Abstract

Optical quantum information processing needs ultra-bright sources of entangled photons, especially from synchronizable femtosecond lasers and low-cost cw-diode lasers. Decoherence due to timing information and spatial mode-dependent phase has traditionally limited the brightness of such sources. We report on a variety of methods to optimize type-I polarization-entangled sources — the combined use of different compensation techniques to engineer high-fidelity pulsed and cw-diode laser-pumped sources, as well as the first production of polarization-entanglement directly from the highly nonlinear biaxial crystal BiB3O6 (BiBO). Using spatial compensation, we show more than a 400-fold improvement in the phase flatness, which otherwise limits efficient collection of entangled photons from BiBO, and report the highest fidelity to date (99%) of any ultrafast polarization-entanglement source. Our numerical code, available on our website, can design optimal compensation crystals and simulate entanglement from a variety of type-I phasematched nonlinear crystals.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. C. Burnham and D. L. Weinberg, “Observation of Simultaneity in Parametric Production of Optical Photon Pairs,” Phys. Rev. Lett. 25(2), 84–87 (1970).
    [CrossRef]
  2. J. Fan, M. D. Eisaman, and A. Migdall, “Quantum state tomography of a fiber-based source of polarization-entangled photon pairs,” Opt. Express 15(26), 18339–18344 (2007).
    [CrossRef] [PubMed]
  3. K. F. Lee, J. Chen, C. Liang, X. Li, P. L. Voss, and P. Kumar, “Generation of high-purity telecom-band entangled photon pairs in dispersion-shifted fiber,” Opt. Lett. 31(12), 1905–1907 (2006).
    [CrossRef] [PubMed]
  4. Downconversion can be realized in two ways: in type-I (type-II) phasematching an extraordinary polarized pump downconverts into two ordinary polarized photons (one ordinary polarized and one extraordinary polarized photon).
  5. C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 70(13), 1895–1899 (1993).
    [CrossRef] [PubMed]
  6. D. Bouwmeester, J.-W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature 390(6660), 575–579 (1997).
    [CrossRef]
  7. C.-Y. Lu, X.-Q. Zhou, O. Guhne, W.-B. Gao, J. Zhang, Z.-S. Yuan, A. Goebel, T. Yang, and J.-W. Pan, “Experimental entanglement of six photons in graph states,” Nat. Phys. 3(2), 91–95 (2007).
    [CrossRef]
  8. P. Walther, K. J. Resch, T. Rudolph, E. Schenck, H. Weinfurter, V. Vedral, M. Aspelmeyer, and A. Zeilinger, “Experimental one-way quantum computing,” Nature 434(7030), 169–176 (2005).
    [CrossRef] [PubMed]
  9. D. Branning, W. P. Grice, R. Erdmann, and I. A. Walmsley, “Engineering the Indistinguishability and Entanglement of Two Photons,” Phys. Rev. Lett. 83(5), 955–958 (1999).
    [CrossRef]
  10. A. Valencia, A. Ceré, X. Shi, G. Molina-Terriza, and J. P. Torres, “Shaping the waveform of entangled photons,” Phys. Rev. Lett. 99(24), 243601–243604 (2007).
    [CrossRef]
  11. L. E. Vincent, A. B. U'Ren, R. Rangarajan, C. I. Osorio, J. P. Torres, L. Zhang, and I. A. Walmsley, “Design of bright, fiber-coupled and fully factorable photon pair sources,” to be published.
  12. D. Dehlinger and M. W. Mitchell, “Entangled photons, nonlocality, and Bell inequalities in the undergraduate laboratory,” Am. J. Phys. 70(9), 903–910 (2002).
    [CrossRef]
  13. B. R. Gadway, E. J. Galvez, and F. D. Zela, “Bell-inequality violations with single photons entangled in momentum and polarization,” J. Phys. B 42(1), 015503 (2009).
    [CrossRef]
  14. M. Barbieri, F. De Martini, G. Di Nepi, and P. Mataloni, “Generation and characterization of Werner states and maximally entangled mixed states by a universal source of entanglement,” Phys. Rev. Lett. 92(17), 177901 (2004).
    [CrossRef] [PubMed]
  15. J. F. Hodelin, G. Khoury, and D. Bouwmeester, “Optimal generation of pulsed entangled photon pairs,” Phys. Rev. A 74(1), 013802–013808 (2006).
    [CrossRef]
  16. Y.-H. Kim, S. P. Kulik, M. V. Chekhova, W. P. Grice, and Y. Shih, “Experimental entanglement concentration and universal Bell-state synthesizer,” Phys. Rev. A 67(1), 010301 (2003).
    [CrossRef]
  17. O. Kuzucu and F. N. C. Wong, “Pulsed Sagnac source of narrow-band polarization-entangled photons,” Phys. Rev. A 77(3), 032314–032319 (2008).
    [CrossRef]
  18. B.-S. Shi and A. Tomita, “Generation of a pulsed polarization entangled photon pair using a Sagnac interferometer,” Phys. Rev. A 69(1), 013803 (2004).
    [CrossRef]
  19. P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75(24), 4337–4341 (1995).
    [CrossRef] [PubMed]
  20. P. G. Kwiat, E. Waks, A. G. White, I. Appelbaum, and P. H. Eberhard, “Ultrabright source of polarization-entangled photons,” Phys. Rev. A 60(2), R773–R776 (1999).
    [CrossRef]
  21. W. P. Grice, A. B. U'Ren, and I. A. Walmsley, “Eliminating frequency and space-time correlations in multiphoton states,” Phys. Rev. A 64(6), 063815 (2001).
    [CrossRef]
  22. A.. U Ren and K Banaszek, and IWalmsley, “Photon engineering for quantum information processing,” Journal of Quantum Information and Computation 3, 480 (2003).
  23. Y. Nambu, K. Usami, Y. Tsuda, K. Matsumoto, and K. Nakamura, “Generation of polarization-entangled photon pairs in a cascade of two type-I crystals pumped by femtosecond pulses,” Phys. Rev. A 66(3), 033816 (2002).
    [CrossRef]
  24. G. M. Akselrod, J. B. Altepeter, E. R. Jeffrey, and P. G. Kwiat, “Phase-compensated ultra-bright source of entangled photons: erratum,” Opt. Express 15(8), 5260–5261 (2007).
    [CrossRef]
  25. S. Cialdi, F. Castelli, I. Boscolo, and M. G. Paris, “Generation of entangled photon pairs using small-coherence-time continuous wave pump lasers,” Appl. Opt. 47(11), 1832–1836 (2008).
    [CrossRef] [PubMed]
  26. P. Trojek and H. Weinfurter, “Collinear source of polarization-entangled photon pairs at nondegenerate wavelengths,” Appl. Phys. Lett. 92(21), 211103–211103 (2008).
    [CrossRef]
  27. Fidelity between a pure state |ψ〉and a mixed state|ρ〉is defined as F(|ψ〉,|ρ〉)≡〈ψ|ρ|ψ〉. In this article we always consider only the polarization part of the total two-photon wavefunction.
  28. Concurrence C for a mixed state of two qubits is defined as C(ρ)=max(0,λh1−λ2−λ3−λ4) in which λi are the eigenvalues of ρ(σy⊗σy)ρ*(σy⊗σy) in decreasing order, and σy is the (0−ii0) Pauli spin matrix. Tangle is then the square of the concurrence.
  29. C. E. Kuklewicz, M. Fiorentino, G. Messin, F. N. C. Wong, and J. H. Shapiro, “High-flux source of polarization-entangled photons from a periodically poled KTiOPO4 parametric down-converter,” Phys. Rev. A 69(1), 013807 (2004).
    [CrossRef]
  30. P. Becker, J. Liebertz, and L. Bohatý, “Top-seeded growth of bismuth triborate, BiB3O6,” J. Cryst. Growth 203(1-2), 149–155 (1999).
    [CrossRef]
  31. M. Ghotbi and M. Ebrahim-Zadeh, “Optical second harmonic generation properties of BiB3O6.,” Opt. Express 12(24), 6002–6019 (2004).
    [CrossRef] [PubMed]
  32. H. Hellwig, J. Liebertz, and L. Bohaty, “Linear optical properties of the monoclinic bismuth borate BiB3O6,” J. Appl. Phys. 88(1), 240–244 (2000).
    [CrossRef]
  33. M. Ghotbi, M. Ebrahim-Zadeh, A. Majchrowski, E. Michalski, and I. V. Kityk, “High-average-power femtosecond pulse generation in the blue using BiB3O6.,” Opt. Lett. 29(21), 2530–2532 (2004).
    [CrossRef] [PubMed]
  34. http://research.physics.illinois.edu/QI/photonics/phase_compensation.html
  35. While it is possible to compensate for spatial decoherence using birefringent compensators only in one downconversion arm, other effect, such as temporal, walkoff etc., need to be considered in this case.
  36. A. G. White, D. F. V. James, P. H. Eberhard, and P. G. Kwiat, “Nonmaximally Entangled States: Production, Characterization, and Utilization,” Phys. Rev. Lett. 83(16), 3103–3107 (1999).
    [CrossRef]
  37. A. Joobeur, B. E. A. Saleh, T. S. Larchuk, and M. C. Teich, “Coherence properties of entangled light beams generated by parametric down-conversion: Theory and experiment,” Phys. Rev. A 53(6), 4360–4371 (1996).
    [CrossRef] [PubMed]
  38. For ease of discussion we use the language of uniaxial crystals: ordinary and extraordinary polarization. For biaxial crystals`, these terms are no longer an accurate description of polarization states. However, the terms can be used to refer to orthogonal linear polarizations with different velocities, usually labeled fast and slow, in the biaxial crystal.
  39. T. E. Keller and M. H. Rubin, “Theory of two-photon entanglement for spontaneous parametric down-conversion driven by a narrow pump pulse,” Phys. Rev. A 56(2), 1534–1541 (1997).
    [CrossRef]
  40. Note that in this case spatial decoherence due to the temporal postcompensator must also be corrected in order to achieve complete joint spatial and spectral-temporal compensation.
  41. N. Boeuf, D. Branning, I. Chaperot, E. Dauler, S. Guerin, G. Jaeger, A. Muller, and A. Migdall, “Calculating characteristics of noncollinear phase matching in uniaxial and biaxial crystals,” Opt. Eng. 39(4), 1016–1024 (2000).
    [CrossRef]

