Abstract

We report on a 25 W continuous wave narrow linewidth (< 2.3 MHz) 589 nm laser by efficient (> 95%) coherent beam combination of two narrow linewidth (< 1.5 MHz) Raman fiber amplifiers with a Mach-Zehnder interferometer scheme and frequency doubling in an external resonant cavity with an efficiency of 86%. The results demonstrate the narrow linewidth Raman fiber amplifier technology as a promising solution for developing laser for sodium laser guide star adaptive optics.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Feng, S. Huang, A. Shirakawa, and K. Ueda, “589nm light source based on Raman fiber laser,” Jpn. J. Appl. Phys. 43(No. 6A), L722–L724 (2004).
    [CrossRef]
  2. D. Georgiev, V. P. Gapontsev, A. G. Dronov, M. Y. Vyatkin, A. B. Rulkov, S. V. Popov, and J. R. Taylor, “Watts-level frequency doubling of a narrow line linearly polarized Raman fiber laser to 589nm,” Opt. Express 13(18), 6772–6776 (2005).
    [CrossRef] [PubMed]
  3. D. Bonaccini Calia, W. Hackenberg, S. Chernikov, Y. Feng, and L. Taylor, “AFIRE: fiber Raman laser for laser guide star adaptive optics,” Proc. SPIE 6272, 62721M (2006).
    [CrossRef]
  4. P. Dupriez, C. Farrell, M. Ibsen, J. K. Sahu, J. Kim, C. Codemard, Y. Jeong, D. J. Richardson, and J. Nilsson, “1 W average power at 589 nm from a frequency doubled pulsed Raman fïber MOPA system,” Proc. SPIE 6102, 61021G (2006).
    [CrossRef]
  5. Y. Feng, L. Taylor, and D. Bonaccini Calia, “Multiwatts narrow linewidth fiber Raman amplifiers,” Opt. Express 16(15), 10927–10932 (2008).
    [CrossRef] [PubMed]
  6. Y. Feng, L. Taylor, and D. Bonaccini Calia, ““20W CW, 4MHz linewidth Raman fiber amplifier with SHG to 589nm,” Photonics West 2009 post-deadline paper,” Proc. SPIE 7195, xvii–xviii (2009).
  7. L. Taylor, Y. Feng, and D. B. Calia, “High power narrowband 589 nm frequency doubled fibre laser source,” Opt. Express 17(17), 14687–14693 (2009).
    [CrossRef] [PubMed]
  8. A. Shirakawa, H. Maruyama, K. Ueda, C. B. Olausson, J. K. Lyngsø, and J. Broeng, “High-power Yb-doped photonic bandgap fiber amplifier at 1150-1200 nm,” Opt. Express 17(2), 447–454 (2009).
    [CrossRef] [PubMed]
  9. A. B. Rulkov, A. A. Ferin, S. V. Popov, J. R. Taylor, I. Razdobreev, L. Bigot, and G. Bouwmans, “Narrow-line, 1178nm CW bismuth-doped fiber laser with 6.4W output for direct frequency doubling,” Opt. Express 15(9), 5473–5476 (2007).
    [CrossRef] [PubMed]
  10. J. Dawson, A. Drobshoff, R. Beach, M. Messerly, S. Payne, A. Brown, D. Pennington, D. Bamford, S. Sharpe, and D. Cook, “Multi-watt 589nm fiber laser source,” Proc. SPIE 6102, 61021F (2006).
    [CrossRef]
  11. A. S. Kurkov, “Oscillation spectral range of Yb-doped fiber lasers,” Laser Phys. Lett. 4(2), 93–102 (2007).
    [CrossRef]
  12. E. M. Dianov, A. V. Shubin, M. A. Melkumov, O. I. Medvedkov, and I. A. Bufetov, “High-power cw bismuth-fiber lasers,” J. Opt. Soc. Am. B 24(8), 1749–1755 (2007).
    [CrossRef]
  13. European Southern Observatory, Four Laser Guide Star Facility (4LGSF), http://www.eso.org/projects/aot/DSM/4LGSF.html .
  14. R. W. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31(2), 97–105 (1983).
    [CrossRef]

