Abstract

A technique for wavevector-resolved spectroscopic imaging of extraordinary optical transmission (EOT) is developed and tested. The approach allows a large fraction of the first Brillouin zone to be mapped at a single wavelength, thereby greatly increasing the efficiency of sensitivity mapping experiments. An axially opposed, matched pair of microscope objectives constitutes the core of the apparatus. The condensing lens defines a broad range of wavevectors incident upon the sample, while the second objective with a higher numerical aperture collects all of the light transmitted through the sample. In this way, information related to transmission efficiency over a broad range of in-plane wavevectors is preserved at different spatial coordinates in the final image. A periodically structured gold film, consisting of a square array of cylindrical pores, measuring 90 x 90 pores, 100 nm in diameter, with a lattice constant of 1.1 μm, was chosen for detailed study. Direct imaging of the EOT efficiency simultaneously across the range 0 < kx < 0.001 nm−1, or 20% of the first Brillouin zone, was accomplished, although this was not the limit of the instrument. The experiment was repeated across 21 values of the wavelength and 7 values of the refractive index, to construct a 4-dimensional data set of transmission efficiency with respect to λ, kx, and n. This technique is compatible with any of the subwavelength aperture array-based chemical sensing methods reported in the literature, however it offers faster transduction of the full spectrum of plasmonic resonant shifts.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297(5582), 820–822 (2002).
    [Crossref] [PubMed]
  2. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
    [Crossref] [PubMed]
  3. C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445(7123), 39–46 (2007).
    [Crossref] [PubMed]
  4. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
    [Crossref]
  5. H. F. Ghaemi, T. Thio, D. E. Grupp, and H. J. Lezec,“Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58(11), 6779–6782 (1998).
    [Crossref]
  6. A. Krishnan, T. Thio, T. J. Kim, H. J. Lezec, T. W. Ebbesen, P. A. Wolff, J. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, “Evanescently coupled resonance in surface plasmon enhanced transmission,” Opt. Commun. 200(1-6), 1–7 (2001).
    [Crossref]
  7. L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86(6), 1114–1117 (2001).
    [Crossref] [PubMed]
  8. J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
    [Crossref] [PubMed]
  9. Z. Y. Fan, L. Zhan, X. Hu, and Y. X. Xia, “Critical process of extraordinary optical transmission through periodic subwavelength hole array: Hole-assisted evanescent-field coupling,” Opt. Commun. 281(21), 5467–5471 (2008).
    [Crossref]
  10. H. T. Liu and P. Lalanne, “Microscopic theory of the extraordinary optical transmission,” Nature 452(7188), 728–731 (2008).
    [Crossref] [PubMed]
  11. D. R. Jackson, J. Chen, R. Qiang, F. Capolino, and A. A. Oliner, “The role of leaky plasmon waves in the directive beaming of light through a subwavelength aperture,” Opt. Express 16(26), 21271–21281 (2008).
    [Crossref] [PubMed]
  12. J. B. Masson and G. Gallot, “Coupling between surface plasmons in subwavelength hole arrays,” Phys. Rev. B 73(12), 121401 (2006).
    [Crossref]
  13. A. De Leebeeck, L. K. S. Kumar, V. de Lange, D. Sinton, R. Gordon, and A. G. Brolo, “On-chip surface-based detection with nanohole arrays,” Anal. Chem. 79(11), 4094–4100 (2007).
    [Crossref] [PubMed]
  14. N. H. Mack, J. W. Wackerly, V. Malyarchuk, J. A. Rogers, J. S. Moore, and R. G. Nuzzo, “Optical transduction of chemical forces,” Nano Lett. 7(3), 733–737 (2007).
    [Crossref] [PubMed]
  15. J. M. Yao, M. E. Stewart, J. Maria, T. W. Lee, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Seeing molecules by eye: Surface plasmon resonance imaging at visible wavelengths with high spatial resolution and submonolayer sensitivity,” Angew. Chem. Int. Ed. 47(27), 5013–5017 (2008).
    [Crossref]
  16. P. R. H. Stark, A. E. Halleck, and D. N. Larson, “Short order nanohole arrays in metals for highly sensitive probing of local indices of refraction as the basis for a highly multiplexed biosensor technology,” Methods 37(1), 37–47 (2005).
    [Crossref] [PubMed]
  17. J. C. Yang, J. Ji, J. M. Hogle, and D. N. Larson, “Multiplexed plasmonic sensing based on small-dimension nanohole arrays and intensity interrogation,” Biosens. Bioelectron. 24(8), 2334–2338 (2009).
    [Crossref] [PubMed]
  18. J. Ji, J. G. O’Connell, D. J. D. Carter, and D. N. Larson, “High-throughput nanohole array based system to monitor multiple binding events in real time,” Anal. Chem. 80(7), 2491–2498 (2008).
    [Crossref] [PubMed]
  19. J. C. Yang, J. Ji, J. M. Hogle, and D. N. Larson, “Metallic nanohole arrays on fluoropolymer substrates as small label-free real-time bioprobes,” Nano Lett. 8(9), 2718–2724 (2008).
    [Crossref] [PubMed]
  20. W. Srituravanich, N. Fang, C. Sun, Q. Luo, and X. Zhang, “Plasmonic nanolithography,” Nano Lett. 4(6), 1085–1088 (2004).
    [Crossref]
  21. P. R. H. Stark, A. E. Halleck, and D. N. Larson, “Breaking the diffraction barrier outside of the optical near-field with bright, collimated light from nanometric apertures,” Proc. Natl. Acad. Sci. U.S.A. 104(48), 18902–18906 (2007).
    [Crossref] [PubMed]
  22. J. V. Coe, K. R. Rodriguez, S. Teeters-Kennedy, K. Cilwa, J. Heer, H. Tian, and S. M. Williams, “Metal films with Arrays of tiny holes: Spectroscopy with infrared plasmonic scaffolding,” J. Phys. Chem. C 111(47), 17459–17472 (2007).
    [Crossref]
  23. K. R. Rodriguez, S. Shah, S. M. Williams, S. Teeters-Kennedy, and J. V. Coe, “Enhanced infrared absorption spectra of self-assembled alkanethiol monolayers using the extraordinary infrared transmission of metallic arrays of subwavelength apertures,” J. Chem. Phys. 121(18), 8671–8675 (2004).
    [Crossref] [PubMed]
  24. S. M. Williams, K. R. Rodriguez, S. Teeters-Kennedy, S. Shah, T. M. Rogers, A. D. Stafford, and J. V. Coe, “Scaffolding for nanotechnology: extraordinary infrared transmission of metal microarrays for stacked sensors and surface spectroscopy,” Nanotechnology 15(10), S495–S503 (2004).
    [Crossref]
  25. D. Sinton, R. Gordon, and A. G. Brolo, “Nanohole arrays in metal films as optofluidic elements: progress and potential,” Microfluidics and Nanofluidics 4(1-2), 107–116 (2008).
    [Crossref]
  26. S. M. Teeters-Kennedy, K. R. Rodriguez, T. M. Rogers, K. A. Zomchek, S. M. Williams, A. Sudnitsyn, L. Carter, V. Cherezov, M. Caffrey, and J. V. Coe, “Controlling the passage of light through metal microchannels by nanocoatings of phospholipids,” J. Phys. Chem. B 110(43), 21719–21727 (2006).
    [Crossref] [PubMed]
  27. F. Eftekhari, C. Escobedo, J. Ferreira, X. B. Duan, E. M. Girotto, A. G. Brolo, R. Gordon, and D. Sinton, “Nanoholes as nanochannels: flow-through plasmonic sensing,” Anal. Chem. 81(11), 4308–4311 (2009).
    [Crossref] [PubMed]
  28. G. Ctistis, E. Papaioannou, P. Patoka, J. Gutek, P. Fumagalli, and M. Giersig, “Optical and magnetic properties of hexagonal arrays of subwavelength holes in optically thin cobalt films,” Nano Lett. 9(1), 1–6 (2009).
    [Crossref]
  29. M. W. Docter, I. T. Young, O. M. Piciu, A. Bossche, P. F. A. Alkemade, P. M. van den Berg, and Y. Garini, “Measuring the wavelength-dependent divergence of transmission through sub-wavelength hole-arrays by spectral imaging,” Opt. Express 14(20), 9477–9482 (2006).
    [Crossref] [PubMed]
  30. S. M. Williams and J. V. Coe, “Dispersion study of the infrared transmission resonances of freestanding ni Microarrays,” Plasmonics 1(1), 87–93 (2006).
    [Crossref]
  31. E. T. Fogg, A. N. Hixson, and A. R. Thompson, “Densities and Refractive Indexes for Ethylene Glycol-Water Solutions,” Anal. Chem. 27(10), 1609–1611 (1955).
    [Crossref]
  32. J. C. McDonald, D. C. Duffy, J. R. Anderson, D. T. Chiu, H. K. Wu, O. J. A. Schueller, and G. M. Whitesides, “Fabrication of microfluidic systems in poly(dimethylsiloxane),” Electrophoresis 21(1), 27–40 (2000).
    [Crossref] [PubMed]
  33. K. L. van der Molen, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Influence of hole size on the extraordinary transmission through subwavelength hole arrays,” Appl. Phys. Lett. 85(19), 4316–4318 (2004).
    [Crossref]
  34. D. B. Murphy, Fundamentals of Light Microscopy and Electronic Imaging (Wiley-Liss, New York, 2002), p. 384.
  35. R. W. Wood, “Anomalous diffraction gratings,” Phys. Rev. 48(12), 928–936 (1935).
    [Crossref]
  36. R. W. Wood, “The anomalous dispersion of sodium vapour,” Philos. Mag. 3, 128–144 (1902).
  37. M. Sarrazin, J. P. Vigneron, and J. M. Vigoureux, “Role of Wood anomalies in optical properties of thin metallic films with a bidimensional array of subwavelength holes,” Phys. Rev. B 67(8), 085415 (2003).
    [Crossref]