2009 (1)

B. R. Gadway, E. J. Galvez, and F. D. Zela, “Bell-inequality violations with single photons entangled in momentum and polarization,” J. Phys. B 42(1), 015503 (2009).
[CrossRef]

2008 (3)

O. Kuzucu and F. N. C. Wong, “Pulsed Sagnac source of narrow-band polarization-entangled photons,” Phys. Rev. A 77(3), 032314–032319 (2008).
[CrossRef]

P. Trojek and H. Weinfurter, “Collinear source of polarization-entangled photon pairs at nondegenerate wavelengths,” Appl. Phys. Lett. 92(21), 211103–211103 (2008).
[CrossRef]

S. Cialdi, F. Castelli, I. Boscolo, and M. G. Paris, “Generation of entangled photon pairs using small-coherence-time continuous wave pump lasers,” Appl. Opt. 47(11), 1832–1836 (2008).
[CrossRef] [PubMed]

2007 (4)

G. M. Akselrod, J. B. Altepeter, E. R. Jeffrey, and P. G. Kwiat, “Phase-compensated ultra-bright source of entangled photons: erratum,” Opt. Express 15(8), 5260–5261 (2007).
[CrossRef]

J. Fan, M. D. Eisaman, and A. Migdall, “Quantum state tomography of a fiber-based source of polarization-entangled photon pairs,” Opt. Express 15(26), 18339–18344 (2007).
[CrossRef] [PubMed]

A. Valencia, A. Ceré, X. Shi, G. Molina-Terriza, and J. P. Torres, “Shaping the waveform of entangled photons,” Phys. Rev. Lett. 99(24), 243601–243604 (2007).
[CrossRef]

C.-Y. Lu, X.-Q. Zhou, O. Guhne, W.-B. Gao, J. Zhang, Z.-S. Yuan, A. Goebel, T. Yang, and J.-W. Pan, “Experimental entanglement of six photons in graph states,” Nat. Phys. 3(2), 91–95 (2007).
[CrossRef]

2006 (2)

2005 (1)

P. Walther, K. J. Resch, T. Rudolph, E. Schenck, H. Weinfurter, V. Vedral, M. Aspelmeyer, and A. Zeilinger, “Experimental one-way quantum computing,” Nature 434(7030), 169–176 (2005).
[CrossRef] [PubMed]

2004 (5)

M. Barbieri, F. De Martini, G. Di Nepi, and P. Mataloni, “Generation and characterization of Werner states and maximally entangled mixed states by a universal source of entanglement,” Phys. Rev. Lett. 92(17), 177901 (2004).
[CrossRef] [PubMed]

B.-S. Shi and A. Tomita, “Generation of a pulsed polarization entangled photon pair using a Sagnac interferometer,” Phys. Rev. A 69(1), 013803 (2004).
[CrossRef]

M. Ghotbi, M. Ebrahim-Zadeh, A. Majchrowski, E. Michalski, and I. V. Kityk, “High-average-power femtosecond pulse generation in the blue using BiB3O6.,” Opt. Lett. 29(21), 2530–2532 (2004).
[CrossRef] [PubMed]

M. Ghotbi and M. Ebrahim-Zadeh, “Optical second harmonic generation properties of BiB3O6.,” Opt. Express 12(24), 6002–6019 (2004).
[CrossRef] [PubMed]

C. E. Kuklewicz, M. Fiorentino, G. Messin, F. N. C. Wong, and J. H. Shapiro, “High-flux source of polarization-entangled photons from a periodically poled KTiOPO4 parametric down-converter,” Phys. Rev. A 69(1), 013807 (2004).
[CrossRef]

2003 (2)

Y.-H. Kim, S. P. Kulik, M. V. Chekhova, W. P. Grice, and Y. Shih, “Experimental entanglement concentration and universal Bell-state synthesizer,” Phys. Rev. A 67(1), 010301 (2003).
[CrossRef]

A.. U Ren and K Banaszek, and IWalmsley, “Photon engineering for quantum information processing,” Journal of Quantum Information and Computation 3, 480 (2003).

A.. U Ren and K Banaszek, and IWalmsley, “Photon engineering for quantum information processing,” Journal of Quantum Information and Computation 3, 480 (2003).

