Abstract

We demonstrate the fabrication and characterization of photonic-crystal distributed-feedback quantum cascade laser emitting at 4.7 μm. The tilted rectangular-lattice PCDFB structure was defined using a multi-exposure of two-beam holographic lithography. The devices exhibit the near-diffraction-limited beam emission with the full width at half maximum of the far-field divergence angles about 4.5° and 2.5° for stripe widths of 55 μm and 95 μm, respectively. Single-mode emission with a side mode suppression ratio of ≈20 dB is achieved in the temperature range (80-210 K). The single-facet output power is above 1 W for a 95 μm × 2.5 mm laser bar at 85 K in pulsed operation.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Hofmann, H. Scherer, S. Deubert, M. Kamp, and A. Forchel, “Spectral and spatial single mode emission from a photonic crystal distributed feedback laser,” Appl. Phys. Lett. 90(12), 121135 (2007).
    [CrossRef]
  2. L. Zhu, X. Sun, G. A. DeRose, A. Scherer, and A. Yariv, “Room temperature continuous wave operation of single-mode, edge-emitting photonic crystal Bragg lasers,” Opt. Express 16(2), 502–506 (2008).
    [CrossRef] [PubMed]
  3. Y. Bai, S. R. Darvish, S. Slivken, P. Sung, J. Nguyen, A. Evans, W. Zhang, and M. Razeghi, “Electrically pumped photonic crystal distributed feedback quantum cascade lasers,” Appl. Phys. Lett. 91(14), 141123 (2007).
    [CrossRef]
  4. C. S. Kim, M. Kim, W. W. Bewley, J. R. Lindle, C. L. Canedy, J. A. Nolde, D. C. Larrabee, I. Vurgaftman, and J. R. Meyer, “Broad-stripe, single-mode, mid-IR interband cascade laser with photonic crystal distributed feedback grating,” Appl. Phys. Lett. 92(7), 071110 (2008).
    [CrossRef]
  5. V. Berger, O. Gauthier-Lafaye, and E. Costard, “Photonic band gaps and holography,” J. Appl. Phys. 82(1), 60–64 (1997).
    [CrossRef]
  6. N. D. Lai, W. P. Liang, J. H. Lin, C. C. Hsu, and C. H. Lin, “Fabrication of two- and three-dimensional periodic structures by multi-exposure of two-beam interference technique,” Opt. Express 13(23), 9605–9611 (2005).
    [CrossRef] [PubMed]
  7. Z. Poole, D. Xu, K. P. Chen, I. Olvera, K. Ohlinger, and Y. Lin, “Holographic fabrication of three dimensional orthorhombic and tetragonal photonic crystal templates using a diffractive optical element,” Appl. Phys. Lett. 91(25), 251101 (2007).
    [CrossRef]
  8. Q. Lu, W. Zhang, L. Wang, F. Q. Liu, and Z. Wang, “Photonic crystal distributed feedback quantum cascade laser fabricated with holographic technique,” Electron. Lett. 45(1), 53–54 (2009).
    [CrossRef]
  9. L. Li, Y. Shao, J. Q. Liu, F. Q. Liu, and Z. G. Wang, “High-power operation of uncoated strain-compensated quantum cascade laser at 4.8 μm,” Chin. Phys. Lett. 24(12), 3428–3430 (2007).
    [CrossRef]
  10. Q. Lu, W. Zhang, L. Wang, F. Q. Liu, and Z. Wang, “Transition control from circular to elliptical unit cells for 2D photonic crystals by interference lithography,” The 34th international conference on infrared, millimeter, and Terahertz Waves, accepted, (Busan, Korea, 2009), T5E42.
  11. I. Vurgaftman and J. R. Meyer, “Photonic-Crystal distributed-feedback quantum cascade lasers,” IEEE J. Quantum Electron. 38(6), 592–602 (2002).
    [CrossRef]
  12. J. Faist, C. Gmachl, F. Capasso, C. Sirtori, D. Sivco, J. Baillargeon, and A. Cho, “Distributed feedback quantum cascade lasers,” Appl. Phys. Lett. 70(20), 2670–2672 (1997).
    [CrossRef]