2009 (3)

J. C. Yang, J. Ji, J. M. Hogle, and D. N. Larson, “Multiplexed plasmonic sensing based on small-dimension nanohole arrays and intensity interrogation,” Biosens. Bioelectron. 24(8), 2334–2338 (2009).
[Crossref] [PubMed]

F. Eftekhari, C. Escobedo, J. Ferreira, X. B. Duan, E. M. Girotto, A. G. Brolo, R. Gordon, and D. Sinton, “Nanoholes as nanochannels: flow-through plasmonic sensing,” Anal. Chem. 81(11), 4308–4311 (2009).
[Crossref] [PubMed]

G. Ctistis, E. Papaioannou, P. Patoka, J. Gutek, P. Fumagalli, and M. Giersig, “Optical and magnetic properties of hexagonal arrays of subwavelength holes in optically thin cobalt films,” Nano Lett. 9(1), 1–6 (2009).
[Crossref]

2008 (7)

D. Sinton, R. Gordon, and A. G. Brolo, “Nanohole arrays in metal films as optofluidic elements: progress and potential,” Microfluidics and Nanofluidics 4(1-2), 107–116 (2008).
[Crossref]

J. Ji, J. G. O’Connell, D. J. D. Carter, and D. N. Larson, “High-throughput nanohole array based system to monitor multiple binding events in real time,” Anal. Chem. 80(7), 2491–2498 (2008).
[Crossref] [PubMed]

J. C. Yang, J. Ji, J. M. Hogle, and D. N. Larson, “Metallic nanohole arrays on fluoropolymer substrates as small label-free real-time bioprobes,” Nano Lett. 8(9), 2718–2724 (2008).
[Crossref] [PubMed]

J. M. Yao, M. E. Stewart, J. Maria, T. W. Lee, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Seeing molecules by eye: Surface plasmon resonance imaging at visible wavelengths with high spatial resolution and submonolayer sensitivity,” Angew. Chem. Int. Ed. 47(27), 5013–5017 (2008).
[Crossref]

Z. Y. Fan, L. Zhan, X. Hu, and Y. X. Xia, “Critical process of extraordinary optical transmission through periodic subwavelength hole array: Hole-assisted evanescent-field coupling,” Opt. Commun. 281(21), 5467–5471 (2008).
[Crossref]

H. T. Liu and P. Lalanne, “Microscopic theory of the extraordinary optical transmission,” Nature 452(7188), 728–731 (2008).
[Crossref] [PubMed]

D. R. Jackson, J. Chen, R. Qiang, F. Capolino, and A. A. Oliner, “The role of leaky plasmon waves in the directive beaming of light through a subwavelength aperture,” Opt. Express 16(26), 21271–21281 (2008).
[Crossref] [PubMed]

2007 (5)

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445(7123), 39–46 (2007).
[Crossref] [PubMed]

A. De Leebeeck, L. K. S. Kumar, V. de Lange, D. Sinton, R. Gordon, and A. G. Brolo, “On-chip surface-based detection with nanohole arrays,” Anal. Chem. 79(11), 4094–4100 (2007).
[Crossref] [PubMed]

N. H. Mack, J. W. Wackerly, V. Malyarchuk, J. A. Rogers, J. S. Moore, and R. G. Nuzzo, “Optical transduction of chemical forces,” Nano Lett. 7(3), 733–737 (2007).
[Crossref] [PubMed]

P. R. H. Stark, A. E. Halleck, and D. N. Larson, “Breaking the diffraction barrier outside of the optical near-field with bright, collimated light from nanometric apertures,” Proc. Natl. Acad. Sci. U.S.A. 104(48), 18902–18906 (2007).
[Crossref] [PubMed]

J. V. Coe, K. R. Rodriguez, S. Teeters-Kennedy, K. Cilwa, J. Heer, H. Tian, and S. M. Williams, “Metal films with Arrays of tiny holes: Spectroscopy with infrared plasmonic scaffolding,” J. Phys. Chem. C 111(47), 17459–17472 (2007).
[Crossref]

2006 (4)

S. M. Teeters-Kennedy, K. R. Rodriguez, T. M. Rogers, K. A. Zomchek, S. M. Williams, A. Sudnitsyn, L. Carter, V. Cherezov, M. Caffrey, and J. V. Coe, “Controlling the passage of light through metal microchannels by nanocoatings of phospholipids,” J. Phys. Chem. B 110(43), 21719–21727 (2006).
[Crossref] [PubMed]

J. B. Masson and G. Gallot, “Coupling between surface plasmons in subwavelength hole arrays,” Phys. Rev. B 73(12), 121401 (2006).
[Crossref]

S. M. Williams and J. V. Coe, “Dispersion study of the infrared transmission resonances of freestanding ni Microarrays,” Plasmonics 1(1), 87–93 (2006).
[Crossref]

M. W. Docter, I. T. Young, O. M. Piciu, A. Bossche, P. F. A. Alkemade, P. M. van den Berg, and Y. Garini, “Measuring the wavelength-dependent divergence of transmission through sub-wavelength hole-arrays by spectral imaging,” Opt. Express 14(20), 9477–9482 (2006).
[Crossref] [PubMed]

2005 (1)

P. R. H. Stark, A. E. Halleck, and D. N. Larson, “Short order nanohole arrays in metals for highly sensitive probing of local indices of refraction as the basis for a highly multiplexed biosensor technology,” Methods 37(1), 37–47 (2005).
[Crossref] [PubMed]

2004 (5)

W. Srituravanich, N. Fang, C. Sun, Q. Luo, and X. Zhang, “Plasmonic nanolithography,” Nano Lett. 4(6), 1085–1088 (2004).
[Crossref]

K. R. Rodriguez, S. Shah, S. M. Williams, S. Teeters-Kennedy, and J. V. Coe, “Enhanced infrared absorption spectra of self-assembled alkanethiol monolayers using the extraordinary infrared transmission of metallic arrays of subwavelength apertures,” J. Chem. Phys. 121(18), 8671–8675 (2004).
[Crossref] [PubMed]

S. M. Williams, K. R. Rodriguez, S. Teeters-Kennedy, S. Shah, T. M. Rogers, A. D. Stafford, and J. V. Coe, “Scaffolding for nanotechnology: extraordinary infrared transmission of metal microarrays for stacked sensors and surface spectroscopy,” Nanotechnology 15(10), S495–S503 (2004).
[Crossref]

K. L. van der Molen, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Influence of hole size on the extraordinary transmission through subwavelength hole arrays,” Appl. Phys. Lett. 85(19), 4316–4318 (2004).
[Crossref]

J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
[Crossref] [PubMed]

2003 (2)

M. Sarrazin, J. P. Vigneron, and J. M. Vigoureux, “Role of Wood anomalies in optical properties of thin metallic films with a bidimensional array of subwavelength holes,” Phys. Rev. B 67(8), 085415 (2003).
[Crossref]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

2002 (1)

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297(5582), 820–822 (2002).
[Crossref] [PubMed]

2001 (2)

A. Krishnan, T. Thio, T. J. Kim, H. J. Lezec, T. W. Ebbesen, P. A. Wolff, J. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, “Evanescently coupled resonance in surface plasmon enhanced transmission,” Opt. Commun. 200(1-6), 1–7 (2001).
[Crossref]

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86(6), 1114–1117 (2001).
[Crossref] [PubMed]

2000 (1)

J. C. McDonald, D. C. Duffy, J. R. Anderson, D. T. Chiu, H. K. Wu, O. J. A. Schueller, and G. M. Whitesides, “Fabrication of microfluidic systems in poly(dimethylsiloxane),” Electrophoresis 21(1), 27–40 (2000).
[Crossref] [PubMed]

1998 (2)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[Crossref]

H. F. Ghaemi, T. Thio, D. E. Grupp, and H. J. Lezec,“Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58(11), 6779–6782 (1998).
[Crossref]

1955 (1)

E. T. Fogg, A. N. Hixson, and A. R. Thompson, “Densities and Refractive Indexes for Ethylene Glycol-Water Solutions,” Anal. Chem. 27(10), 1609–1611 (1955).
[Crossref]

1935 (1)

R. W. Wood, “Anomalous diffraction gratings,” Phys. Rev. 48(12), 928–936 (1935).
[Crossref]

1902 (1)

R. W. Wood, “The anomalous dispersion of sodium vapour,” Philos. Mag. 3, 128–144 (1902).

Alkemade, P. F. A.