2002 (2)

Y. Nambu, K. Usami, Y. Tsuda, K. Matsumoto, and K. Nakamura, “Generation of polarization-entangled photon pairs in a cascade of two type-I crystals pumped by femtosecond pulses,” Phys. Rev. A 66(3), 033816 (2002).
[CrossRef]

D. Dehlinger and M. W. Mitchell, “Entangled photons, nonlocality, and Bell inequalities in the undergraduate laboratory,” Am. J. Phys. 70(9), 903–910 (2002).
[CrossRef]

2001 (1)

W. P. Grice, A. B. U'Ren, and I. A. Walmsley, “Eliminating frequency and space-time correlations in multiphoton states,” Phys. Rev. A 64(6), 063815 (2001).
[CrossRef]

2000 (2)

H. Hellwig, J. Liebertz, and L. Bohaty, “Linear optical properties of the monoclinic bismuth borate BiB3O6,” J. Appl. Phys. 88(1), 240–244 (2000).
[CrossRef]

N. Boeuf, D. Branning, I. Chaperot, E. Dauler, S. Guerin, G. Jaeger, A. Muller, and A. Migdall, “Calculating characteristics of noncollinear phase matching in uniaxial and biaxial crystals,” Opt. Eng. 39(4), 1016–1024 (2000).
[CrossRef]

1999 (4)

A. G. White, D. F. V. James, P. H. Eberhard, and P. G. Kwiat, “Nonmaximally Entangled States: Production, Characterization, and Utilization,” Phys. Rev. Lett. 83(16), 3103–3107 (1999).
[CrossRef]

P. Becker, J. Liebertz, and L. Bohatý, “Top-seeded growth of bismuth triborate, BiB3O6,” J. Cryst. Growth 203(1-2), 149–155 (1999).
[CrossRef]

P. G. Kwiat, E. Waks, A. G. White, I. Appelbaum, and P. H. Eberhard, “Ultrabright source of polarization-entangled photons,” Phys. Rev. A 60(2), R773–R776 (1999).
[CrossRef]

D. Branning, W. P. Grice, R. Erdmann, and I. A. Walmsley, “Engineering the Indistinguishability and Entanglement of Two Photons,” Phys. Rev. Lett. 83(5), 955–958 (1999).
[CrossRef]

1997 (2)

D. Bouwmeester, J.-W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature 390(6660), 575–579 (1997).
[CrossRef]

T. E. Keller and M. H. Rubin, “Theory of two-photon entanglement for spontaneous parametric down-conversion driven by a narrow pump pulse,” Phys. Rev. A 56(2), 1534–1541 (1997).
[CrossRef]

1996 (1)

A. Joobeur, B. E. A. Saleh, T. S. Larchuk, and M. C. Teich, “Coherence properties of entangled light beams generated by parametric down-conversion: Theory and experiment,” Phys. Rev. A 53(6), 4360–4371 (1996).
[CrossRef] [PubMed]

1995 (1)

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75(24), 4337–4341 (1995).
[CrossRef] [PubMed]

1993 (1)

C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 70(13), 1895–1899 (1993).
[CrossRef] [PubMed]

1970 (1)

D. C. Burnham and D. L. Weinberg, “Observation of Simultaneity in Parametric Production of Optical Photon Pairs,” Phys. Rev. Lett. 25(2), 84–87 (1970).
[CrossRef]

Akselrod, G. M.

Altepeter, J. B.

Appelbaum, I.

P. G. Kwiat, E. Waks, A. G. White, I. Appelbaum, and P. H. Eberhard, “Ultrabright source of polarization-entangled photons,” Phys. Rev. A 60(2), R773–R776 (1999).
[CrossRef]

Aspelmeyer, M.

P. Walther, K. J. Resch, T. Rudolph, E. Schenck, H. Weinfurter, V. Vedral, M. Aspelmeyer, and A. Zeilinger, “Experimental one-way quantum computing,” Nature 434(7030), 169–176 (2005).
[CrossRef] [PubMed]

Banaszek, K

A.. U Ren and K Banaszek, and IWalmsley, “Photon engineering for quantum information processing,” Journal of Quantum Information and Computation 3, 480 (2003).

Barbieri, M.

M. Barbieri, F. De Martini, G. Di Nepi, and P. Mataloni, “Generation and characterization of Werner states and maximally entangled mixed states by a universal source of entanglement,” Phys. Rev. Lett. 92(17), 177901 (2004).
[CrossRef] [PubMed]

Becker, P.

P. Becker, J. Liebertz, and L. Bohatý, “Top-seeded growth of bismuth triborate, BiB3O6,” J. Cryst. Growth 203(1-2), 149–155 (1999).
[CrossRef]

Bennett, C. H.

C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 70(13), 1895–1899 (1993).
[CrossRef] [PubMed]

Boeuf, N.

N. Boeuf, D. Branning, I. Chaperot, E. Dauler, S. Guerin, G. Jaeger, A. Muller, and A. Migdall, “Calculating characteristics of noncollinear phase matching in uniaxial and biaxial crystals,” Opt. Eng. 39(4), 1016–1024 (2000).
[CrossRef]

Bohaty, L.

H. Hellwig, J. Liebertz, and L. Bohaty, “Linear optical properties of the monoclinic bismuth borate BiB3O6,” J. Appl. Phys. 88(1), 240–244 (2000).
[CrossRef]

Bohatý, L.

P. Becker, J. Liebertz, and L. Bohatý, “Top-seeded growth of bismuth triborate, BiB3O6,” J. Cryst. Growth 203(1-2), 149–155 (1999).
[CrossRef]

Boscolo, I.

Bouwmeester, D.

J. F. Hodelin, G. Khoury, and D. Bouwmeester, “Optimal generation of pulsed entangled photon pairs,” Phys. Rev. A 74(1), 013802–013808 (2006).
[CrossRef]

D. Bouwmeester, J.-W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature 390(6660), 575–579 (1997).
[CrossRef]

Branning, D.

N. Boeuf, D. Branning, I. Chaperot, E. Dauler, S. Guerin, G. Jaeger, A. Muller, and A. Migdall, “Calculating characteristics of noncollinear phase matching in uniaxial and biaxial crystals,” Opt. Eng. 39(4), 1016–1024 (2000).
[CrossRef]

D. Branning, W. P. Grice, R. Erdmann, and I. A. Walmsley, “Engineering the Indistinguishability and Entanglement of Two Photons,” Phys. Rev. Lett. 83(5), 955–958 (1999).
[CrossRef]

Brassard, G.

C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 70(13), 1895–1899 (1993).
[CrossRef] [PubMed]

Burnham, D. C.

D. C. Burnham and D. L. Weinberg, “Observation of Simultaneity in Parametric Production of Optical Photon Pairs,” Phys. Rev. Lett. 25(2), 84–87 (1970).
[CrossRef]

Castelli, F.

Ceré, A.

A. Valencia, A. Ceré, X. Shi, G. Molina-Terriza, and J. P. Torres, “Shaping the waveform of entangled photons,” Phys. Rev. Lett. 99(24), 243601–243604 (2007).
[CrossRef]

Chaperot, I.

N. Boeuf, D. Branning, I. Chaperot, E. Dauler, S. Guerin, G. Jaeger, A. Muller, and A. Migdall, “Calculating characteristics of noncollinear phase matching in uniaxial and biaxial crystals,” Opt. Eng. 39(4), 1016–1024 (2000).
[CrossRef]

Chekhova, M. V.

Y.-H. Kim, S. P. Kulik, M. V. Chekhova, W. P. Grice, and Y. Shih, “Experimental entanglement concentration and universal Bell-state synthesizer,” Phys. Rev. A 67(1), 010301 (2003).
[CrossRef]

Chen, J.