2009 (1)

Q. Lu, W. Zhang, L. Wang, F. Q. Liu, and Z. Wang, “Photonic crystal distributed feedback quantum cascade laser fabricated with holographic technique,” Electron. Lett. 45(1), 53–54 (2009).
[CrossRef]

2008 (2)

C. S. Kim, M. Kim, W. W. Bewley, J. R. Lindle, C. L. Canedy, J. A. Nolde, D. C. Larrabee, I. Vurgaftman, and J. R. Meyer, “Broad-stripe, single-mode, mid-IR interband cascade laser with photonic crystal distributed feedback grating,” Appl. Phys. Lett. 92(7), 071110 (2008).
[CrossRef]

L. Zhu, X. Sun, G. A. DeRose, A. Scherer, and A. Yariv, “Room temperature continuous wave operation of single-mode, edge-emitting photonic crystal Bragg lasers,” Opt. Express 16(2), 502–506 (2008).
[CrossRef] [PubMed]

2007 (4)

H. Hofmann, H. Scherer, S. Deubert, M. Kamp, and A. Forchel, “Spectral and spatial single mode emission from a photonic crystal distributed feedback laser,” Appl. Phys. Lett. 90(12), 121135 (2007).
[CrossRef]

Y. Bai, S. R. Darvish, S. Slivken, P. Sung, J. Nguyen, A. Evans, W. Zhang, and M. Razeghi, “Electrically pumped photonic crystal distributed feedback quantum cascade lasers,” Appl. Phys. Lett. 91(14), 141123 (2007).
[CrossRef]

Z. Poole, D. Xu, K. P. Chen, I. Olvera, K. Ohlinger, and Y. Lin, “Holographic fabrication of three dimensional orthorhombic and tetragonal photonic crystal templates using a diffractive optical element,” Appl. Phys. Lett. 91(25), 251101 (2007).
[CrossRef]

L. Li, Y. Shao, J. Q. Liu, F. Q. Liu, and Z. G. Wang, “High-power operation of uncoated strain-compensated quantum cascade laser at 4.8 μm,” Chin. Phys. Lett. 24(12), 3428–3430 (2007).
[CrossRef]

2005 (1)

2002 (1)

I. Vurgaftman and J. R. Meyer, “Photonic-Crystal distributed-feedback quantum cascade lasers,” IEEE J. Quantum Electron. 38(6), 592–602 (2002).
[CrossRef]

1997 (2)

J. Faist, C. Gmachl, F. Capasso, C. Sirtori, D. Sivco, J. Baillargeon, and A. Cho, “Distributed feedback quantum cascade lasers,” Appl. Phys. Lett. 70(20), 2670–2672 (1997).
[CrossRef]

V. Berger, O. Gauthier-Lafaye, and E. Costard, “Photonic band gaps and holography,” J. Appl. Phys. 82(1), 60–64 (1997).
[CrossRef]

Bai, Y.

Y. Bai, S. R. Darvish, S. Slivken, P. Sung, J. Nguyen, A. Evans, W. Zhang, and M. Razeghi, “Electrically pumped photonic crystal distributed feedback quantum cascade lasers,” Appl. Phys. Lett. 91(14), 141123 (2007).
[CrossRef]

Baillargeon, J.

J. Faist, C. Gmachl, F. Capasso, C. Sirtori, D. Sivco, J. Baillargeon, and A. Cho, “Distributed feedback quantum cascade lasers,” Appl. Phys. Lett. 70(20), 2670–2672 (1997).
[CrossRef]

Berger, V.

V. Berger, O. Gauthier-Lafaye, and E. Costard, “Photonic band gaps and holography,” J. Appl. Phys. 82(1), 60–64 (1997).
[CrossRef]

Bewley, W. W.