Anderson, J. R.

J. C. McDonald, D. C. Duffy, J. R. Anderson, D. T. Chiu, H. K. Wu, O. J. A. Schueller, and G. M. Whitesides, “Fabrication of microfluidic systems in poly(dimethylsiloxane),” Electrophoresis 21(1), 27–40 (2000).
[Crossref] [PubMed]

Barnes, W. L.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

Bossche, A.

Brolo, A. G.

F. Eftekhari, C. Escobedo, J. Ferreira, X. B. Duan, E. M. Girotto, A. G. Brolo, R. Gordon, and D. Sinton, “Nanoholes as nanochannels: flow-through plasmonic sensing,” Anal. Chem. 81(11), 4308–4311 (2009).
[Crossref] [PubMed]

D. Sinton, R. Gordon, and A. G. Brolo, “Nanohole arrays in metal films as optofluidic elements: progress and potential,” Microfluidics and Nanofluidics 4(1-2), 107–116 (2008).
[Crossref]

A. De Leebeeck, L. K. S. Kumar, V. de Lange, D. Sinton, R. Gordon, and A. G. Brolo, “On-chip surface-based detection with nanohole arrays,” Anal. Chem. 79(11), 4094–4100 (2007).
[Crossref] [PubMed]

Caffrey, M.

S. M. Teeters-Kennedy, K. R. Rodriguez, T. M. Rogers, K. A. Zomchek, S. M. Williams, A. Sudnitsyn, L. Carter, V. Cherezov, M. Caffrey, and J. V. Coe, “Controlling the passage of light through metal microchannels by nanocoatings of phospholipids,” J. Phys. Chem. B 110(43), 21719–21727 (2006).
[Crossref] [PubMed]

Capolino, F.

Carter, D. J. D.

J. Ji, J. G. O’Connell, D. J. D. Carter, and D. N. Larson, “High-throughput nanohole array based system to monitor multiple binding events in real time,” Anal. Chem. 80(7), 2491–2498 (2008).
[Crossref] [PubMed]

Carter, L.

S. M. Teeters-Kennedy, K. R. Rodriguez, T. M. Rogers, K. A. Zomchek, S. M. Williams, A. Sudnitsyn, L. Carter, V. Cherezov, M. Caffrey, and J. V. Coe, “Controlling the passage of light through metal microchannels by nanocoatings of phospholipids,” J. Phys. Chem. B 110(43), 21719–21727 (2006).
[Crossref] [PubMed]

Chen, J.

Cherezov, V.

S. M. Teeters-Kennedy, K. R. Rodriguez, T. M. Rogers, K. A. Zomchek, S. M. Williams, A. Sudnitsyn, L. Carter, V. Cherezov, M. Caffrey, and J. V. Coe, “Controlling the passage of light through metal microchannels by nanocoatings of phospholipids,” J. Phys. Chem. B 110(43), 21719–21727 (2006).
[Crossref] [PubMed]

Chiu, D. T.

J. C. McDonald, D. C. Duffy, J. R. Anderson, D. T. Chiu, H. K. Wu, O. J. A. Schueller, and G. M. Whitesides, “Fabrication of microfluidic systems in poly(dimethylsiloxane),” Electrophoresis 21(1), 27–40 (2000).
[Crossref] [PubMed]

Cilwa, K.

J. V. Coe, K. R. Rodriguez, S. Teeters-Kennedy, K. Cilwa, J. Heer, H. Tian, and S. M. Williams, “Metal films with Arrays of tiny holes: Spectroscopy with infrared plasmonic scaffolding,” J. Phys. Chem. C 111(47), 17459–17472 (2007).
[Crossref]

Coe, J. V.

J. V. Coe, K. R. Rodriguez, S. Teeters-Kennedy, K. Cilwa, J. Heer, H. Tian, and S. M. Williams, “Metal films with Arrays of tiny holes: Spectroscopy with infrared plasmonic scaffolding,” J. Phys. Chem. C 111(47), 17459–17472 (2007).
[Crossref]

S. M. Teeters-Kennedy, K. R. Rodriguez, T. M. Rogers, K. A. Zomchek, S. M. Williams, A. Sudnitsyn, L. Carter, V. Cherezov, M. Caffrey, and J. V. Coe, “Controlling the passage of light through metal microchannels by nanocoatings of phospholipids,” J. Phys. Chem. B 110(43), 21719–21727 (2006).
[Crossref] [PubMed]

S. M. Williams and J. V. Coe, “Dispersion study of the infrared transmission resonances of freestanding ni Microarrays,” Plasmonics 1(1), 87–93 (2006).
[Crossref]

S. M. Williams, K. R. Rodriguez, S. Teeters-Kennedy, S. Shah, T. M. Rogers, A. D. Stafford, and J. V. Coe, “Scaffolding for nanotechnology: extraordinary infrared transmission of metal microarrays for stacked sensors and surface spectroscopy,” Nanotechnology 15(10), S495–S503 (2004).
[Crossref]

K. R. Rodriguez, S. Shah, S. M. Williams, S. Teeters-Kennedy, and J. V. Coe, “Enhanced infrared absorption spectra of self-assembled alkanethiol monolayers using the extraordinary infrared transmission of metallic arrays of subwavelength apertures,” J. Chem. Phys. 121(18), 8671–8675 (2004).
[Crossref] [PubMed]

Ctistis, G.

G. Ctistis, E. Papaioannou, P. Patoka, J. Gutek, P. Fumagalli, and M. Giersig, “Optical and magnetic properties of hexagonal arrays of subwavelength holes in optically thin cobalt films,” Nano Lett. 9(1), 1–6 (2009).
[Crossref]

de Lange, V.

A. De Leebeeck, L. K. S. Kumar, V. de Lange, D. Sinton, R. Gordon, and A. G. Brolo, “On-chip surface-based detection with nanohole arrays,” Anal. Chem. 79(11), 4094–4100 (2007).
[Crossref] [PubMed]

De Leebeeck, A.

A. De Leebeeck, L. K. S. Kumar, V. de Lange, D. Sinton, R. Gordon, and A. G. Brolo, “On-chip surface-based detection with nanohole arrays,” Anal. Chem. 79(11), 4094–4100 (2007).
[Crossref] [PubMed]

Degiron, A.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297(5582), 820–822 (2002).
[Crossref] [PubMed]

Dereux, A.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

Devaux, E.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297(5582), 820–822 (2002).
[Crossref] [PubMed]

Docter, M. W.

Duan, X. B.

F. Eftekhari, C. Escobedo, J. Ferreira, X. B. Duan, E. M. Girotto, A. G. Brolo, R. Gordon, and D. Sinton, “Nanoholes as nanochannels: flow-through plasmonic sensing,” Anal. Chem. 81(11), 4308–4311 (2009).
[Crossref] [PubMed]

Duffy, D. C.

J. C. McDonald, D. C. Duffy, J. R. Anderson, D. T. Chiu, H. K. Wu, O. J. A. Schueller, and G. M. Whitesides, “Fabrication of microfluidic systems in poly(dimethylsiloxane),” Electrophoresis 21(1), 27–40 (2000).
[Crossref] [PubMed]

Ebbesen, T. W.

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445(7123), 39–46 (2007).
[Crossref] [PubMed]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297(5582), 820–822 (2002).
[Crossref] [PubMed]

A. Krishnan, T. Thio, T. J. Kim, H. J. Lezec, T. W. Ebbesen, P. A. Wolff, J. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, “Evanescently coupled resonance in surface plasmon enhanced transmission,” Opt. Commun. 200(1-6), 1–7 (2001).
[Crossref]

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86(6), 1114–1117 (2001).
[Crossref] [PubMed]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[Crossref]

Eftekhari, F.

F. Eftekhari, C. Escobedo, J. Ferreira, X. B. Duan, E. M. Girotto, A. G. Brolo, R. Gordon, and D. Sinton, “Nanoholes as nanochannels: flow-through plasmonic sensing,” Anal. Chem. 81(11), 4308–4311 (2009).
[Crossref] [PubMed]

Escobedo, C.