Cialdi, S.

Crépeau, C.

C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 70(13), 1895–1899 (1993).
[CrossRef] [PubMed]

Dauler, E.

N. Boeuf, D. Branning, I. Chaperot, E. Dauler, S. Guerin, G. Jaeger, A. Muller, and A. Migdall, “Calculating characteristics of noncollinear phase matching in uniaxial and biaxial crystals,” Opt. Eng. 39(4), 1016–1024 (2000).
[CrossRef]

De Martini, F.

M. Barbieri, F. De Martini, G. Di Nepi, and P. Mataloni, “Generation and characterization of Werner states and maximally entangled mixed states by a universal source of entanglement,” Phys. Rev. Lett. 92(17), 177901 (2004).
[CrossRef] [PubMed]

Dehlinger, D.

D. Dehlinger and M. W. Mitchell, “Entangled photons, nonlocality, and Bell inequalities in the undergraduate laboratory,” Am. J. Phys. 70(9), 903–910 (2002).
[CrossRef]

Di Nepi, G.

M. Barbieri, F. De Martini, G. Di Nepi, and P. Mataloni, “Generation and characterization of Werner states and maximally entangled mixed states by a universal source of entanglement,” Phys. Rev. Lett. 92(17), 177901 (2004).
[CrossRef] [PubMed]

Eberhard, P. H.

A. G. White, D. F. V. James, P. H. Eberhard, and P. G. Kwiat, “Nonmaximally Entangled States: Production, Characterization, and Utilization,” Phys. Rev. Lett. 83(16), 3103–3107 (1999).
[CrossRef]

P. G. Kwiat, E. Waks, A. G. White, I. Appelbaum, and P. H. Eberhard, “Ultrabright source of polarization-entangled photons,” Phys. Rev. A 60(2), R773–R776 (1999).
[CrossRef]

Ebrahim-Zadeh, M.

Eibl, M.

D. Bouwmeester, J.-W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature 390(6660), 575–579 (1997).
[CrossRef]

Eisaman, M. D.

Erdmann, R.

D. Branning, W. P. Grice, R. Erdmann, and I. A. Walmsley, “Engineering the Indistinguishability and Entanglement of Two Photons,” Phys. Rev. Lett. 83(5), 955–958 (1999).
[CrossRef]

Fan, J.

Fiorentino, M.

C. E. Kuklewicz, M. Fiorentino, G. Messin, F. N. C. Wong, and J. H. Shapiro, “High-flux source of polarization-entangled photons from a periodically poled KTiOPO4 parametric down-converter,” Phys. Rev. A 69(1), 013807 (2004).
[CrossRef]

Gadway, B. R.

B. R. Gadway, E. J. Galvez, and F. D. Zela, “Bell-inequality violations with single photons entangled in momentum and polarization,” J. Phys. B 42(1), 015503 (2009).
[CrossRef]

Galvez, E. J.

B. R. Gadway, E. J. Galvez, and F. D. Zela, “Bell-inequality violations with single photons entangled in momentum and polarization,” J. Phys. B 42(1), 015503 (2009).
[CrossRef]

Gao, W.-B.

C.-Y. Lu, X.-Q. Zhou, O. Guhne, W.-B. Gao, J. Zhang, Z.-S. Yuan, A. Goebel, T. Yang, and J.-W. Pan, “Experimental entanglement of six photons in graph states,” Nat. Phys. 3(2), 91–95 (2007).
[CrossRef]

Ghotbi, M.

Goebel, A.

C.-Y. Lu, X.-Q. Zhou, O. Guhne, W.-B. Gao, J. Zhang, Z.-S. Yuan, A. Goebel, T. Yang, and J.-W. Pan, “Experimental entanglement of six photons in graph states,” Nat. Phys. 3(2), 91–95 (2007).
[CrossRef]

Grice, W. P.

Y.-H. Kim, S. P. Kulik, M. V. Chekhova, W. P. Grice, and Y. Shih, “Experimental entanglement concentration and universal Bell-state synthesizer,” Phys. Rev. A 67(1), 010301 (2003).
[CrossRef]

W. P. Grice, A. B. U'Ren, and I. A. Walmsley, “Eliminating frequency and space-time correlations in multiphoton states,” Phys. Rev. A 64(6), 063815 (2001).
[CrossRef]

D. Branning, W. P. Grice, R. Erdmann, and I. A. Walmsley, “Engineering the Indistinguishability and Entanglement of Two Photons,” Phys. Rev. Lett. 83(5), 955–958 (1999).
[CrossRef]

Guerin, S.

N. Boeuf, D. Branning, I. Chaperot, E. Dauler, S. Guerin, G. Jaeger, A. Muller, and A. Migdall, “Calculating characteristics of noncollinear phase matching in uniaxial and biaxial crystals,” Opt. Eng. 39(4), 1016–1024 (2000).
[CrossRef]

Guhne, O.

C.-Y. Lu, X.-Q. Zhou, O. Guhne, W.-B. Gao, J. Zhang, Z.-S. Yuan, A. Goebel, T. Yang, and J.-W. Pan, “Experimental entanglement of six photons in graph states,” Nat. Phys. 3(2), 91–95 (2007).
[CrossRef]

Hellwig, H.

H. Hellwig, J. Liebertz, and L. Bohaty, “Linear optical properties of the monoclinic bismuth borate BiB3O6,” J. Appl. Phys. 88(1), 240–244 (2000).
[CrossRef]

Hodelin, J. F.

J. F. Hodelin, G. Khoury, and D. Bouwmeester, “Optimal generation of pulsed entangled photon pairs,” Phys. Rev. A 74(1), 013802–013808 (2006).
[CrossRef]

Jaeger, G.

N. Boeuf, D. Branning, I. Chaperot, E. Dauler, S. Guerin, G. Jaeger, A. Muller, and A. Migdall, “Calculating characteristics of noncollinear phase matching in uniaxial and biaxial crystals,” Opt. Eng. 39(4), 1016–1024 (2000).
[CrossRef]

James, D. F. V.

A. G. White, D. F. V. James, P. H. Eberhard, and P. G. Kwiat, “Nonmaximally Entangled States: Production, Characterization, and Utilization,” Phys. Rev. Lett. 83(16), 3103–3107 (1999).
[CrossRef]

Jeffrey, E. R.

Joobeur, A.

A. Joobeur, B. E. A. Saleh, T. S. Larchuk, and M. C. Teich, “Coherence properties of entangled light beams generated by parametric down-conversion: Theory and experiment,” Phys. Rev. A 53(6), 4360–4371 (1996).
[CrossRef] [PubMed]

Jozsa, R.

C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 70(13), 1895–1899 (1993).
[CrossRef] [PubMed]

Keller, T. E.

T. E. Keller and M. H. Rubin, “Theory of two-photon entanglement for spontaneous parametric down-conversion driven by a narrow pump pulse,” Phys. Rev. A 56(2), 1534–1541 (1997).
[CrossRef]

Khoury, G.

J. F. Hodelin, G. Khoury, and D. Bouwmeester, “Optimal generation of pulsed entangled photon pairs,” Phys. Rev. A 74(1), 013802–013808 (2006).
[CrossRef]

Kim, Y.-H.

Y.-H. Kim, S. P. Kulik, M. V. Chekhova, W. P. Grice, and Y. Shih, “Experimental entanglement concentration and universal Bell-state synthesizer,” Phys. Rev. A 67(1), 010301 (2003).
[CrossRef]

Kityk, I. V.