C. S. Kim, M. Kim, W. W. Bewley, J. R. Lindle, C. L. Canedy, J. A. Nolde, D. C. Larrabee, I. Vurgaftman, and J. R. Meyer, “Broad-stripe, single-mode, mid-IR interband cascade laser with photonic crystal distributed feedback grating,” Appl. Phys. Lett. 92(7), 071110 (2008).
[CrossRef]

Canedy, C. L.

C. S. Kim, M. Kim, W. W. Bewley, J. R. Lindle, C. L. Canedy, J. A. Nolde, D. C. Larrabee, I. Vurgaftman, and J. R. Meyer, “Broad-stripe, single-mode, mid-IR interband cascade laser with photonic crystal distributed feedback grating,” Appl. Phys. Lett. 92(7), 071110 (2008).
[CrossRef]

Capasso, F.

J. Faist, C. Gmachl, F. Capasso, C. Sirtori, D. Sivco, J. Baillargeon, and A. Cho, “Distributed feedback quantum cascade lasers,” Appl. Phys. Lett. 70(20), 2670–2672 (1997).
[CrossRef]

Chen, K. P.

Z. Poole, D. Xu, K. P. Chen, I. Olvera, K. Ohlinger, and Y. Lin, “Holographic fabrication of three dimensional orthorhombic and tetragonal photonic crystal templates using a diffractive optical element,” Appl. Phys. Lett. 91(25), 251101 (2007).
[CrossRef]

Cho, A.

J. Faist, C. Gmachl, F. Capasso, C. Sirtori, D. Sivco, J. Baillargeon, and A. Cho, “Distributed feedback quantum cascade lasers,” Appl. Phys. Lett. 70(20), 2670–2672 (1997).
[CrossRef]

Costard, E.

V. Berger, O. Gauthier-Lafaye, and E. Costard, “Photonic band gaps and holography,” J. Appl. Phys. 82(1), 60–64 (1997).
[CrossRef]

Darvish, S. R.

Y. Bai, S. R. Darvish, S. Slivken, P. Sung, J. Nguyen, A. Evans, W. Zhang, and M. Razeghi, “Electrically pumped photonic crystal distributed feedback quantum cascade lasers,” Appl. Phys. Lett. 91(14), 141123 (2007).
[CrossRef]

DeRose, G. A.

Deubert, S.

H. Hofmann, H. Scherer, S. Deubert, M. Kamp, and A. Forchel, “Spectral and spatial single mode emission from a photonic crystal distributed feedback laser,” Appl. Phys. Lett. 90(12), 121135 (2007).
[CrossRef]

Evans, A.

Y. Bai, S. R. Darvish, S. Slivken, P. Sung, J. Nguyen, A. Evans, W. Zhang, and M. Razeghi, “Electrically pumped photonic crystal distributed feedback quantum cascade lasers,” Appl. Phys. Lett. 91(14), 141123 (2007).
[CrossRef]

Faist, J.

J. Faist, C. Gmachl, F. Capasso, C. Sirtori, D. Sivco, J. Baillargeon, and A. Cho, “Distributed feedback quantum cascade lasers,” Appl. Phys. Lett. 70(20), 2670–2672 (1997).
[CrossRef]

Forchel, A.

H. Hofmann, H. Scherer, S. Deubert, M. Kamp, and A. Forchel, “Spectral and spatial single mode emission from a photonic crystal distributed feedback laser,” Appl. Phys. Lett. 90(12), 121135 (2007).
[CrossRef]

Gauthier-Lafaye, O.

V. Berger, O. Gauthier-Lafaye, and E. Costard, “Photonic band gaps and holography,” J. Appl. Phys. 82(1), 60–64 (1997).
[CrossRef]

Gmachl, C.