F. Eftekhari, C. Escobedo, J. Ferreira, X. B. Duan, E. M. Girotto, A. G. Brolo, R. Gordon, and D. Sinton, “Nanoholes as nanochannels: flow-through plasmonic sensing,” Anal. Chem. 81(11), 4308–4311 (2009).
[Crossref] [PubMed]

Fan, Z. Y.

Z. Y. Fan, L. Zhan, X. Hu, and Y. X. Xia, “Critical process of extraordinary optical transmission through periodic subwavelength hole array: Hole-assisted evanescent-field coupling,” Opt. Commun. 281(21), 5467–5471 (2008).
[Crossref]

Fang, N.

W. Srituravanich, N. Fang, C. Sun, Q. Luo, and X. Zhang, “Plasmonic nanolithography,” Nano Lett. 4(6), 1085–1088 (2004).
[Crossref]

Ferreira, J.

F. Eftekhari, C. Escobedo, J. Ferreira, X. B. Duan, E. M. Girotto, A. G. Brolo, R. Gordon, and D. Sinton, “Nanoholes as nanochannels: flow-through plasmonic sensing,” Anal. Chem. 81(11), 4308–4311 (2009).
[Crossref] [PubMed]

Fogg, E. T.

E. T. Fogg, A. N. Hixson, and A. R. Thompson, “Densities and Refractive Indexes for Ethylene Glycol-Water Solutions,” Anal. Chem. 27(10), 1609–1611 (1955).
[Crossref]

Fumagalli, P.

G. Ctistis, E. Papaioannou, P. Patoka, J. Gutek, P. Fumagalli, and M. Giersig, “Optical and magnetic properties of hexagonal arrays of subwavelength holes in optically thin cobalt films,” Nano Lett. 9(1), 1–6 (2009).
[Crossref]

Gallot, G.

J. B. Masson and G. Gallot, “Coupling between surface plasmons in subwavelength hole arrays,” Phys. Rev. B 73(12), 121401 (2006).
[Crossref]

Garcia-Vidal, F. J.

J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
[Crossref] [PubMed]

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297(5582), 820–822 (2002).
[Crossref] [PubMed]

A. Krishnan, T. Thio, T. J. Kim, H. J. Lezec, T. W. Ebbesen, P. A. Wolff, J. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, “Evanescently coupled resonance in surface plasmon enhanced transmission,” Opt. Commun. 200(1-6), 1–7 (2001).
[Crossref]

García-Vidal, F. J.

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86(6), 1114–1117 (2001).
[Crossref] [PubMed]

Garini, Y.

Genet, C.

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445(7123), 39–46 (2007).
[Crossref] [PubMed]

Ghaemi, H. F.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[Crossref]

H. F. Ghaemi, T. Thio, D. E. Grupp, and H. J. Lezec,“Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58(11), 6779–6782 (1998).
[Crossref]

Giersig, M.

G. Ctistis, E. Papaioannou, P. Patoka, J. Gutek, P. Fumagalli, and M. Giersig, “Optical and magnetic properties of hexagonal arrays of subwavelength holes in optically thin cobalt films,” Nano Lett. 9(1), 1–6 (2009).
[Crossref]

Girotto, E. M.

F. Eftekhari, C. Escobedo, J. Ferreira, X. B. Duan, E. M. Girotto, A. G. Brolo, R. Gordon, and D. Sinton, “Nanoholes as nanochannels: flow-through plasmonic sensing,” Anal. Chem. 81(11), 4308–4311 (2009).
[Crossref] [PubMed]

Gordon, R.

F. Eftekhari, C. Escobedo, J. Ferreira, X. B. Duan, E. M. Girotto, A. G. Brolo, R. Gordon, and D. Sinton, “Nanoholes as nanochannels: flow-through plasmonic sensing,” Anal. Chem. 81(11), 4308–4311 (2009).
[Crossref] [PubMed]

D. Sinton, R. Gordon, and A. G. Brolo, “Nanohole arrays in metal films as optofluidic elements: progress and potential,” Microfluidics and Nanofluidics 4(1-2), 107–116 (2008).
[Crossref]

A. De Leebeeck, L. K. S. Kumar, V. de Lange, D. Sinton, R. Gordon, and A. G. Brolo, “On-chip surface-based detection with nanohole arrays,” Anal. Chem. 79(11), 4094–4100 (2007).
[Crossref] [PubMed]

Gray, S. K.

J. M. Yao, M. E. Stewart, J. Maria, T. W. Lee, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Seeing molecules by eye: Surface plasmon resonance imaging at visible wavelengths with high spatial resolution and submonolayer sensitivity,” Angew. Chem. Int. Ed. 47(27), 5013–5017 (2008).
[Crossref]

Grupp, D. E.

H. F. Ghaemi, T. Thio, D. E. Grupp, and H. J. Lezec,“Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58(11), 6779–6782 (1998).
[Crossref]

Gutek, J.

G. Ctistis, E. Papaioannou, P. Patoka, J. Gutek, P. Fumagalli, and M. Giersig, “Optical and magnetic properties of hexagonal arrays of subwavelength holes in optically thin cobalt films,” Nano Lett. 9(1), 1–6 (2009).
[Crossref]

Halleck, A. E.

P. R. H. Stark, A. E. Halleck, and D. N. Larson, “Breaking the diffraction barrier outside of the optical near-field with bright, collimated light from nanometric apertures,” Proc. Natl. Acad. Sci. U.S.A. 104(48), 18902–18906 (2007).
[Crossref] [PubMed]

P. R. H. Stark, A. E. Halleck, and D. N. Larson, “Short order nanohole arrays in metals for highly sensitive probing of local indices of refraction as the basis for a highly multiplexed biosensor technology,” Methods 37(1), 37–47 (2005).
[Crossref] [PubMed]

Heer, J.

J. V. Coe, K. R. Rodriguez, S. Teeters-Kennedy, K. Cilwa, J. Heer, H. Tian, and S. M. Williams, “Metal films with Arrays of tiny holes: Spectroscopy with infrared plasmonic scaffolding,” J. Phys. Chem. C 111(47), 17459–17472 (2007).
[Crossref]

Hixson, A. N.

E. T. Fogg, A. N. Hixson, and A. R. Thompson, “Densities and Refractive Indexes for Ethylene Glycol-Water Solutions,” Anal. Chem. 27(10), 1609–1611 (1955).
[Crossref]

Hogle, J. M.

J. C. Yang, J. Ji, J. M. Hogle, and D. N. Larson, “Multiplexed plasmonic sensing based on small-dimension nanohole arrays and intensity interrogation,” Biosens. Bioelectron. 24(8), 2334–2338 (2009).
[Crossref] [PubMed]

J. C. Yang, J. Ji, J. M. Hogle, and D. N. Larson, “Metallic nanohole arrays on fluoropolymer substrates as small label-free real-time bioprobes,” Nano Lett. 8(9), 2718–2724 (2008).
[Crossref] [PubMed]

Hu, X.

Z. Y. Fan, L. Zhan, X. Hu, and Y. X. Xia, “Critical process of extraordinary optical transmission through periodic subwavelength hole array: Hole-assisted evanescent-field coupling,” Opt. Commun. 281(21), 5467–5471 (2008).
[Crossref]

Jackson, D. R.

Ji, J.

J. C. Yang, J. Ji, J. M. Hogle, and D. N. Larson, “Multiplexed plasmonic sensing based on small-dimension nanohole arrays and intensity interrogation,” Biosens. Bioelectron. 24(8), 2334–2338 (2009).
[Crossref] [PubMed]

J. Ji, J. G. O’Connell, D. J. D. Carter, and D. N. Larson, “High-throughput nanohole array based system to monitor multiple binding events in real time,” Anal. Chem. 80(7), 2491–2498 (2008).
[Crossref] [PubMed]

J. C. Yang, J. Ji, J. M. Hogle, and D. N. Larson, “Metallic nanohole arrays on fluoropolymer substrates as small label-free real-time bioprobes,” Nano Lett. 8(9), 2718–2724 (2008).
[Crossref] [PubMed]

Kim, T. J.

A. Krishnan, T. Thio, T. J. Kim, H. J. Lezec, T. W. Ebbesen, P. A. Wolff, J. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, “Evanescently coupled resonance in surface plasmon enhanced transmission,” Opt. Commun. 200(1-6), 1–7 (2001).
[Crossref]

Krishnan, A.

A. Krishnan, T. Thio, T. J. Kim, H. J. Lezec, T. W. Ebbesen, P. A. Wolff, J. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, “Evanescently coupled resonance in surface plasmon enhanced transmission,” Opt. Commun. 200(1-6), 1–7 (2001).
[Crossref]

Kuipers, L.

K. L. van der Molen, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Influence of hole size on the extraordinary transmission through subwavelength hole arrays,” Appl. Phys. Lett. 85(19), 4316–4318 (2004).
[Crossref]

Kumar, L. K. S.