Kuklewicz, C. E.

C. E. Kuklewicz, M. Fiorentino, G. Messin, F. N. C. Wong, and J. H. Shapiro, “High-flux source of polarization-entangled photons from a periodically poled KTiOPO4 parametric down-converter,” Phys. Rev. A 69(1), 013807 (2004).
[CrossRef]

Kulik, S. P.

Y.-H. Kim, S. P. Kulik, M. V. Chekhova, W. P. Grice, and Y. Shih, “Experimental entanglement concentration and universal Bell-state synthesizer,” Phys. Rev. A 67(1), 010301 (2003).
[CrossRef]

Kumar, P.

Kuzucu, O.

O. Kuzucu and F. N. C. Wong, “Pulsed Sagnac source of narrow-band polarization-entangled photons,” Phys. Rev. A 77(3), 032314–032319 (2008).
[CrossRef]

Kwiat, P. G.

G. M. Akselrod, J. B. Altepeter, E. R. Jeffrey, and P. G. Kwiat, “Phase-compensated ultra-bright source of entangled photons: erratum,” Opt. Express 15(8), 5260–5261 (2007).
[CrossRef]

P. G. Kwiat, E. Waks, A. G. White, I. Appelbaum, and P. H. Eberhard, “Ultrabright source of polarization-entangled photons,” Phys. Rev. A 60(2), R773–R776 (1999).
[CrossRef]

A. G. White, D. F. V. James, P. H. Eberhard, and P. G. Kwiat, “Nonmaximally Entangled States: Production, Characterization, and Utilization,” Phys. Rev. Lett. 83(16), 3103–3107 (1999).
[CrossRef]

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75(24), 4337–4341 (1995).
[CrossRef] [PubMed]

Larchuk, T. S.

A. Joobeur, B. E. A. Saleh, T. S. Larchuk, and M. C. Teich, “Coherence properties of entangled light beams generated by parametric down-conversion: Theory and experiment,” Phys. Rev. A 53(6), 4360–4371 (1996).
[CrossRef] [PubMed]

Lee, K. F.

Li, X.

Liang, C.

Liebertz, J.

H. Hellwig, J. Liebertz, and L. Bohaty, “Linear optical properties of the monoclinic bismuth borate BiB3O6,” J. Appl. Phys. 88(1), 240–244 (2000).
[CrossRef]

P. Becker, J. Liebertz, and L. Bohatý, “Top-seeded growth of bismuth triborate, BiB3O6,” J. Cryst. Growth 203(1-2), 149–155 (1999).
[CrossRef]

Lu, C.-Y.

C.-Y. Lu, X.-Q. Zhou, O. Guhne, W.-B. Gao, J. Zhang, Z.-S. Yuan, A. Goebel, T. Yang, and J.-W. Pan, “Experimental entanglement of six photons in graph states,” Nat. Phys. 3(2), 91–95 (2007).
[CrossRef]

Majchrowski, A.

Mataloni, P.

M. Barbieri, F. De Martini, G. Di Nepi, and P. Mataloni, “Generation and characterization of Werner states and maximally entangled mixed states by a universal source of entanglement,” Phys. Rev. Lett. 92(17), 177901 (2004).
[CrossRef] [PubMed]

Matsumoto, K.

Y. Nambu, K. Usami, Y. Tsuda, K. Matsumoto, and K. Nakamura, “Generation of polarization-entangled photon pairs in a cascade of two type-I crystals pumped by femtosecond pulses,” Phys. Rev. A 66(3), 033816 (2002).
[CrossRef]

Mattle, K.

D. Bouwmeester, J.-W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature 390(6660), 575–579 (1997).
[CrossRef]

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75(24), 4337–4341 (1995).
[CrossRef] [PubMed]

Messin, G.

C. E. Kuklewicz, M. Fiorentino, G. Messin, F. N. C. Wong, and J. H. Shapiro, “High-flux source of polarization-entangled photons from a periodically poled KTiOPO4 parametric down-converter,” Phys. Rev. A 69(1), 013807 (2004).
[CrossRef]

Michalski, E.

Migdall, A.

J. Fan, M. D. Eisaman, and A. Migdall, “Quantum state tomography of a fiber-based source of polarization-entangled photon pairs,” Opt. Express 15(26), 18339–18344 (2007).
[CrossRef] [PubMed]

N. Boeuf, D. Branning, I. Chaperot, E. Dauler, S. Guerin, G. Jaeger, A. Muller, and A. Migdall, “Calculating characteristics of noncollinear phase matching in uniaxial and biaxial crystals,” Opt. Eng. 39(4), 1016–1024 (2000).
[CrossRef]

Mitchell, M. W.

D. Dehlinger and M. W. Mitchell, “Entangled photons, nonlocality, and Bell inequalities in the undergraduate laboratory,” Am. J. Phys. 70(9), 903–910 (2002).
[CrossRef]

Molina-Terriza, G.

A. Valencia, A. Ceré, X. Shi, G. Molina-Terriza, and J. P. Torres, “Shaping the waveform of entangled photons,” Phys. Rev. Lett. 99(24), 243601–243604 (2007).
[CrossRef]

Muller, A.

N. Boeuf, D. Branning, I. Chaperot, E. Dauler, S. Guerin, G. Jaeger, A. Muller, and A. Migdall, “Calculating characteristics of noncollinear phase matching in uniaxial and biaxial crystals,” Opt. Eng. 39(4), 1016–1024 (2000).
[CrossRef]

Nakamura, K.

Y. Nambu, K. Usami, Y. Tsuda, K. Matsumoto, and K. Nakamura, “Generation of polarization-entangled photon pairs in a cascade of two type-I crystals pumped by femtosecond pulses,” Phys. Rev. A 66(3), 033816 (2002).
[CrossRef]

Nambu, Y.

Y. Nambu, K. Usami, Y. Tsuda, K. Matsumoto, and K. Nakamura, “Generation of polarization-entangled photon pairs in a cascade of two type-I crystals pumped by femtosecond pulses,” Phys. Rev. A 66(3), 033816 (2002).
[CrossRef]

Pan, J.-W.

C.-Y. Lu, X.-Q. Zhou, O. Guhne, W.-B. Gao, J. Zhang, Z.-S. Yuan, A. Goebel, T. Yang, and J.-W. Pan, “Experimental entanglement of six photons in graph states,” Nat. Phys. 3(2), 91–95 (2007).
[CrossRef]

D. Bouwmeester, J.-W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature 390(6660), 575–579 (1997).
[CrossRef]

Paris, M. G.

Peres, A.

C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 70(13), 1895–1899 (1993).
[CrossRef] [PubMed]

Ren, A.. U

A.. U Ren and K Banaszek, and IWalmsley, “Photon engineering for quantum information processing,” Journal of Quantum Information and Computation 3, 480 (2003).

Resch, K. J.

P. Walther, K. J. Resch, T. Rudolph, E. Schenck, H. Weinfurter, V. Vedral, M. Aspelmeyer, and A. Zeilinger, “Experimental one-way quantum computing,” Nature 434(7030), 169–176 (2005).
[CrossRef] [PubMed]

Rubin, M. H.

T. E. Keller and M. H. Rubin, “Theory of two-photon entanglement for spontaneous parametric down-conversion driven by a narrow pump pulse,” Phys. Rev. A 56(2), 1534–1541 (1997).
[CrossRef]

Rudolph, T.