J. Faist, C. Gmachl, F. Capasso, C. Sirtori, D. Sivco, J. Baillargeon, and A. Cho, “Distributed feedback quantum cascade lasers,” Appl. Phys. Lett. 70(20), 2670–2672 (1997).
[CrossRef]

Hofmann, H.

H. Hofmann, H. Scherer, S. Deubert, M. Kamp, and A. Forchel, “Spectral and spatial single mode emission from a photonic crystal distributed feedback laser,” Appl. Phys. Lett. 90(12), 121135 (2007).
[CrossRef]

Hsu, C. C.

Kamp, M.

H. Hofmann, H. Scherer, S. Deubert, M. Kamp, and A. Forchel, “Spectral and spatial single mode emission from a photonic crystal distributed feedback laser,” Appl. Phys. Lett. 90(12), 121135 (2007).
[CrossRef]

Kim, C. S.

C. S. Kim, M. Kim, W. W. Bewley, J. R. Lindle, C. L. Canedy, J. A. Nolde, D. C. Larrabee, I. Vurgaftman, and J. R. Meyer, “Broad-stripe, single-mode, mid-IR interband cascade laser with photonic crystal distributed feedback grating,” Appl. Phys. Lett. 92(7), 071110 (2008).
[CrossRef]

Kim, M.

C. S. Kim, M. Kim, W. W. Bewley, J. R. Lindle, C. L. Canedy, J. A. Nolde, D. C. Larrabee, I. Vurgaftman, and J. R. Meyer, “Broad-stripe, single-mode, mid-IR interband cascade laser with photonic crystal distributed feedback grating,” Appl. Phys. Lett. 92(7), 071110 (2008).
[CrossRef]

Lai, N. D.

Larrabee, D. C.

C. S. Kim, M. Kim, W. W. Bewley, J. R. Lindle, C. L. Canedy, J. A. Nolde, D. C. Larrabee, I. Vurgaftman, and J. R. Meyer, “Broad-stripe, single-mode, mid-IR interband cascade laser with photonic crystal distributed feedback grating,” Appl. Phys. Lett. 92(7), 071110 (2008).
[CrossRef]

Li, L.

L. Li, Y. Shao, J. Q. Liu, F. Q. Liu, and Z. G. Wang, “High-power operation of uncoated strain-compensated quantum cascade laser at 4.8 μm,” Chin. Phys. Lett. 24(12), 3428–3430 (2007).
[CrossRef]

Liang, W. P.

Lin, C. H.

Lin, J. H.

Lin, Y.

Z. Poole, D. Xu, K. P. Chen, I. Olvera, K. Ohlinger, and Y. Lin, “Holographic fabrication of three dimensional orthorhombic and tetragonal photonic crystal templates using a diffractive optical element,” Appl. Phys. Lett. 91(25), 251101 (2007).
[CrossRef]

Lindle, J. R.

C. S. Kim, M. Kim, W. W. Bewley, J. R. Lindle, C. L. Canedy, J. A. Nolde, D. C. Larrabee, I. Vurgaftman, and J. R. Meyer, “Broad-stripe, single-mode, mid-IR interband cascade laser with photonic crystal distributed feedback grating,” Appl. Phys. Lett. 92(7), 071110 (2008).
[CrossRef]

Liu, F. Q.

Q. Lu, W. Zhang, L. Wang, F. Q. Liu, and Z. Wang, “Photonic crystal distributed feedback quantum cascade laser fabricated with holographic technique,” Electron. Lett. 45(1), 53–54 (2009).
[CrossRef]

L. Li, Y. Shao, J. Q. Liu, F. Q. Liu, and Z. G. Wang, “High-power operation of uncoated strain-compensated quantum cascade laser at 4.8 μm,” Chin. Phys. Lett. 24(12), 3428–3430 (2007).
[CrossRef]

Liu, J. Q.

L. Li, Y. Shao, J. Q. Liu, F. Q. Liu, and Z. G. Wang, “High-power operation of uncoated strain-compensated quantum cascade laser at 4.8 μm,” Chin. Phys. Lett. 24(12), 3428–3430 (2007).
[CrossRef]

Lu, Q.