A. De Leebeeck, L. K. S. Kumar, V. de Lange, D. Sinton, R. Gordon, and A. G. Brolo, “On-chip surface-based detection with nanohole arrays,” Anal. Chem. 79(11), 4094–4100 (2007).
[Crossref] [PubMed]

Lalanne, P.

H. T. Liu and P. Lalanne, “Microscopic theory of the extraordinary optical transmission,” Nature 452(7188), 728–731 (2008).
[Crossref] [PubMed]

Larson, D. N.

J. C. Yang, J. Ji, J. M. Hogle, and D. N. Larson, “Multiplexed plasmonic sensing based on small-dimension nanohole arrays and intensity interrogation,” Biosens. Bioelectron. 24(8), 2334–2338 (2009).
[Crossref] [PubMed]

J. C. Yang, J. Ji, J. M. Hogle, and D. N. Larson, “Metallic nanohole arrays on fluoropolymer substrates as small label-free real-time bioprobes,” Nano Lett. 8(9), 2718–2724 (2008).
[Crossref] [PubMed]

J. Ji, J. G. O’Connell, D. J. D. Carter, and D. N. Larson, “High-throughput nanohole array based system to monitor multiple binding events in real time,” Anal. Chem. 80(7), 2491–2498 (2008).
[Crossref] [PubMed]

P. R. H. Stark, A. E. Halleck, and D. N. Larson, “Breaking the diffraction barrier outside of the optical near-field with bright, collimated light from nanometric apertures,” Proc. Natl. Acad. Sci. U.S.A. 104(48), 18902–18906 (2007).
[Crossref] [PubMed]

P. R. H. Stark, A. E. Halleck, and D. N. Larson, “Short order nanohole arrays in metals for highly sensitive probing of local indices of refraction as the basis for a highly multiplexed biosensor technology,” Methods 37(1), 37–47 (2005).
[Crossref] [PubMed]

Lee, T. W.

J. M. Yao, M. E. Stewart, J. Maria, T. W. Lee, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Seeing molecules by eye: Surface plasmon resonance imaging at visible wavelengths with high spatial resolution and submonolayer sensitivity,” Angew. Chem. Int. Ed. 47(27), 5013–5017 (2008).
[Crossref]

Lezec, H. J.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297(5582), 820–822 (2002).
[Crossref] [PubMed]

A. Krishnan, T. Thio, T. J. Kim, H. J. Lezec, T. W. Ebbesen, P. A. Wolff, J. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, “Evanescently coupled resonance in surface plasmon enhanced transmission,” Opt. Commun. 200(1-6), 1–7 (2001).
[Crossref]

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86(6), 1114–1117 (2001).
[Crossref] [PubMed]

H. F. Ghaemi, T. Thio, D. E. Grupp, and H. J. Lezec,“Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58(11), 6779–6782 (1998).
[Crossref]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[Crossref]

Linke, R. A.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297(5582), 820–822 (2002).
[Crossref] [PubMed]

Liu, H. T.

H. T. Liu and P. Lalanne, “Microscopic theory of the extraordinary optical transmission,” Nature 452(7188), 728–731 (2008).
[Crossref] [PubMed]

Luo, Q.

W. Srituravanich, N. Fang, C. Sun, Q. Luo, and X. Zhang, “Plasmonic nanolithography,” Nano Lett. 4(6), 1085–1088 (2004).
[Crossref]

Mack, N. H.

N. H. Mack, J. W. Wackerly, V. Malyarchuk, J. A. Rogers, J. S. Moore, and R. G. Nuzzo, “Optical transduction of chemical forces,” Nano Lett. 7(3), 733–737 (2007).
[Crossref] [PubMed]

Malyarchuk, V.

N. H. Mack, J. W. Wackerly, V. Malyarchuk, J. A. Rogers, J. S. Moore, and R. G. Nuzzo, “Optical transduction of chemical forces,” Nano Lett. 7(3), 733–737 (2007).
[Crossref] [PubMed]

Maria, J.

J. M. Yao, M. E. Stewart, J. Maria, T. W. Lee, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Seeing molecules by eye: Surface plasmon resonance imaging at visible wavelengths with high spatial resolution and submonolayer sensitivity,” Angew. Chem. Int. Ed. 47(27), 5013–5017 (2008).
[Crossref]

Martin-Moreno, L.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297(5582), 820–822 (2002).
[Crossref] [PubMed]

A. Krishnan, T. Thio, T. J. Kim, H. J. Lezec, T. W. Ebbesen, P. A. Wolff, J. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, “Evanescently coupled resonance in surface plasmon enhanced transmission,” Opt. Commun. 200(1-6), 1–7 (2001).
[Crossref]

Martín-Moreno, L.

J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
[Crossref] [PubMed]

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86(6), 1114–1117 (2001).
[Crossref] [PubMed]

Masson, J. B.

J. B. Masson and G. Gallot, “Coupling between surface plasmons in subwavelength hole arrays,” Phys. Rev. B 73(12), 121401 (2006).
[Crossref]

McDonald, J. C.

J. C. McDonald, D. C. Duffy, J. R. Anderson, D. T. Chiu, H. K. Wu, O. J. A. Schueller, and G. M. Whitesides, “Fabrication of microfluidic systems in poly(dimethylsiloxane),” Electrophoresis 21(1), 27–40 (2000).
[Crossref] [PubMed]

Moore, J. S.

N. H. Mack, J. W. Wackerly, V. Malyarchuk, J. A. Rogers, J. S. Moore, and R. G. Nuzzo, “Optical transduction of chemical forces,” Nano Lett. 7(3), 733–737 (2007).
[Crossref] [PubMed]

Nuzzo, R. G.

J. M. Yao, M. E. Stewart, J. Maria, T. W. Lee, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Seeing molecules by eye: Surface plasmon resonance imaging at visible wavelengths with high spatial resolution and submonolayer sensitivity,” Angew. Chem. Int. Ed. 47(27), 5013–5017 (2008).
[Crossref]

N. H. Mack, J. W. Wackerly, V. Malyarchuk, J. A. Rogers, J. S. Moore, and R. G. Nuzzo, “Optical transduction of chemical forces,” Nano Lett. 7(3), 733–737 (2007).
[Crossref] [PubMed]

O’Connell, J. G.

J. Ji, J. G. O’Connell, D. J. D. Carter, and D. N. Larson, “High-throughput nanohole array based system to monitor multiple binding events in real time,” Anal. Chem. 80(7), 2491–2498 (2008).
[Crossref] [PubMed]

Oliner, A. A.

Papaioannou, E.

G. Ctistis, E. Papaioannou, P. Patoka, J. Gutek, P. Fumagalli, and M. Giersig, “Optical and magnetic properties of hexagonal arrays of subwavelength holes in optically thin cobalt films,” Nano Lett. 9(1), 1–6 (2009).
[Crossref]

Patoka, P.

G. Ctistis, E. Papaioannou, P. Patoka, J. Gutek, P. Fumagalli, and M. Giersig, “Optical and magnetic properties of hexagonal arrays of subwavelength holes in optically thin cobalt films,” Nano Lett. 9(1), 1–6 (2009).
[Crossref]

Pellerin, K. M.

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86(6), 1114–1117 (2001).
[Crossref] [PubMed]

Pendry, J.

A. Krishnan, T. Thio, T. J. Kim, H. J. Lezec, T. W. Ebbesen, P. A. Wolff, J. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, “Evanescently coupled resonance in surface plasmon enhanced transmission,” Opt. Commun. 200(1-6), 1–7 (2001).
[Crossref]

Pendry, J. B.

J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
[Crossref] [PubMed]

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86(6), 1114–1117 (2001).
[Crossref] [PubMed]

Piciu, O. M.

Qiang, R.

Rodriguez, K. R.

J. V. Coe, K. R. Rodriguez, S. Teeters-Kennedy, K. Cilwa, J. Heer, H. Tian, and S. M. Williams, “Metal films with Arrays of tiny holes: Spectroscopy with infrared plasmonic scaffolding,” J. Phys. Chem. C 111(47), 17459–17472 (2007).
[Crossref]

S. M. Teeters-Kennedy, K. R. Rodriguez, T. M. Rogers, K. A. Zomchek, S. M. Williams, A. Sudnitsyn, L. Carter, V. Cherezov, M. Caffrey, and J. V. Coe, “Controlling the passage of light through metal microchannels by nanocoatings of phospholipids,” J. Phys. Chem. B 110(43), 21719–21727 (2006).
[Crossref] [PubMed]

S. M. Williams, K. R. Rodriguez, S. Teeters-Kennedy, S. Shah, T. M. Rogers, A. D. Stafford, and J. V. Coe, “Scaffolding for nanotechnology: extraordinary infrared transmission of metal microarrays for stacked sensors and surface spectroscopy,” Nanotechnology 15(10), S495–S503 (2004).
[Crossref]

K. R. Rodriguez, S. Shah, S. M. Williams, S. Teeters-Kennedy, and J. V. Coe, “Enhanced infrared absorption spectra of self-assembled alkanethiol monolayers using the extraordinary infrared transmission of metallic arrays of subwavelength apertures,” J. Chem. Phys. 121(18), 8671–8675 (2004).
[Crossref] [PubMed]

Rogers, J. A.