P. Walther, K. J. Resch, T. Rudolph, E. Schenck, H. Weinfurter, V. Vedral, M. Aspelmeyer, and A. Zeilinger, “Experimental one-way quantum computing,” Nature 434(7030), 169–176 (2005).
[CrossRef] [PubMed]

Saleh, B. E. A.

A. Joobeur, B. E. A. Saleh, T. S. Larchuk, and M. C. Teich, “Coherence properties of entangled light beams generated by parametric down-conversion: Theory and experiment,” Phys. Rev. A 53(6), 4360–4371 (1996).
[CrossRef] [PubMed]

Schenck, E.

P. Walther, K. J. Resch, T. Rudolph, E. Schenck, H. Weinfurter, V. Vedral, M. Aspelmeyer, and A. Zeilinger, “Experimental one-way quantum computing,” Nature 434(7030), 169–176 (2005).
[CrossRef] [PubMed]

Sergienko, A. V.

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75(24), 4337–4341 (1995).
[CrossRef] [PubMed]

Shapiro, J. H.

C. E. Kuklewicz, M. Fiorentino, G. Messin, F. N. C. Wong, and J. H. Shapiro, “High-flux source of polarization-entangled photons from a periodically poled KTiOPO4 parametric down-converter,” Phys. Rev. A 69(1), 013807 (2004).
[CrossRef]

Shi, B.-S.

B.-S. Shi and A. Tomita, “Generation of a pulsed polarization entangled photon pair using a Sagnac interferometer,” Phys. Rev. A 69(1), 013803 (2004).
[CrossRef]

Shi, X.

A. Valencia, A. Ceré, X. Shi, G. Molina-Terriza, and J. P. Torres, “Shaping the waveform of entangled photons,” Phys. Rev. Lett. 99(24), 243601–243604 (2007).
[CrossRef]

Shih, Y.

Y.-H. Kim, S. P. Kulik, M. V. Chekhova, W. P. Grice, and Y. Shih, “Experimental entanglement concentration and universal Bell-state synthesizer,” Phys. Rev. A 67(1), 010301 (2003).
[CrossRef]

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75(24), 4337–4341 (1995).
[CrossRef] [PubMed]

Teich, M. C.

A. Joobeur, B. E. A. Saleh, T. S. Larchuk, and M. C. Teich, “Coherence properties of entangled light beams generated by parametric down-conversion: Theory and experiment,” Phys. Rev. A 53(6), 4360–4371 (1996).
[CrossRef] [PubMed]

Tomita, A.

B.-S. Shi and A. Tomita, “Generation of a pulsed polarization entangled photon pair using a Sagnac interferometer,” Phys. Rev. A 69(1), 013803 (2004).
[CrossRef]

Torres, J. P.

A. Valencia, A. Ceré, X. Shi, G. Molina-Terriza, and J. P. Torres, “Shaping the waveform of entangled photons,” Phys. Rev. Lett. 99(24), 243601–243604 (2007).
[CrossRef]

Trojek, P.

P. Trojek and H. Weinfurter, “Collinear source of polarization-entangled photon pairs at nondegenerate wavelengths,” Appl. Phys. Lett. 92(21), 211103–211103 (2008).
[CrossRef]

Tsuda, Y.

Y. Nambu, K. Usami, Y. Tsuda, K. Matsumoto, and K. Nakamura, “Generation of polarization-entangled photon pairs in a cascade of two type-I crystals pumped by femtosecond pulses,” Phys. Rev. A 66(3), 033816 (2002).
[CrossRef]

U'Ren, A. B.

W. P. Grice, A. B. U'Ren, and I. A. Walmsley, “Eliminating frequency and space-time correlations in multiphoton states,” Phys. Rev. A 64(6), 063815 (2001).
[CrossRef]

Usami, K.

Y. Nambu, K. Usami, Y. Tsuda, K. Matsumoto, and K. Nakamura, “Generation of polarization-entangled photon pairs in a cascade of two type-I crystals pumped by femtosecond pulses,” Phys. Rev. A 66(3), 033816 (2002).
[CrossRef]

Valencia, A.

A. Valencia, A. Ceré, X. Shi, G. Molina-Terriza, and J. P. Torres, “Shaping the waveform of entangled photons,” Phys. Rev. Lett. 99(24), 243601–243604 (2007).
[CrossRef]

Vedral, V.

P. Walther, K. J. Resch, T. Rudolph, E. Schenck, H. Weinfurter, V. Vedral, M. Aspelmeyer, and A. Zeilinger, “Experimental one-way quantum computing,” Nature 434(7030), 169–176 (2005).
[CrossRef] [PubMed]

Voss, P. L.

Waks, E.

P. G. Kwiat, E. Waks, A. G. White, I. Appelbaum, and P. H. Eberhard, “Ultrabright source of polarization-entangled photons,” Phys. Rev. A 60(2), R773–R776 (1999).
[CrossRef]

Walmsley,

A.. U Ren and K Banaszek, and IWalmsley, “Photon engineering for quantum information processing,” Journal of Quantum Information and Computation 3, 480 (2003).

Walmsley, I. A.

W. P. Grice, A. B. U'Ren, and I. A. Walmsley, “Eliminating frequency and space-time correlations in multiphoton states,” Phys. Rev. A 64(6), 063815 (2001).
[CrossRef]

D. Branning, W. P. Grice, R. Erdmann, and I. A. Walmsley, “Engineering the Indistinguishability and Entanglement of Two Photons,” Phys. Rev. Lett. 83(5), 955–958 (1999).
[CrossRef]

Walther, P.

P. Walther, K. J. Resch, T. Rudolph, E. Schenck, H. Weinfurter, V. Vedral, M. Aspelmeyer, and A. Zeilinger, “Experimental one-way quantum computing,” Nature 434(7030), 169–176 (2005).
[CrossRef] [PubMed]

Weinberg, D. L.

D. C. Burnham and D. L. Weinberg, “Observation of Simultaneity in Parametric Production of Optical Photon Pairs,” Phys. Rev. Lett. 25(2), 84–87 (1970).
[CrossRef]

Weinfurter, H.

P. Trojek and H. Weinfurter, “Collinear source of polarization-entangled photon pairs at nondegenerate wavelengths,” Appl. Phys. Lett. 92(21), 211103–211103 (2008).
[CrossRef]

P. Walther, K. J. Resch, T. Rudolph, E. Schenck, H. Weinfurter, V. Vedral, M. Aspelmeyer, and A. Zeilinger, “Experimental one-way quantum computing,” Nature 434(7030), 169–176 (2005).
[CrossRef] [PubMed]

D. Bouwmeester, J.-W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature 390(6660), 575–579 (1997).
[CrossRef]

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75(24), 4337–4341 (1995).
[CrossRef] [PubMed]

White, A. G.

P. G. Kwiat, E. Waks, A. G. White, I. Appelbaum, and P. H. Eberhard, “Ultrabright source of polarization-entangled photons,” Phys. Rev. A 60(2), R773–R776 (1999).
[CrossRef]

A. G. White, D. F. V. James, P. H. Eberhard, and P. G. Kwiat, “Nonmaximally Entangled States: Production, Characterization, and Utilization,” Phys. Rev. Lett. 83(16), 3103–3107 (1999).
[CrossRef]

Wong, F. N. C.