2009

2008

2007

2006

J. Dawson, A. Drobshoff, R. Beach, M. Messerly, S. Payne, A. Brown, D. Pennington, D. Bamford, S. Sharpe, and D. Cook, “Multi-watt 589nm fiber laser source,” Proc. SPIE 6102, 61021F (2006).
[CrossRef]

D. Bonaccini Calia, W. Hackenberg, S. Chernikov, Y. Feng, and L. Taylor, “AFIRE: fiber Raman laser for laser guide star adaptive optics,” Proc. SPIE 6272, 62721M (2006).
[CrossRef]

P. Dupriez, C. Farrell, M. Ibsen, J. K. Sahu, J. Kim, C. Codemard, Y. Jeong, D. J. Richardson, and J. Nilsson, “1 W average power at 589 nm from a frequency doubled pulsed Raman fïber MOPA system,” Proc. SPIE 6102, 61021G (2006).
[CrossRef]

2005

2004

Y. Feng, S. Huang, A. Shirakawa, and K. Ueda, “589nm light source based on Raman fiber laser,” Jpn. J. Appl. Phys. 43(No. 6A), L722–L724 (2004).
[CrossRef]

1983

R. W. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31(2), 97–105 (1983).
[CrossRef]

Bamford, D.

J. Dawson, A. Drobshoff, R. Beach, M. Messerly, S. Payne, A. Brown, D. Pennington, D. Bamford, S. Sharpe, and D. Cook, “Multi-watt 589nm fiber laser source,” Proc. SPIE 6102, 61021F (2006).
[CrossRef]

Beach, R.

J. Dawson, A. Drobshoff, R. Beach, M. Messerly, S. Payne, A. Brown, D. Pennington, D. Bamford, S. Sharpe, and D. Cook, “Multi-watt 589nm fiber laser source,” Proc. SPIE 6102, 61021F (2006).
[CrossRef]

Bigot, L.

Bonaccini Calia, D.

Y. Feng, L. Taylor, and D. Bonaccini Calia, ““20W CW, 4MHz linewidth Raman fiber amplifier with SHG to 589nm,” Photonics West 2009 post-deadline paper,” Proc. SPIE 7195, xvii–xviii (2009).

Y. Feng, L. Taylor, and D. Bonaccini Calia, “Multiwatts narrow linewidth fiber Raman amplifiers,” Opt. Express 16(15), 10927–10932 (2008).
[CrossRef] [PubMed]

D. Bonaccini Calia, W. Hackenberg, S. Chernikov, Y. Feng, and L. Taylor, “AFIRE: fiber Raman laser for laser guide star adaptive optics,” Proc. SPIE 6272, 62721M (2006).
[CrossRef]

Bouwmans, G.

Broeng, J.

Brown, A.

J. Dawson, A. Drobshoff, R. Beach, M. Messerly, S. Payne, A. Brown, D. Pennington, D. Bamford, S. Sharpe, and D. Cook, “Multi-watt 589nm fiber laser source,” Proc. SPIE 6102, 61021F (2006).
[CrossRef]

Bufetov, I. A.

Calia, D. B.

Chernikov, S.

D. Bonaccini Calia, W. Hackenberg, S. Chernikov, Y. Feng, and L. Taylor, “AFIRE: fiber Raman laser for laser guide star adaptive optics,” Proc. SPIE 6272, 62721M (2006).
[CrossRef]

Codemard, C.

P. Dupriez, C. Farrell, M. Ibsen, J. K. Sahu, J. Kim, C. Codemard, Y. Jeong, D. J. Richardson, and J. Nilsson, “1 W average power at 589 nm from a frequency doubled pulsed Raman fïber MOPA system,” Proc. SPIE 6102, 61021G (2006).
[CrossRef]

Cook, D.

J. Dawson, A. Drobshoff, R. Beach, M. Messerly, S. Payne, A. Brown, D. Pennington, D. Bamford, S. Sharpe, and D. Cook, “Multi-watt 589nm fiber laser source,” Proc. SPIE 6102, 61021F (2006).
[CrossRef]

Dawson, J.

J. Dawson, A. Drobshoff, R. Beach, M. Messerly, S. Payne, A. Brown, D. Pennington, D. Bamford, S. Sharpe, and D. Cook, “Multi-watt 589nm fiber laser source,” Proc. SPIE 6102, 61021F (2006).
[CrossRef]

Dianov, E. M.