J. M. Yao, M. E. Stewart, J. Maria, T. W. Lee, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Seeing molecules by eye: Surface plasmon resonance imaging at visible wavelengths with high spatial resolution and submonolayer sensitivity,” Angew. Chem. Int. Ed. 47(27), 5013–5017 (2008).
[Crossref]

N. H. Mack, J. W. Wackerly, V. Malyarchuk, J. A. Rogers, J. S. Moore, and R. G. Nuzzo, “Optical transduction of chemical forces,” Nano Lett. 7(3), 733–737 (2007).
[Crossref] [PubMed]

Rogers, T. M.

S. M. Teeters-Kennedy, K. R. Rodriguez, T. M. Rogers, K. A. Zomchek, S. M. Williams, A. Sudnitsyn, L. Carter, V. Cherezov, M. Caffrey, and J. V. Coe, “Controlling the passage of light through metal microchannels by nanocoatings of phospholipids,” J. Phys. Chem. B 110(43), 21719–21727 (2006).
[Crossref] [PubMed]

S. M. Williams, K. R. Rodriguez, S. Teeters-Kennedy, S. Shah, T. M. Rogers, A. D. Stafford, and J. V. Coe, “Scaffolding for nanotechnology: extraordinary infrared transmission of metal microarrays for stacked sensors and surface spectroscopy,” Nanotechnology 15(10), S495–S503 (2004).
[Crossref]

Sarrazin, M.

M. Sarrazin, J. P. Vigneron, and J. M. Vigoureux, “Role of Wood anomalies in optical properties of thin metallic films with a bidimensional array of subwavelength holes,” Phys. Rev. B 67(8), 085415 (2003).
[Crossref]

Schueller, O. J. A.

J. C. McDonald, D. C. Duffy, J. R. Anderson, D. T. Chiu, H. K. Wu, O. J. A. Schueller, and G. M. Whitesides, “Fabrication of microfluidic systems in poly(dimethylsiloxane),” Electrophoresis 21(1), 27–40 (2000).
[Crossref] [PubMed]

Segerink, F. B.

K. L. van der Molen, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Influence of hole size on the extraordinary transmission through subwavelength hole arrays,” Appl. Phys. Lett. 85(19), 4316–4318 (2004).
[Crossref]

Shah, S.

S. M. Williams, K. R. Rodriguez, S. Teeters-Kennedy, S. Shah, T. M. Rogers, A. D. Stafford, and J. V. Coe, “Scaffolding for nanotechnology: extraordinary infrared transmission of metal microarrays for stacked sensors and surface spectroscopy,” Nanotechnology 15(10), S495–S503 (2004).
[Crossref]

K. R. Rodriguez, S. Shah, S. M. Williams, S. Teeters-Kennedy, and J. V. Coe, “Enhanced infrared absorption spectra of self-assembled alkanethiol monolayers using the extraordinary infrared transmission of metallic arrays of subwavelength apertures,” J. Chem. Phys. 121(18), 8671–8675 (2004).
[Crossref] [PubMed]

Sinton, D.

F. Eftekhari, C. Escobedo, J. Ferreira, X. B. Duan, E. M. Girotto, A. G. Brolo, R. Gordon, and D. Sinton, “Nanoholes as nanochannels: flow-through plasmonic sensing,” Anal. Chem. 81(11), 4308–4311 (2009).
[Crossref] [PubMed]

D. Sinton, R. Gordon, and A. G. Brolo, “Nanohole arrays in metal films as optofluidic elements: progress and potential,” Microfluidics and Nanofluidics 4(1-2), 107–116 (2008).
[Crossref]

A. De Leebeeck, L. K. S. Kumar, V. de Lange, D. Sinton, R. Gordon, and A. G. Brolo, “On-chip surface-based detection with nanohole arrays,” Anal. Chem. 79(11), 4094–4100 (2007).
[Crossref] [PubMed]

Srituravanich, W.

W. Srituravanich, N. Fang, C. Sun, Q. Luo, and X. Zhang, “Plasmonic nanolithography,” Nano Lett. 4(6), 1085–1088 (2004).
[Crossref]

Stafford, A. D.

S. M. Williams, K. R. Rodriguez, S. Teeters-Kennedy, S. Shah, T. M. Rogers, A. D. Stafford, and J. V. Coe, “Scaffolding for nanotechnology: extraordinary infrared transmission of metal microarrays for stacked sensors and surface spectroscopy,” Nanotechnology 15(10), S495–S503 (2004).
[Crossref]

Stark, P. R. H.

P. R. H. Stark, A. E. Halleck, and D. N. Larson, “Breaking the diffraction barrier outside of the optical near-field with bright, collimated light from nanometric apertures,” Proc. Natl. Acad. Sci. U.S.A. 104(48), 18902–18906 (2007).
[Crossref] [PubMed]

P. R. H. Stark, A. E. Halleck, and D. N. Larson, “Short order nanohole arrays in metals for highly sensitive probing of local indices of refraction as the basis for a highly multiplexed biosensor technology,” Methods 37(1), 37–47 (2005).
[Crossref] [PubMed]

Stewart, M. E.

J. M. Yao, M. E. Stewart, J. Maria, T. W. Lee, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Seeing molecules by eye: Surface plasmon resonance imaging at visible wavelengths with high spatial resolution and submonolayer sensitivity,” Angew. Chem. Int. Ed. 47(27), 5013–5017 (2008).
[Crossref]

Sudnitsyn, A.

S. M. Teeters-Kennedy, K. R. Rodriguez, T. M. Rogers, K. A. Zomchek, S. M. Williams, A. Sudnitsyn, L. Carter, V. Cherezov, M. Caffrey, and J. V. Coe, “Controlling the passage of light through metal microchannels by nanocoatings of phospholipids,” J. Phys. Chem. B 110(43), 21719–21727 (2006).
[Crossref] [PubMed]

Sun, C.

W. Srituravanich, N. Fang, C. Sun, Q. Luo, and X. Zhang, “Plasmonic nanolithography,” Nano Lett. 4(6), 1085–1088 (2004).
[Crossref]

Teeters-Kennedy, S.

J. V. Coe, K. R. Rodriguez, S. Teeters-Kennedy, K. Cilwa, J. Heer, H. Tian, and S. M. Williams, “Metal films with Arrays of tiny holes: Spectroscopy with infrared plasmonic scaffolding,” J. Phys. Chem. C 111(47), 17459–17472 (2007).
[Crossref]

K. R. Rodriguez, S. Shah, S. M. Williams, S. Teeters-Kennedy, and J. V. Coe, “Enhanced infrared absorption spectra of self-assembled alkanethiol monolayers using the extraordinary infrared transmission of metallic arrays of subwavelength apertures,” J. Chem. Phys. 121(18), 8671–8675 (2004).
[Crossref] [PubMed]

S. M. Williams, K. R. Rodriguez, S. Teeters-Kennedy, S. Shah, T. M. Rogers, A. D. Stafford, and J. V. Coe, “Scaffolding for nanotechnology: extraordinary infrared transmission of metal microarrays for stacked sensors and surface spectroscopy,” Nanotechnology 15(10), S495–S503 (2004).
[Crossref]

Teeters-Kennedy, S. M.

S. M. Teeters-Kennedy, K. R. Rodriguez, T. M. Rogers, K. A. Zomchek, S. M. Williams, A. Sudnitsyn, L. Carter, V. Cherezov, M. Caffrey, and J. V. Coe, “Controlling the passage of light through metal microchannels by nanocoatings of phospholipids,” J. Phys. Chem. B 110(43), 21719–21727 (2006).
[Crossref] [PubMed]

Thio, T.

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86(6), 1114–1117 (2001).
[Crossref] [PubMed]

A. Krishnan, T. Thio, T. J. Kim, H. J. Lezec, T. W. Ebbesen, P. A. Wolff, J. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, “Evanescently coupled resonance in surface plasmon enhanced transmission,” Opt. Commun. 200(1-6), 1–7 (2001).
[Crossref]

H. F. Ghaemi, T. Thio, D. E. Grupp, and H. J. Lezec,“Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58(11), 6779–6782 (1998).
[Crossref]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[Crossref]

Thompson, A. R.

E. T. Fogg, A. N. Hixson, and A. R. Thompson, “Densities and Refractive Indexes for Ethylene Glycol-Water Solutions,” Anal. Chem. 27(10), 1609–1611 (1955).
[Crossref]

Tian, H.