O. Kuzucu and F. N. C. Wong, “Pulsed Sagnac source of narrow-band polarization-entangled photons,” Phys. Rev. A 77(3), 032314–032319 (2008).
[CrossRef]

C. E. Kuklewicz, M. Fiorentino, G. Messin, F. N. C. Wong, and J. H. Shapiro, “High-flux source of polarization-entangled photons from a periodically poled KTiOPO4 parametric down-converter,” Phys. Rev. A 69(1), 013807 (2004).
[CrossRef]

Wootters, W. K.

C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 70(13), 1895–1899 (1993).
[CrossRef] [PubMed]

Yang, T.

C.-Y. Lu, X.-Q. Zhou, O. Guhne, W.-B. Gao, J. Zhang, Z.-S. Yuan, A. Goebel, T. Yang, and J.-W. Pan, “Experimental entanglement of six photons in graph states,” Nat. Phys. 3(2), 91–95 (2007).
[CrossRef]

Yuan, Z.-S.

C.-Y. Lu, X.-Q. Zhou, O. Guhne, W.-B. Gao, J. Zhang, Z.-S. Yuan, A. Goebel, T. Yang, and J.-W. Pan, “Experimental entanglement of six photons in graph states,” Nat. Phys. 3(2), 91–95 (2007).
[CrossRef]

Zeilinger, A.

P. Walther, K. J. Resch, T. Rudolph, E. Schenck, H. Weinfurter, V. Vedral, M. Aspelmeyer, and A. Zeilinger, “Experimental one-way quantum computing,” Nature 434(7030), 169–176 (2005).
[CrossRef] [PubMed]

D. Bouwmeester, J.-W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature 390(6660), 575–579 (1997).
[CrossRef]

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75(24), 4337–4341 (1995).
[CrossRef] [PubMed]

Zela, F. D.

B. R. Gadway, E. J. Galvez, and F. D. Zela, “Bell-inequality violations with single photons entangled in momentum and polarization,” J. Phys. B 42(1), 015503 (2009).
[CrossRef]

Zhang, J.

C.-Y. Lu, X.-Q. Zhou, O. Guhne, W.-B. Gao, J. Zhang, Z.-S. Yuan, A. Goebel, T. Yang, and J.-W. Pan, “Experimental entanglement of six photons in graph states,” Nat. Phys. 3(2), 91–95 (2007).
[CrossRef]

Zhou, X.-Q.

C.-Y. Lu, X.-Q. Zhou, O. Guhne, W.-B. Gao, J. Zhang, Z.-S. Yuan, A. Goebel, T. Yang, and J.-W. Pan, “Experimental entanglement of six photons in graph states,” Nat. Phys. 3(2), 91–95 (2007).
[CrossRef]

Am. J. Phys. (1)

D. Dehlinger and M. W. Mitchell, “Entangled photons, nonlocality, and Bell inequalities in the undergraduate laboratory,” Am. J. Phys. 70(9), 903–910 (2002).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

P. Trojek and H. Weinfurter, “Collinear source of polarization-entangled photon pairs at nondegenerate wavelengths,” Appl. Phys. Lett. 92(21), 211103–211103 (2008).
[CrossRef]

J. Appl. Phys. (1)

H. Hellwig, J. Liebertz, and L. Bohaty, “Linear optical properties of the monoclinic bismuth borate BiB3O6,” J. Appl. Phys. 88(1), 240–244 (2000).
[CrossRef]

J. Cryst. Growth (1)

P. Becker, J. Liebertz, and L. Bohatý, “Top-seeded growth of bismuth triborate, BiB3O6,” J. Cryst. Growth 203(1-2), 149–155 (1999).
[CrossRef]

J. Phys. B (1)

B. R. Gadway, E. J. Galvez, and F. D. Zela, “Bell-inequality violations with single photons entangled in momentum and polarization,” J. Phys. B 42(1), 015503 (2009).
[CrossRef]

Journal of Quantum Information and Computation (1)

A.. U Ren and K Banaszek, and IWalmsley, “Photon engineering for quantum information processing,” Journal of Quantum Information and Computation 3, 480 (2003).

Nat. Phys. (1)

C.-Y. Lu, X.-Q. Zhou, O. Guhne, W.-B. Gao, J. Zhang, Z.-S. Yuan, A. Goebel, T. Yang, and J.-W. Pan, “Experimental entanglement of six photons in graph states,” Nat. Phys. 3(2), 91–95 (2007).
[CrossRef]

Nature (2)

P. Walther, K. J. Resch, T. Rudolph, E. Schenck, H. Weinfurter, V. Vedral, M. Aspelmeyer, and A. Zeilinger, “Experimental one-way quantum computing,” Nature 434(7030), 169–176 (2005).
[CrossRef] [PubMed]

D. Bouwmeester, J.-W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature 390(6660), 575–579 (1997).
[CrossRef]

Opt. Eng. (1)

N. Boeuf, D. Branning, I. Chaperot, E. Dauler, S. Guerin, G. Jaeger, A. Muller, and A. Migdall, “Calculating characteristics of noncollinear phase matching in uniaxial and biaxial crystals,” Opt. Eng. 39(4), 1016–1024 (2000).
[CrossRef]

Opt. Express (3)

Opt. Lett. (2)

Phys. Rev. A (10)

A. Joobeur, B. E. A. Saleh, T. S. Larchuk, and M. C. Teich, “Coherence properties of entangled light beams generated by parametric down-conversion: Theory and experiment,” Phys. Rev. A 53(6), 4360–4371 (1996).
[CrossRef] [PubMed]

T. E. Keller and M. H. Rubin, “Theory of two-photon entanglement for spontaneous parametric down-conversion driven by a narrow pump pulse,” Phys. Rev. A 56(2), 1534–1541 (1997).
[CrossRef]

C. E. Kuklewicz, M. Fiorentino, G. Messin, F. N. C. Wong, and J. H. Shapiro, “High-flux source of polarization-entangled photons from a periodically poled KTiOPO4 parametric down-converter,” Phys. Rev. A 69(1), 013807 (2004).
[CrossRef]

Y. Nambu, K. Usami, Y. Tsuda, K. Matsumoto, and K. Nakamura, “Generation of polarization-entangled photon pairs in a cascade of two type-I crystals pumped by femtosecond pulses,” Phys. Rev. A 66(3), 033816 (2002).
[CrossRef]

P. G. Kwiat, E. Waks, A. G. White, I. Appelbaum, and P. H. Eberhard, “Ultrabright source of polarization-entangled photons,” Phys. Rev. A 60(2), R773–R776 (1999).
[CrossRef]

W. P. Grice, A. B. U'Ren, and I. A. Walmsley, “Eliminating frequency and space-time correlations in multiphoton states,” Phys. Rev. A 64(6), 063815 (2001).
[CrossRef]

J. F. Hodelin, G. Khoury, and D. Bouwmeester, “Optimal generation of pulsed entangled photon pairs,” Phys. Rev. A 74(1), 013802–013808 (2006).
[CrossRef]

Y.-H. Kim, S. P. Kulik, M. V. Chekhova, W. P. Grice, and Y. Shih, “Experimental entanglement concentration and universal Bell-state synthesizer,” Phys. Rev. A 67(1), 010301 (2003).
[CrossRef]

O. Kuzucu and F. N. C. Wong, “Pulsed Sagnac source of narrow-band polarization-entangled photons,” Phys. Rev. A 77(3), 032314–032319 (2008).
[CrossRef]

B.-S. Shi and A. Tomita, “Generation of a pulsed polarization entangled photon pair using a Sagnac interferometer,” Phys. Rev. A 69(1), 013803 (2004).
[CrossRef]