Drever, R. W.

R. W. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31(2), 97–105 (1983).
[CrossRef]

Drobshoff, A.

J. Dawson, A. Drobshoff, R. Beach, M. Messerly, S. Payne, A. Brown, D. Pennington, D. Bamford, S. Sharpe, and D. Cook, “Multi-watt 589nm fiber laser source,” Proc. SPIE 6102, 61021F (2006).
[CrossRef]

Dronov, A. G.

Dupriez, P.

P. Dupriez, C. Farrell, M. Ibsen, J. K. Sahu, J. Kim, C. Codemard, Y. Jeong, D. J. Richardson, and J. Nilsson, “1 W average power at 589 nm from a frequency doubled pulsed Raman fïber MOPA system,” Proc. SPIE 6102, 61021G (2006).
[CrossRef]

Farrell, C.

P. Dupriez, C. Farrell, M. Ibsen, J. K. Sahu, J. Kim, C. Codemard, Y. Jeong, D. J. Richardson, and J. Nilsson, “1 W average power at 589 nm from a frequency doubled pulsed Raman fïber MOPA system,” Proc. SPIE 6102, 61021G (2006).
[CrossRef]

Feng, Y.

L. Taylor, Y. Feng, and D. B. Calia, “High power narrowband 589 nm frequency doubled fibre laser source,” Opt. Express 17(17), 14687–14693 (2009).
[CrossRef] [PubMed]

Y. Feng, L. Taylor, and D. Bonaccini Calia, ““20W CW, 4MHz linewidth Raman fiber amplifier with SHG to 589nm,” Photonics West 2009 post-deadline paper,” Proc. SPIE 7195, xvii–xviii (2009).

Y. Feng, L. Taylor, and D. Bonaccini Calia, “Multiwatts narrow linewidth fiber Raman amplifiers,” Opt. Express 16(15), 10927–10932 (2008).
[CrossRef] [PubMed]

D. Bonaccini Calia, W. Hackenberg, S. Chernikov, Y. Feng, and L. Taylor, “AFIRE: fiber Raman laser for laser guide star adaptive optics,” Proc. SPIE 6272, 62721M (2006).
[CrossRef]

Y. Feng, S. Huang, A. Shirakawa, and K. Ueda, “589nm light source based on Raman fiber laser,” Jpn. J. Appl. Phys. 43(No. 6A), L722–L724 (2004).
[CrossRef]

Ferin, A. A.

Ford, G. M.

R. W. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31(2), 97–105 (1983).
[CrossRef]

Gapontsev, V. P.

Georgiev, D.

Hackenberg, W.

D. Bonaccini Calia, W. Hackenberg, S. Chernikov, Y. Feng, and L. Taylor, “AFIRE: fiber Raman laser for laser guide star adaptive optics,” Proc. SPIE 6272, 62721M (2006).
[CrossRef]

Hall, J. L.

R. W. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31(2), 97–105 (1983).
[CrossRef]

Hough, J.

R. W. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31(2), 97–105 (1983).
[CrossRef]

Huang, S.

Y. Feng, S. Huang, A. Shirakawa, and K. Ueda, “589nm light source based on Raman fiber laser,” Jpn. J. Appl. Phys. 43(No. 6A), L722–L724 (2004).
[CrossRef]

Ibsen, M.

P. Dupriez, C. Farrell, M. Ibsen, J. K. Sahu, J. Kim, C. Codemard, Y. Jeong, D. J. Richardson, and J. Nilsson, “1 W average power at 589 nm from a frequency doubled pulsed Raman fïber MOPA system,” Proc. SPIE 6102, 61021G (2006).
[CrossRef]

Jeong, Y.

P. Dupriez, C. Farrell, M. Ibsen, J. K. Sahu, J. Kim, C. Codemard, Y. Jeong, D. J. Richardson, and J. Nilsson, “1 W average power at 589 nm from a frequency doubled pulsed Raman fïber MOPA system,” Proc. SPIE 6102, 61021G (2006).
[CrossRef]

Kim, J.

P. Dupriez, C. Farrell, M. Ibsen, J. K. Sahu, J. Kim, C. Codemard, Y. Jeong, D. J. Richardson, and J. Nilsson, “1 W average power at 589 nm from a frequency doubled pulsed Raman fïber MOPA system,” Proc. SPIE 6102, 61021G (2006).
[CrossRef]

Kowalski, F. V.