Q. Lu, W. Zhang, L. Wang, F. Q. Liu, and Z. Wang, “Photonic crystal distributed feedback quantum cascade laser fabricated with holographic technique,” Electron. Lett. 45(1), 53–54 (2009).
[CrossRef]

Meyer, J. R.

C. S. Kim, M. Kim, W. W. Bewley, J. R. Lindle, C. L. Canedy, J. A. Nolde, D. C. Larrabee, I. Vurgaftman, and J. R. Meyer, “Broad-stripe, single-mode, mid-IR interband cascade laser with photonic crystal distributed feedback grating,” Appl. Phys. Lett. 92(7), 071110 (2008).
[CrossRef]

I. Vurgaftman and J. R. Meyer, “Photonic-Crystal distributed-feedback quantum cascade lasers,” IEEE J. Quantum Electron. 38(6), 592–602 (2002).
[CrossRef]

Nguyen, J.

Y. Bai, S. R. Darvish, S. Slivken, P. Sung, J. Nguyen, A. Evans, W. Zhang, and M. Razeghi, “Electrically pumped photonic crystal distributed feedback quantum cascade lasers,” Appl. Phys. Lett. 91(14), 141123 (2007).
[CrossRef]

Nolde, J. A.

C. S. Kim, M. Kim, W. W. Bewley, J. R. Lindle, C. L. Canedy, J. A. Nolde, D. C. Larrabee, I. Vurgaftman, and J. R. Meyer, “Broad-stripe, single-mode, mid-IR interband cascade laser with photonic crystal distributed feedback grating,” Appl. Phys. Lett. 92(7), 071110 (2008).
[CrossRef]

Ohlinger, K.

Z. Poole, D. Xu, K. P. Chen, I. Olvera, K. Ohlinger, and Y. Lin, “Holographic fabrication of three dimensional orthorhombic and tetragonal photonic crystal templates using a diffractive optical element,” Appl. Phys. Lett. 91(25), 251101 (2007).
[CrossRef]

Olvera, I.

Z. Poole, D. Xu, K. P. Chen, I. Olvera, K. Ohlinger, and Y. Lin, “Holographic fabrication of three dimensional orthorhombic and tetragonal photonic crystal templates using a diffractive optical element,” Appl. Phys. Lett. 91(25), 251101 (2007).
[CrossRef]

Poole, Z.

Z. Poole, D. Xu, K. P. Chen, I. Olvera, K. Ohlinger, and Y. Lin, “Holographic fabrication of three dimensional orthorhombic and tetragonal photonic crystal templates using a diffractive optical element,” Appl. Phys. Lett. 91(25), 251101 (2007).
[CrossRef]

Razeghi, M.

Y. Bai, S. R. Darvish, S. Slivken, P. Sung, J. Nguyen, A. Evans, W. Zhang, and M. Razeghi, “Electrically pumped photonic crystal distributed feedback quantum cascade lasers,” Appl. Phys. Lett. 91(14), 141123 (2007).
[CrossRef]

Scherer, A.

Scherer, H.

H. Hofmann, H. Scherer, S. Deubert, M. Kamp, and A. Forchel, “Spectral and spatial single mode emission from a photonic crystal distributed feedback laser,” Appl. Phys. Lett. 90(12), 121135 (2007).
[CrossRef]

Shao, Y.

L. Li, Y. Shao, J. Q. Liu, F. Q. Liu, and Z. G. Wang, “High-power operation of uncoated strain-compensated quantum cascade laser at 4.8 μm,” Chin. Phys. Lett. 24(12), 3428–3430 (2007).
[CrossRef]

Sirtori, C.

J. Faist, C. Gmachl, F. Capasso, C. Sirtori, D. Sivco, J. Baillargeon, and A. Cho, “Distributed feedback quantum cascade lasers,” Appl. Phys. Lett. 70(20), 2670–2672 (1997).
[CrossRef]

Sivco, D.