J. V. Coe, K. R. Rodriguez, S. Teeters-Kennedy, K. Cilwa, J. Heer, H. Tian, and S. M. Williams, “Metal films with Arrays of tiny holes: Spectroscopy with infrared plasmonic scaffolding,” J. Phys. Chem. C 111(47), 17459–17472 (2007).
[Crossref]

van den Berg, P. M.

van der Molen, K. L.

K. L. van der Molen, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Influence of hole size on the extraordinary transmission through subwavelength hole arrays,” Appl. Phys. Lett. 85(19), 4316–4318 (2004).
[Crossref]

van Hulst, N. F.

K. L. van der Molen, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Influence of hole size on the extraordinary transmission through subwavelength hole arrays,” Appl. Phys. Lett. 85(19), 4316–4318 (2004).
[Crossref]

Vigneron, J. P.

M. Sarrazin, J. P. Vigneron, and J. M. Vigoureux, “Role of Wood anomalies in optical properties of thin metallic films with a bidimensional array of subwavelength holes,” Phys. Rev. B 67(8), 085415 (2003).
[Crossref]

Vigoureux, J. M.

M. Sarrazin, J. P. Vigneron, and J. M. Vigoureux, “Role of Wood anomalies in optical properties of thin metallic films with a bidimensional array of subwavelength holes,” Phys. Rev. B 67(8), 085415 (2003).
[Crossref]

Wackerly, J. W.

N. H. Mack, J. W. Wackerly, V. Malyarchuk, J. A. Rogers, J. S. Moore, and R. G. Nuzzo, “Optical transduction of chemical forces,” Nano Lett. 7(3), 733–737 (2007).
[Crossref] [PubMed]

Whitesides, G. M.

J. C. McDonald, D. C. Duffy, J. R. Anderson, D. T. Chiu, H. K. Wu, O. J. A. Schueller, and G. M. Whitesides, “Fabrication of microfluidic systems in poly(dimethylsiloxane),” Electrophoresis 21(1), 27–40 (2000).
[Crossref] [PubMed]

Williams, S. M.

J. V. Coe, K. R. Rodriguez, S. Teeters-Kennedy, K. Cilwa, J. Heer, H. Tian, and S. M. Williams, “Metal films with Arrays of tiny holes: Spectroscopy with infrared plasmonic scaffolding,” J. Phys. Chem. C 111(47), 17459–17472 (2007).
[Crossref]

S. M. Teeters-Kennedy, K. R. Rodriguez, T. M. Rogers, K. A. Zomchek, S. M. Williams, A. Sudnitsyn, L. Carter, V. Cherezov, M. Caffrey, and J. V. Coe, “Controlling the passage of light through metal microchannels by nanocoatings of phospholipids,” J. Phys. Chem. B 110(43), 21719–21727 (2006).
[Crossref] [PubMed]

S. M. Williams and J. V. Coe, “Dispersion study of the infrared transmission resonances of freestanding ni Microarrays,” Plasmonics 1(1), 87–93 (2006).
[Crossref]

S. M. Williams, K. R. Rodriguez, S. Teeters-Kennedy, S. Shah, T. M. Rogers, A. D. Stafford, and J. V. Coe, “Scaffolding for nanotechnology: extraordinary infrared transmission of metal microarrays for stacked sensors and surface spectroscopy,” Nanotechnology 15(10), S495–S503 (2004).
[Crossref]

K. R. Rodriguez, S. Shah, S. M. Williams, S. Teeters-Kennedy, and J. V. Coe, “Enhanced infrared absorption spectra of self-assembled alkanethiol monolayers using the extraordinary infrared transmission of metallic arrays of subwavelength apertures,” J. Chem. Phys. 121(18), 8671–8675 (2004).
[Crossref] [PubMed]

Wolff, P. A.

A. Krishnan, T. Thio, T. J. Kim, H. J. Lezec, T. W. Ebbesen, P. A. Wolff, J. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, “Evanescently coupled resonance in surface plasmon enhanced transmission,” Opt. Commun. 200(1-6), 1–7 (2001).
[Crossref]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[Crossref]

Wood, R. W.

R. W. Wood, “Anomalous diffraction gratings,” Phys. Rev. 48(12), 928–936 (1935).
[Crossref]

R. W. Wood, “The anomalous dispersion of sodium vapour,” Philos. Mag. 3, 128–144 (1902).

Wu, H. K.

J. C. McDonald, D. C. Duffy, J. R. Anderson, D. T. Chiu, H. K. Wu, O. J. A. Schueller, and G. M. Whitesides, “Fabrication of microfluidic systems in poly(dimethylsiloxane),” Electrophoresis 21(1), 27–40 (2000).
[Crossref] [PubMed]

Xia, Y. X.

Z. Y. Fan, L. Zhan, X. Hu, and Y. X. Xia, “Critical process of extraordinary optical transmission through periodic subwavelength hole array: Hole-assisted evanescent-field coupling,” Opt. Commun. 281(21), 5467–5471 (2008).
[Crossref]

Yang, J. C.

J. C. Yang, J. Ji, J. M. Hogle, and D. N. Larson, “Multiplexed plasmonic sensing based on small-dimension nanohole arrays and intensity interrogation,” Biosens. Bioelectron. 24(8), 2334–2338 (2009).
[Crossref] [PubMed]

J. C. Yang, J. Ji, J. M. Hogle, and D. N. Larson, “Metallic nanohole arrays on fluoropolymer substrates as small label-free real-time bioprobes,” Nano Lett. 8(9), 2718–2724 (2008).
[Crossref] [PubMed]

Yao, J. M.

J. M. Yao, M. E. Stewart, J. Maria, T. W. Lee, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Seeing molecules by eye: Surface plasmon resonance imaging at visible wavelengths with high spatial resolution and submonolayer sensitivity,” Angew. Chem. Int. Ed. 47(27), 5013–5017 (2008).
[Crossref]

Young, I. T.

Zhan, L.

Z. Y. Fan, L. Zhan, X. Hu, and Y. X. Xia, “Critical process of extraordinary optical transmission through periodic subwavelength hole array: Hole-assisted evanescent-field coupling,” Opt. Commun. 281(21), 5467–5471 (2008).
[Crossref]

Zhang, X.

W. Srituravanich, N. Fang, C. Sun, Q. Luo, and X. Zhang, “Plasmonic nanolithography,” Nano Lett. 4(6), 1085–1088 (2004).
[Crossref]

Zomchek, K. A.

S. M. Teeters-Kennedy, K. R. Rodriguez, T. M. Rogers, K. A. Zomchek, S. M. Williams, A. Sudnitsyn, L. Carter, V. Cherezov, M. Caffrey, and J. V. Coe, “Controlling the passage of light through metal microchannels by nanocoatings of phospholipids,” J. Phys. Chem. B 110(43), 21719–21727 (2006).
[Crossref] [PubMed]

Anal. Chem. (4)

A. De Leebeeck, L. K. S. Kumar, V. de Lange, D. Sinton, R. Gordon, and A. G. Brolo, “On-chip surface-based detection with nanohole arrays,” Anal. Chem. 79(11), 4094–4100 (2007).
[Crossref] [PubMed]

J. Ji, J. G. O’Connell, D. J. D. Carter, and D. N. Larson, “High-throughput nanohole array based system to monitor multiple binding events in real time,” Anal. Chem. 80(7), 2491–2498 (2008).
[Crossref] [PubMed]

F. Eftekhari, C. Escobedo, J. Ferreira, X. B. Duan, E. M. Girotto, A. G. Brolo, R. Gordon, and D. Sinton, “Nanoholes as nanochannels: flow-through plasmonic sensing,” Anal. Chem. 81(11), 4308–4311 (2009).
[Crossref] [PubMed]

E. T. Fogg, A. N. Hixson, and A. R. Thompson, “Densities and Refractive Indexes for Ethylene Glycol-Water Solutions,” Anal. Chem. 27(10), 1609–1611 (1955).
[Crossref]

Angew. Chem. Int. Ed. (1)

J. M. Yao, M. E. Stewart, J. Maria, T. W. Lee, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Seeing molecules by eye: Surface plasmon resonance imaging at visible wavelengths with high spatial resolution and submonolayer sensitivity,” Angew. Chem. Int. Ed. 47(27), 5013–5017 (2008).
[Crossref]

Appl. Phys. Lett. (1)

K. L. van der Molen, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Influence of hole size on the extraordinary transmission through subwavelength hole arrays,” Appl. Phys. Lett. 85(19), 4316–4318 (2004).
[Crossref]

Biosens. Bioelectron. (1)

J. C. Yang, J. Ji, J. M. Hogle, and D. N. Larson, “Multiplexed plasmonic sensing based on small-dimension nanohole arrays and intensity interrogation,” Biosens. Bioelectron. 24(8), 2334–2338 (2009).
[Crossref] [PubMed]