R. W. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31(2), 97–105 (1983).
[CrossRef]

Kurkov, A. S.

A. S. Kurkov, “Oscillation spectral range of Yb-doped fiber lasers,” Laser Phys. Lett. 4(2), 93–102 (2007).
[CrossRef]

Lyngsø, J. K.

Maruyama, H.

Medvedkov, O. I.

Melkumov, M. A.

Messerly, M.

J. Dawson, A. Drobshoff, R. Beach, M. Messerly, S. Payne, A. Brown, D. Pennington, D. Bamford, S. Sharpe, and D. Cook, “Multi-watt 589nm fiber laser source,” Proc. SPIE 6102, 61021F (2006).
[CrossRef]

Munley, A. J.

R. W. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31(2), 97–105 (1983).
[CrossRef]

Nilsson, J.

P. Dupriez, C. Farrell, M. Ibsen, J. K. Sahu, J. Kim, C. Codemard, Y. Jeong, D. J. Richardson, and J. Nilsson, “1 W average power at 589 nm from a frequency doubled pulsed Raman fïber MOPA system,” Proc. SPIE 6102, 61021G (2006).
[CrossRef]

Olausson, C. B.

Payne, S.

J. Dawson, A. Drobshoff, R. Beach, M. Messerly, S. Payne, A. Brown, D. Pennington, D. Bamford, S. Sharpe, and D. Cook, “Multi-watt 589nm fiber laser source,” Proc. SPIE 6102, 61021F (2006).
[CrossRef]

Pennington, D.

J. Dawson, A. Drobshoff, R. Beach, M. Messerly, S. Payne, A. Brown, D. Pennington, D. Bamford, S. Sharpe, and D. Cook, “Multi-watt 589nm fiber laser source,” Proc. SPIE 6102, 61021F (2006).
[CrossRef]

Popov, S. V.

Razdobreev, I.

Richardson, D. J.

P. Dupriez, C. Farrell, M. Ibsen, J. K. Sahu, J. Kim, C. Codemard, Y. Jeong, D. J. Richardson, and J. Nilsson, “1 W average power at 589 nm from a frequency doubled pulsed Raman fïber MOPA system,” Proc. SPIE 6102, 61021G (2006).
[CrossRef]

Rulkov, A. B.

Sahu, J. K.

P. Dupriez, C. Farrell, M. Ibsen, J. K. Sahu, J. Kim, C. Codemard, Y. Jeong, D. J. Richardson, and J. Nilsson, “1 W average power at 589 nm from a frequency doubled pulsed Raman fïber MOPA system,” Proc. SPIE 6102, 61021G (2006).
[CrossRef]

Sharpe, S.

J. Dawson, A. Drobshoff, R. Beach, M. Messerly, S. Payne, A. Brown, D. Pennington, D. Bamford, S. Sharpe, and D. Cook, “Multi-watt 589nm fiber laser source,” Proc. SPIE 6102, 61021F (2006).
[CrossRef]

Shirakawa, A.

A. Shirakawa, H. Maruyama, K. Ueda, C. B. Olausson, J. K. Lyngsø, and J. Broeng, “High-power Yb-doped photonic bandgap fiber amplifier at 1150-1200 nm,” Opt. Express 17(2), 447–454 (2009).
[CrossRef] [PubMed]

Y. Feng, S. Huang, A. Shirakawa, and K. Ueda, “589nm light source based on Raman fiber laser,” Jpn. J. Appl. Phys. 43(No. 6A), L722–L724 (2004).
[CrossRef]

Shubin, A. V.

Taylor, J. R.

Taylor, L.

Y. Feng, L. Taylor, and D. Bonaccini Calia, ““20W CW, 4MHz linewidth Raman fiber amplifier with SHG to 589nm,” Photonics West 2009 post-deadline paper,” Proc. SPIE 7195, xvii–xviii (2009).