J. Faist, C. Gmachl, F. Capasso, C. Sirtori, D. Sivco, J. Baillargeon, and A. Cho, “Distributed feedback quantum cascade lasers,” Appl. Phys. Lett. 70(20), 2670–2672 (1997).
[CrossRef]

Slivken, S.

Y. Bai, S. R. Darvish, S. Slivken, P. Sung, J. Nguyen, A. Evans, W. Zhang, and M. Razeghi, “Electrically pumped photonic crystal distributed feedback quantum cascade lasers,” Appl. Phys. Lett. 91(14), 141123 (2007).
[CrossRef]

Sun, X.

Sung, P.

Y. Bai, S. R. Darvish, S. Slivken, P. Sung, J. Nguyen, A. Evans, W. Zhang, and M. Razeghi, “Electrically pumped photonic crystal distributed feedback quantum cascade lasers,” Appl. Phys. Lett. 91(14), 141123 (2007).
[CrossRef]

Vurgaftman, I.

C. S. Kim, M. Kim, W. W. Bewley, J. R. Lindle, C. L. Canedy, J. A. Nolde, D. C. Larrabee, I. Vurgaftman, and J. R. Meyer, “Broad-stripe, single-mode, mid-IR interband cascade laser with photonic crystal distributed feedback grating,” Appl. Phys. Lett. 92(7), 071110 (2008).
[CrossRef]

I. Vurgaftman and J. R. Meyer, “Photonic-Crystal distributed-feedback quantum cascade lasers,” IEEE J. Quantum Electron. 38(6), 592–602 (2002).
[CrossRef]

Wang, L.

Q. Lu, W. Zhang, L. Wang, F. Q. Liu, and Z. Wang, “Photonic crystal distributed feedback quantum cascade laser fabricated with holographic technique,” Electron. Lett. 45(1), 53–54 (2009).
[CrossRef]

Wang, Z.

Q. Lu, W. Zhang, L. Wang, F. Q. Liu, and Z. Wang, “Photonic crystal distributed feedback quantum cascade laser fabricated with holographic technique,” Electron. Lett. 45(1), 53–54 (2009).
[CrossRef]

Wang, Z. G.

L. Li, Y. Shao, J. Q. Liu, F. Q. Liu, and Z. G. Wang, “High-power operation of uncoated strain-compensated quantum cascade laser at 4.8 μm,” Chin. Phys. Lett. 24(12), 3428–3430 (2007).
[CrossRef]

Xu, D.

Z. Poole, D. Xu, K. P. Chen, I. Olvera, K. Ohlinger, and Y. Lin, “Holographic fabrication of three dimensional orthorhombic and tetragonal photonic crystal templates using a diffractive optical element,” Appl. Phys. Lett. 91(25), 251101 (2007).
[CrossRef]

Yariv, A.

Zhang, W.

Q. Lu, W. Zhang, L. Wang, F. Q. Liu, and Z. Wang, “Photonic crystal distributed feedback quantum cascade laser fabricated with holographic technique,” Electron. Lett. 45(1), 53–54 (2009).
[CrossRef]

Y. Bai, S. R. Darvish, S. Slivken, P. Sung, J. Nguyen, A. Evans, W. Zhang, and M. Razeghi, “Electrically pumped photonic crystal distributed feedback quantum cascade lasers,” Appl. Phys. Lett. 91(14), 141123 (2007).
[CrossRef]

Zhu, L.