Phys. Rev. Lett. (7)

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75(24), 4337–4341 (1995).
[CrossRef] [PubMed]

D. Branning, W. P. Grice, R. Erdmann, and I. A. Walmsley, “Engineering the Indistinguishability and Entanglement of Two Photons,” Phys. Rev. Lett. 83(5), 955–958 (1999).
[CrossRef]

A. Valencia, A. Ceré, X. Shi, G. Molina-Terriza, and J. P. Torres, “Shaping the waveform of entangled photons,” Phys. Rev. Lett. 99(24), 243601–243604 (2007).
[CrossRef]

M. Barbieri, F. De Martini, G. Di Nepi, and P. Mataloni, “Generation and characterization of Werner states and maximally entangled mixed states by a universal source of entanglement,” Phys. Rev. Lett. 92(17), 177901 (2004).
[CrossRef] [PubMed]

C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett. 70(13), 1895–1899 (1993).
[CrossRef] [PubMed]

D. C. Burnham and D. L. Weinberg, “Observation of Simultaneity in Parametric Production of Optical Photon Pairs,” Phys. Rev. Lett. 25(2), 84–87 (1970).
[CrossRef]

A. G. White, D. F. V. James, P. H. Eberhard, and P. G. Kwiat, “Nonmaximally Entangled States: Production, Characterization, and Utilization,” Phys. Rev. Lett. 83(16), 3103–3107 (1999).
[CrossRef]

Other (8)

http://research.physics.illinois.edu/QI/photonics/phase_compensation.html

While it is possible to compensate for spatial decoherence using birefringent compensators only in one downconversion arm, other effect, such as temporal, walkoff etc., need to be considered in this case.

Fidelity between a pure state |ψ〉and a mixed state|ρ〉is defined as F(|ψ〉,|ρ〉)≡〈ψ|ρ|ψ〉. In this article we always consider only the polarization part of the total two-photon wavefunction.

Concurrence C for a mixed state of two qubits is defined as C(ρ)=max(0,λh1−λ2−λ3−λ4) in which λi are the eigenvalues of ρ(σy⊗σy)ρ*(σy⊗σy) in decreasing order, and σy is the (0−ii0) Pauli spin matrix. Tangle is then the square of the concurrence.

Note that in this case spatial decoherence due to the temporal postcompensator must also be corrected in order to achieve complete joint spatial and spectral-temporal compensation.

For ease of discussion we use the language of uniaxial crystals: ordinary and extraordinary polarization. For biaxial crystals`, these terms are no longer an accurate description of polarization states. However, the terms can be used to refer to orthogonal linear polarizations with different velocities, usually labeled fast and slow, in the biaxial crystal.

Downconversion can be realized in two ways: in type-I (type-II) phasematching an extraordinary polarized pump downconverts into two ordinary polarized photons (one ordinary polarized and one extraordinary polarized photon).

L. E. Vincent, A. B. U'Ren, R. Rangarajan, C. I. Osorio, J. P. Torres, L. Zhang, and I. A. Walmsley, “Design of bright, fiber-coupled and fully factorable photon pair sources,” to be published.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a). Schematic showing the optic axes orientations and the corresponding downconversion photons from two orthogonally oriented type-I phasematched nonlinear crystals used to produce polarization-entangled photons. (b) Experimental setup to generate and analyze entangled photons. 405-nm light from a doubled ultra-short Ti-Saph laser or a cw-diode laser pumps either two BBO or BiBO crystals. A half wave plate (HWP) prepares the pump state. Quarter waveplates (QWP), and polarizers (P) are used to analyze the downconverted state. 10-nm interference filters (IF) reduce background to the single-photon detectors. (c) Quartz or BBO temporal compensators (TC) precompensate the pump for temporal walkoff. (d) Birefringent spatial compensators (SC) compensate for angle-dependent phase variation.

Fig. 2
Fig. 2

Experimentally measured phase gradients for uncompensated and compensated two-crystal geometry for a. degenerate downconversion (405 nm → 810 nm + 810 nm) and b. nondegenerate downconversion (405 nm → 851 nm + 771 nm) in BiBO pumped by a cw-diode laser. The solid lines are the phase gradients predicted by our numerical simulation. The error ( ± 0.05°) is smaller than the data markers.

Fig. 3
Fig. 3

Effect of varying the delay between the H-and V- pump components on the polarization-entangled state generated from two 0.6-mm BiBO crystals, pumped with a cw-diode laser for degenerate downconversion (405 nm → 810 nm + 810 nm). The delay is varied by using precompensators (in this case quartz) of differing lengths. A 0-fs precompensator delay represents the case when no temporal precompensator is present in the system. Negative delays, achieved by rotating the precompensator’s orientation by 90°, add to the problem of temporal walkoff instead of countering it. The solid line is the theoretical prediction based on the theory presented in Section 3. The center of the peak is determined by the crystal lengths, index dispersion, and pump central wavelength; the peak width varies inversely with pump bandwidth.

Fig. 4
Fig. 4

Spatial compensation results for temporally compensated cw-laser diode-pumped BiBO entanglement source. a. degenerate downconversion (405 nm → 810 nm) and b. nondegenerate downconversion (405 nm → 851 nm + 772 nm). For this data, the collection irises were located ~84 cm from the downconversion source.

Tables (1)

Tables Icon

Table 1 Comparative two-photon coincidence brightness between BBO and BiBO crystals.

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

|ψ=12(|H1H2+eiϕ(ωp,ωs,ωi,kp,ks,ki)|V1V2).
ϕdc(k^s,i)=(Φe+ΦΔ)s,i,
|ψk^s,i=12(|H1H2+ei(ϕdc(k^s)+ϕdc(k^i))|V1V2).
ρ=Iris|ψk^sψk^i|dk^sdk^i.
|ψk^s,i=12(|H1H2+ei(ϕdc(k^s)+ϕdc(k^i)+ϕc(k^s)+ϕc(k^i))|V1V2).
|Ψ=dtsdtif(ts,ti)a^s+(ts)a^i+(ti)|vac,
f(ts,ti)=eiΩpts+ti22πdνsdνiei(νsts+νiti)e(νs+νiσp)2Θ(νs,νi).
ts,i1=d2(1Vgex(ωp)+1Vgor(ωs,i)+2Vgex(ωs,i)),andts,i2=d2(2Vgor(ωp)+1Vgex(ωp)+1Vgor(ωs,i)).
Δts,idcts,i2ts,i1=d(1Vgor(ωp)1Vgex(ωs,i)).
|ψ=12(f(ts+Δtsdc,ti+Δtidc)|H,tss|H,tii+f(ts,ti)|V,tss|V,tii).
ρ=12(|HHHH|+|VVVV|+v(Δtsdc,Δtidc)|HHVV|+v*(Δtsdc,Δtidc)|VVHH|),
v(Δtsdc,Δtidc)dtsdtif(ts+Δtsdc,ti+Δtidc)f*(ts,ti).
τpc=lpc(1Vg,pcor(ωp)1Vg,pcex(ωp)).
τs,isc=lsc(1Vg,scor(ωs,i)1Vg,scex(ωs,i)).
f(νs,νi)=eid2(D+(νs+νi)+14D(νsνi)2)sinc(d2(D+(νs+νi)+14D(νsνi)2)),where  D+=1Vgor(Ωp/2)1Vgex(Ωp),D=d2ksdω2|Ωp/2.

Metrics