of porous nanosized poly-crystal LiNbO3 film,” J. Phys. D 35(5), 430–432 (2002).
[CrossRef]

Appl. Phys. Lett. (2)

M. Jung, S.-I. Mho, and H. L. Park, “Long-range-ordered CdTe/GaAs nanodot arrays grown as replicas of nanoporous alumina masks,” Appl. Phys. Lett. 88(13), 133121 (2006).
[CrossRef]

H. Pan, W. Chen, Y. P. Feng, W. Ji, and J. Lin, “Optical limiting properties of metal nanowires,” Appl. Phys. Lett. 88(22), 223106 (2006).
[CrossRef]

Appl. Phys., A Mater. Sci. Process. (1)

O. Apel, K. Mann, and G. Marowsky, “Nonlinear thickness dependence of two-photon absorptance in Al2O3 films,” Appl. Phys., A Mater. Sci. Process. 71(5), 593–596 (2000).
[CrossRef]

Curr. Appl. Phys. (1)

S. Wen, M. Jung, O.-S. Joo, and S.-I. Mho, “EDLC characteristics with high specific capacitance of the CNT electrodes grown on nanoporous alumina templates,” Curr. Appl. Phys. 6(6), 1012–1015 (2006).
[CrossRef]

IEEE J. Quantum Electron. (1)

D. McMorrow, W. Lotshaw, and G. A. Kenney-Wallace, “Femtosecond optical Kerr studies on the origin of the nonlinear responses in simple liquids,” IEEE J. Quantum Electron. 24(2), 443–454 (1988).
[CrossRef]

J. Phys. D (1)

Q. Wang, S. Wang, W. Huang, Q. Gong, B. Yang, and J. Shi, “Ultrafast and large third-order optical nonlinearity of porous nanosized poly-crystal LiNbO3 film,” J. Phys. D 35(5), 430–432 (2002).
[CrossRef]

JETP Lett. (1)

V. S. Dneprovskii, V. A. Karavanskii, V. I. Klimov, and A. P. Maslov, “Quantum size effect and pronounced nonlinearities in porous silicon,” JETP Lett. 57, 406–409 (1993).

Opt. Commun. (1)

S. K. Morrison and Y. S. Kivshar, “Tamm states and nonlinear surface modes in photonic crystals,” Opt. Commun. 266(1), 323–326 (2006).
[CrossRef]

Opt. Lett. (1)

Phys. Rev. A (1)

J. E. Sipe and R. W. Boyd, “Nonlinear susceptibility of composite optical materials in the Maxwell Garnett model,” Phys. Rev. A 46(3), 1614–1629 (1992).
[CrossRef] [PubMed]

Phys. Status. Solidi. (3)

V. Gayvoronsky, V. Timoshenko, M. Brodyn, A. Galas, S. A. Nepijko, Th. Dittrich, F. Koch, I. Petric, N. Smironova, A. Eremenko, and M. Klimenkov, “Giant nonlinear optical response application for nanoporous titanium dioxide photocatalytic activity monitoring,” Phys. Status. Solidi. 2, 3303–3307 (2005).
[CrossRef]

C. Simos, L. Rodriguez, V. Skarka, X. N. Phu, N. Errien, G. Froyer, T. P. Nguyen, P. L. Rendu, and P. Pirastesh, “Measurement of the third-order nonlinear properties of conjugated polymers embedded in porous silicon and silica,” Phys. Status. Solidi. 9, 3232–3236 (2005).

I. M. Tiginyanu, I. V. Kravetsky, S. Langa, G. Marowsky, J. Monecke, and H. Foll, “Porous III-V compounds as nonlinear optical materials,” Phys. Status. Solidi. 197, 549–555 (2003).
[CrossRef]

Science (1)

H. Masuda and K. Fukuda, “Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina,” Science 268(5216), 1466–1468 (1995).
[CrossRef] [PubMed]

Tech. Phys. (1)

A. P. Savintsev and A. I. Temrokov, “On the surface states in Magnesia and Baria,” Tech. Phys. 47(4), 497–498 (2002).
[CrossRef]

Other (3)

R. L. Sutherland, Handbook of Nonlinear Optics, (New York, NY: Marcel Dekker Inc., 2003).

R. K. Wangsness, Electromagnetic Fields, 2nd Ed., (New York, NY: Wiley, 1986).

M. Allendorf, P. Hesketh, “Metal organic frameworks for chemical recognition,” SPIE Newsroom, June 2009, 10.1117/2.1200905.1512.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

SEM images of the 615 nm-thick AAO film: (a) top- (b) side- and (c) cross-view.

Fig. 2
Fig. 2

Morphologies of the AAO films with different number densities of pores: (a) 1.19×1010 (APD1), (b) 2.12×1010 (APD2) and (c) 2.96×1010 cm−2 (APD3), and pore size in each film is (a) 34, (b) 31.2 and (c) 19 nm, respectively. The film thickness of all the three films is 615 nm.

Fig. 3
Fig. 3

Morphologies of the AAO films with different pore sizes: (a) 25 (APS1), (b) 34 (APS2) and (c) 62 nm (APS3) (diameter is estimated by approximating each hexagonal pore with a spherical cylinder). The film thickness of all the three films is 615 nm.

Fig. 4
Fig. 4

Linear absorption coefficients of AAO samples APD1–3 with varying pore number density.

Fig. 5
Fig. 5

OKE signals for AAO films APL1–4 with different thicknesses. The nonlinear response is not dependent on the film thickness, revealing the homogeneity of the samples (see Table 1).

Fig. 6
Fig. 6

OKE signals for AAO films APD1–3 with different pore number densities. The nonlinear response slightly decreased as the pore number density was increased.

Fig. 7
Fig. 7

OKE signals for AAO films APS1–3 with different pore sizes. The nonlinear response doubled when the pore size was increased from 25 nm (APS1) to 62 nm (APS3).

Tables (3)

Tables Icon

Table 1 Structural details and magnitudes of χ(3) for samples APL1–4 with different film thicknesses.

Tables Icon

Table 2 Structural details and magnitudes of χ(3) for AAO films with different pore number densities.

Tables Icon

Table 3 Structural details and magnitudes of χ(3) for AAO films with different pore sizes.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

χs(3)=χr(3)(IsIr)1/2(nsnr)2(LrLs)αLsexp(αLs2)[1exp(αLs)],

Metrics