Electrophoresis (1)

J. C. McDonald, D. C. Duffy, J. R. Anderson, D. T. Chiu, H. K. Wu, O. J. A. Schueller, and G. M. Whitesides, “Fabrication of microfluidic systems in poly(dimethylsiloxane),” Electrophoresis 21(1), 27–40 (2000).
[Crossref] [PubMed]

J. Chem. Phys. (1)

K. R. Rodriguez, S. Shah, S. M. Williams, S. Teeters-Kennedy, and J. V. Coe, “Enhanced infrared absorption spectra of self-assembled alkanethiol monolayers using the extraordinary infrared transmission of metallic arrays of subwavelength apertures,” J. Chem. Phys. 121(18), 8671–8675 (2004).
[Crossref] [PubMed]

J. Phys. Chem. B (1)

S. M. Teeters-Kennedy, K. R. Rodriguez, T. M. Rogers, K. A. Zomchek, S. M. Williams, A. Sudnitsyn, L. Carter, V. Cherezov, M. Caffrey, and J. V. Coe, “Controlling the passage of light through metal microchannels by nanocoatings of phospholipids,” J. Phys. Chem. B 110(43), 21719–21727 (2006).
[Crossref] [PubMed]

J. Phys. Chem. C (1)

J. V. Coe, K. R. Rodriguez, S. Teeters-Kennedy, K. Cilwa, J. Heer, H. Tian, and S. M. Williams, “Metal films with Arrays of tiny holes: Spectroscopy with infrared plasmonic scaffolding,” J. Phys. Chem. C 111(47), 17459–17472 (2007).
[Crossref]

Methods (1)

P. R. H. Stark, A. E. Halleck, and D. N. Larson, “Short order nanohole arrays in metals for highly sensitive probing of local indices of refraction as the basis for a highly multiplexed biosensor technology,” Methods 37(1), 37–47 (2005).
[Crossref] [PubMed]

Microfluidics and Nanofluidics (1)

D. Sinton, R. Gordon, and A. G. Brolo, “Nanohole arrays in metal films as optofluidic elements: progress and potential,” Microfluidics and Nanofluidics 4(1-2), 107–116 (2008).
[Crossref]

Nano Lett. (4)

G. Ctistis, E. Papaioannou, P. Patoka, J. Gutek, P. Fumagalli, and M. Giersig, “Optical and magnetic properties of hexagonal arrays of subwavelength holes in optically thin cobalt films,” Nano Lett. 9(1), 1–6 (2009).
[Crossref]

N. H. Mack, J. W. Wackerly, V. Malyarchuk, J. A. Rogers, J. S. Moore, and R. G. Nuzzo, “Optical transduction of chemical forces,” Nano Lett. 7(3), 733–737 (2007).
[Crossref] [PubMed]

J. C. Yang, J. Ji, J. M. Hogle, and D. N. Larson, “Metallic nanohole arrays on fluoropolymer substrates as small label-free real-time bioprobes,” Nano Lett. 8(9), 2718–2724 (2008).
[Crossref] [PubMed]

W. Srituravanich, N. Fang, C. Sun, Q. Luo, and X. Zhang, “Plasmonic nanolithography,” Nano Lett. 4(6), 1085–1088 (2004).
[Crossref]

Nanotechnology (1)

S. M. Williams, K. R. Rodriguez, S. Teeters-Kennedy, S. Shah, T. M. Rogers, A. D. Stafford, and J. V. Coe, “Scaffolding for nanotechnology: extraordinary infrared transmission of metal microarrays for stacked sensors and surface spectroscopy,” Nanotechnology 15(10), S495–S503 (2004).
[Crossref]

Nature (4)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445(7123), 39–46 (2007).
[Crossref] [PubMed]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[Crossref]

H. T. Liu and P. Lalanne, “Microscopic theory of the extraordinary optical transmission,” Nature 452(7188), 728–731 (2008).
[Crossref] [PubMed]

Opt. Commun. (2)

Z. Y. Fan, L. Zhan, X. Hu, and Y. X. Xia, “Critical process of extraordinary optical transmission through periodic subwavelength hole array: Hole-assisted evanescent-field coupling,” Opt. Commun. 281(21), 5467–5471 (2008).
[Crossref]

A. Krishnan, T. Thio, T. J. Kim, H. J. Lezec, T. W. Ebbesen, P. A. Wolff, J. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, “Evanescently coupled resonance in surface plasmon enhanced transmission,” Opt. Commun. 200(1-6), 1–7 (2001).
[Crossref]

Opt. Express (2)

Philos. Mag. (1)

R. W. Wood, “The anomalous dispersion of sodium vapour,” Philos. Mag. 3, 128–144 (1902).

Phys. Rev. (1)

R. W. Wood, “Anomalous diffraction gratings,” Phys. Rev. 48(12), 928–936 (1935).
[Crossref]

Phys. Rev. B (3)

M. Sarrazin, J. P. Vigneron, and J. M. Vigoureux, “Role of Wood anomalies in optical properties of thin metallic films with a bidimensional array of subwavelength holes,” Phys. Rev. B 67(8), 085415 (2003).
[Crossref]

H. F. Ghaemi, T. Thio, D. E. Grupp, and H. J. Lezec,“Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58(11), 6779–6782 (1998).
[Crossref]

J. B. Masson and G. Gallot, “Coupling between surface plasmons in subwavelength hole arrays,” Phys. Rev. B 73(12), 121401 (2006).
[Crossref]

Phys. Rev. Lett. (1)

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86(6), 1114–1117 (2001).
[Crossref] [PubMed]

Plasmonics (1)

S. M. Williams and J. V. Coe, “Dispersion study of the infrared transmission resonances of freestanding ni Microarrays,” Plasmonics 1(1), 87–93 (2006).
[Crossref]

Proc. Natl. Acad. Sci. U.S.A. (1)

P. R. H. Stark, A. E. Halleck, and D. N. Larson, “Breaking the diffraction barrier outside of the optical near-field with bright, collimated light from nanometric apertures,” Proc. Natl. Acad. Sci. U.S.A. 104(48), 18902–18906 (2007).
[Crossref] [PubMed]

Science (2)

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, “Beaming light from a subwavelength aperture,” Science 297(5582), 820–822 (2002).
[Crossref] [PubMed]

J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
[Crossref] [PubMed]

Other (1)

D. B. Murphy, Fundamentals of Light Microscopy and Electronic Imaging (Wiley-Liss, New York, 2002), p. 384.

Supplementary Material (2)

» Media 1: MOV (918 KB)     
» Media 2: MOV (934 KB)     

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(A) Schematic cross section of the optical sample. (B) Plan view SEM of the Au SWA. (Inset) Image section at higher magnification illustrating pore shape.

Fig. 2
Fig. 2

(A) Top-view schematic diagram of the optical layout. (B) Perspective drawing of the location of the condensing (NA = 0.66) and collection (NA = 0.85) objectives relative to the SWAA, with the microchannel side of the sample facing the condenser. (C) Relative sizes of the focused laser spot (red) and the Au nanopore array size (yellow/black).

Fig. 3
Fig. 3

Image arithmetic. (A) Unprocessed (color) grayscale image of transmission through a Au SWA, λ = 840 nm, n = 1.332. (B)Processed image of transmission efficiency on a color scale, with integration area shown in grey. (C) Line profile of the integrated area from (B), with x-axes scaled for distance (bottom) and in-plane wavevector magnitude (top). (D) Expanded line profile from the marked region of (C). (E) Magnitude of the discrete Fourier transform of the line profile from (C), with peaks numbered (1 – 4). See text for details.

Fig. 4
Fig. 4

(Media 1) (Media 2) (A) Representation of transmission data along orthogonal wavelength, λ, wavevector, kx , and refractive index, n, axes, illustrating how different 2D slices can be obtained and viewed by holding one of the three variables constant. (B) planar slice at n = 1.349, (C) planar slice at λ = 770 nm, (D) planar slice at kx = 0.

Fig. 5
Fig. 5

Transmission efficiency maps of η c on a color scale with respect to λ and kx , at n = 1.332 (A); n and kx , at λ = 770 nm (B); and n and λ at kx = 0 (C). In all plots, the solid white line shows the predicted locations of the (i,j) = (2,0) transmission peak, the dotted white line shows the predicted locations of the 2nd order Wood’s anomaly, and the dash-dot line in (A) shows the predicted location of transmission peak using n eff = 1.385.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

kx=k0sinθ=2πλsinθ
ηc=ItransIbgrndI0Ibgrnd
kx=k0sinθ=k0sin(tan1xf)kx=(2πxλf)     for  θ<<1
ksp=koεdεmεd+εm=kx±iGx±jGy

Metrics