Appl. Phys. Lett. (5)

Y. Bai, S. R. Darvish, S. Slivken, P. Sung, J. Nguyen, A. Evans, W. Zhang, and M. Razeghi, “Electrically pumped photonic crystal distributed feedback quantum cascade lasers,” Appl. Phys. Lett. 91(14), 141123 (2007).
[CrossRef]

C. S. Kim, M. Kim, W. W. Bewley, J. R. Lindle, C. L. Canedy, J. A. Nolde, D. C. Larrabee, I. Vurgaftman, and J. R. Meyer, “Broad-stripe, single-mode, mid-IR interband cascade laser with photonic crystal distributed feedback grating,” Appl. Phys. Lett. 92(7), 071110 (2008).
[CrossRef]

Z. Poole, D. Xu, K. P. Chen, I. Olvera, K. Ohlinger, and Y. Lin, “Holographic fabrication of three dimensional orthorhombic and tetragonal photonic crystal templates using a diffractive optical element,” Appl. Phys. Lett. 91(25), 251101 (2007).
[CrossRef]

J. Faist, C. Gmachl, F. Capasso, C. Sirtori, D. Sivco, J. Baillargeon, and A. Cho, “Distributed feedback quantum cascade lasers,” Appl. Phys. Lett. 70(20), 2670–2672 (1997).
[CrossRef]

H. Hofmann, H. Scherer, S. Deubert, M. Kamp, and A. Forchel, “Spectral and spatial single mode emission from a photonic crystal distributed feedback laser,” Appl. Phys. Lett. 90(12), 121135 (2007).
[CrossRef]

Chin. Phys. Lett. (1)

L. Li, Y. Shao, J. Q. Liu, F. Q. Liu, and Z. G. Wang, “High-power operation of uncoated strain-compensated quantum cascade laser at 4.8 μm,” Chin. Phys. Lett. 24(12), 3428–3430 (2007).
[CrossRef]

Electron. Lett. (1)

Q. Lu, W. Zhang, L. Wang, F. Q. Liu, and Z. Wang, “Photonic crystal distributed feedback quantum cascade laser fabricated with holographic technique,” Electron. Lett. 45(1), 53–54 (2009).
[CrossRef]

IEEE J. Quantum Electron. (1)

I. Vurgaftman and J. R. Meyer, “Photonic-Crystal distributed-feedback quantum cascade lasers,” IEEE J. Quantum Electron. 38(6), 592–602 (2002).
[CrossRef]

J. Appl. Phys. (1)

V. Berger, O. Gauthier-Lafaye, and E. Costard, “Photonic band gaps and holography,” J. Appl. Phys. 82(1), 60–64 (1997).
[CrossRef]

Opt. Express (2)

Other (1)

Q. Lu, W. Zhang, L. Wang, F. Q. Liu, and Z. Wang, “Transition control from circular to elliptical unit cells for 2D photonic crystals by interference lithography,” The 34th international conference on infrared, millimeter, and Terahertz Waves, accepted, (Busan, Korea, 2009), T5E42.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) The schematic of the lattice fabrication. (b,c) and (d,e) are calculated iso-intensity distributions of two-beam interference with double exposures, and the corresponding AFM images of PC lattices recorded on photoresist with t1 /t2 = 1 and 3, respectively. (f) The coupling coefficients as a function of by2 with E≈1.1 and 1.8.

Fig. 2
Fig. 2

The scanning electron microscopy (SEM) pictures for (a) the PC lattice transferred to the InGaAs layer, (b) cross section of the lattice after MOCVD re-growth, (c) top view of PCDFB device near the front facet. Inset: the stripe edge after wet-etching process.

Fig. 3
Fig. 3

The far field distributions of the PCDFB QCLs with W = 55 μm and 95 μm respectively. Inset: the far-field distributions for W = 55 μm device at different driving currents.

Fig. 4
Fig. 4

(a) and (b) The emission spectra of the PCDFB QCLs with W = 55 μm at different driving currents and working temperatures. Inset: TM-polarized photonic band structure for the lattice structure calculated with an effective-index based plane wave expansion method.

Fig. 5
Fig. 5

(a) and (b) The light-current-voltage (L-I-V) characteristics of PCDFB QCLs measured at different temperatures for W = 55 μm and 95 μm with a driving duty cycle of 1%

Metrics