L. Taylor, Y. Feng, and D. B. Calia, “High power narrowband 589 nm frequency doubled fibre laser source,” Opt. Express 17(17), 14687–14693 (2009).
[CrossRef] [PubMed]

Y. Feng, L. Taylor, and D. Bonaccini Calia, “Multiwatts narrow linewidth fiber Raman amplifiers,” Opt. Express 16(15), 10927–10932 (2008).
[CrossRef] [PubMed]

D. Bonaccini Calia, W. Hackenberg, S. Chernikov, Y. Feng, and L. Taylor, “AFIRE: fiber Raman laser for laser guide star adaptive optics,” Proc. SPIE 6272, 62721M (2006).
[CrossRef]

Ueda, K.

A. Shirakawa, H. Maruyama, K. Ueda, C. B. Olausson, J. K. Lyngsø, and J. Broeng, “High-power Yb-doped photonic bandgap fiber amplifier at 1150-1200 nm,” Opt. Express 17(2), 447–454 (2009).
[CrossRef] [PubMed]

Y. Feng, S. Huang, A. Shirakawa, and K. Ueda, “589nm light source based on Raman fiber laser,” Jpn. J. Appl. Phys. 43(No. 6A), L722–L724 (2004).
[CrossRef]

Vyatkin, M. Y.

Ward, H.

R. W. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31(2), 97–105 (1983).
[CrossRef]

Appl. Phys. B

R. W. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31(2), 97–105 (1983).
[CrossRef]

J. Opt. Soc. Am. B

Jpn. J. Appl. Phys.

Y. Feng, S. Huang, A. Shirakawa, and K. Ueda, “589nm light source based on Raman fiber laser,” Jpn. J. Appl. Phys. 43(No. 6A), L722–L724 (2004).
[CrossRef]

Laser Phys. Lett.

A. S. Kurkov, “Oscillation spectral range of Yb-doped fiber lasers,” Laser Phys. Lett. 4(2), 93–102 (2007).
[CrossRef]

Opt. Express

Proc. SPIE

D. Bonaccini Calia, W. Hackenberg, S. Chernikov, Y. Feng, and L. Taylor, “AFIRE: fiber Raman laser for laser guide star adaptive optics,” Proc. SPIE 6272, 62721M (2006).
[CrossRef]

P. Dupriez, C. Farrell, M. Ibsen, J. K. Sahu, J. Kim, C. Codemard, Y. Jeong, D. J. Richardson, and J. Nilsson, “1 W average power at 589 nm from a frequency doubled pulsed Raman fïber MOPA system,” Proc. SPIE 6102, 61021G (2006).
[CrossRef]

Y. Feng, L. Taylor, and D. Bonaccini Calia, ““20W CW, 4MHz linewidth Raman fiber amplifier with SHG to 589nm,” Photonics West 2009 post-deadline paper,” Proc. SPIE 7195, xvii–xviii (2009).

J. Dawson, A. Drobshoff, R. Beach, M. Messerly, S. Payne, A. Brown, D. Pennington, D. Bamford, S. Sharpe, and D. Cook, “Multi-watt 589nm fiber laser source,” Proc. SPIE 6102, 61021F (2006).
[CrossRef]

Other

European Southern Observatory, Four Laser Guide Star Facility (4LGSF), http://www.eso.org/projects/aot/DSM/4LGSF.html .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

A schematic diagram of the optical setup for coherent beam combination and external cavity resonant frequency doubling.

Fig. 2
Fig. 2

1178 nm power as a function of 1120 nm pump power from a single narrow linewidth Raman fiber amplifier.

Fig. 3
Fig. 3

Spectrum of the 1178 nm laser measured with a Fabry-Perot interferometer, which is resolution limited. The inset is a full scan over a free spectral range.

Fig. 4
Fig. 4

Typical relative phase drift between two amplifiers, starting two hours after turning on the laser, calculated from the voltage applied on the slow stretcher.

Fig. 5
Fig. 5

Power and efficiency of frequency doubled 589 nm laser generation as a function of 1178 nm laser power.

Fig. 6
Fig. 6

589 nm laser spectrum measured with a Fabry Perot interferometer. It is device resolution limited, which suggests FWHM width is < 2.3 MHz. The inset is a full scan over a free spectral range.

Fig. 7
Fig. 7

Power and phase stability test during a 15 hour test in a warmed-up condition. Power fluctuation is only 170 mW standard deviation. Phase drift is within the stretcher range. No CBC snapback event happens.

Metrics