Abstract

A Fiber Bragg grating of 369 nm pitch was inscribed in a germanium-free double-clad ytterbium doped silica fiber using a femto-second pulse train at 400 nm wavelength and a phase mask. The photo-induced refractive index modulation of higher than 4×10−3 was obtained and the accompanying photo-induced losses were subsequently removed by thermal annealing, resulting in a low loss (<0.1dB), stable and high reflectivity (>40dB) FBG. Based on this FBG, a monolithic Ytterbium fiber laser operating at 1073 nm with slope efficiency of 71% and output power of 13W was demonstrated.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. A. Slattery, D. N. Nikogosyan, and G. Brambilla, “Fiber Bragg grating inscription by high-intensity femtosecond UV laser light: comparison with other existing methods of fabrication,” J. Opt. Soc. Am. B 22(2), 354–361 (2005).
    [CrossRef]
  2. S. J. Mihailov, D. Grobnic, C. W. Smelser, P. Lu, R. B. Walker, and H. Ding, “Induced Bragg Gratings in Optical Fibers and Waveguides Using an Ultrafast Infrared Laser and a Phase Mask,” Laser Chem. vol. 2008, Article ID 416251, 20 pages (2008)
  3. M. Bernier, D. Faucher, R. Vallée, A. Saliminia, G. Androz, Y. Sheng, and S. L. Chin, “Bragg gratings photoinduced in ZBLAN fibers by femtosecond pulses at 800 nm,” Opt. Lett. 32(5), 454–456 (2007).
    [CrossRef] [PubMed]
  4. G. Androz, D. Faucher, M. Bernier, and R. Vallée, “Monolithic fluoride-fiber laser at 1480 nm using fiber Bragg gratings,” Opt. Lett. 32(10), 1302–1304 (2007).
    [CrossRef] [PubMed]
  5. E. Wikszak, J. Thomas, J. Burghoff, B. Ortaç, J. Limpert, S. Nolte, U. Fuchs, and A. Tünnermann, “Erbium fiber laser based on intracore femtosecond-written fiber Bragg grating,” Opt. Lett. 31(16), 2390–2392 (2006).
    [CrossRef] [PubMed]
  6. E. Wikszak, J. Thomas, S. Klingebiel, B. Ortaç, J. Limpert, S. Nolte, and A. Tünnermann, and “Linearly polarized ytterbium fiber laser based on intracore femtosecond-written fiber Bragg gratings,” Opt. Lett. 32(18), 2756–2758 (2007).
    [CrossRef] [PubMed]
  7. A. Martinez, M. Dubov, I. Khrushchev, and I. Bennion, “Direct writing of fiber Bragg gratings by femtosecond laser,” Electron. Lett. 40(19), 1170–1172 (2004).
    [CrossRef]
  8. N. Jovanovic, A. Fuerbach, G. D. Marshall, M. J. Withford, and S. D. Jackson, “Stable high-power continuous-wave Yb3+-doped silica fiber laser utilizing a point-by-point inscribed fiber Bragg grating,” Opt. Lett. 32(11), 1486–1488 (2007).
    [CrossRef] [PubMed]
  9. N. Jovanovic, M. Aslund, A. Fuerbach, S. D. Jackson, G. D. Marshall, and M. J. Withford, “Narrow linewidth, 100W cw Yb3+-doped silica fiber laser with a point-by-point Bragg grating inscribed directly into the active core,” Opt. Lett. 32(19), 2804–2806 (2007).
    [CrossRef] [PubMed]
  10. N. Jovanovic, J. Thomas, R. J. Williams, M. J. Steel, G. D. Marshall, A. Fuerbach, S. Nolte, A. Tünnermann, and M. J. Withford, “Polarization-dependent effects in point-by-point fiber Bragg gratings enable simple, linearly polarized fiber lasers,” Opt. Express 17(8), 6082–6095 (2009).
    [CrossRef] [PubMed]
  11. M. L. Åslund, N. Nemanja, N. Groothoff, J. Canning, G. D. Marshall, S. D. Jackson, A. Fuerbach, and M. J. Withford, “Optical loss mechanisms in femtosecond laser-written point-by-point fibre Bragg gratings,” Opt. Express 16(18), 14248–14254 (2008).
    [CrossRef] [PubMed]
  12. D. S. Starodubov, V. Grubsky, and J. Feinberg, “Efficient Bragg grating fabrication in a fiber through its polymer jacket using near-UV light,” Electron. Lett. 33(15), 1331–1333 (1997).
    [CrossRef]
  13. J. Jaspara, M. Andrejco, and D. DiGiovanni, “Effet of heat and H2 gas on the photo-darkening of Yb3+ fibers,” in Conference of Lasers and Electro-Optics CLEO Technical Digest (OSA, 2006), CTuQ5.
  14. M.-A. Lapointe, and M. Piché, “Linewidth of high-power fiber lasers,” Proc. of SPIE, Photonics North, (2009)
  15. M. Bernier, Y. Sheng, and R. Vallée, “Ultrabroadband fiber Bragg gratings written with a highly chirped phase mask and infrared femtosecond pulses,” Opt. Express 17(5), 3285–3290 (2009).
    [CrossRef] [PubMed]

2009 (2)

2008 (1)

2007 (5)

2006 (1)

2005 (1)

2004 (1)

A. Martinez, M. Dubov, I. Khrushchev, and I. Bennion, “Direct writing of fiber Bragg gratings by femtosecond laser,” Electron. Lett. 40(19), 1170–1172 (2004).
[CrossRef]

1997 (1)

D. S. Starodubov, V. Grubsky, and J. Feinberg, “Efficient Bragg grating fabrication in a fiber through its polymer jacket using near-UV light,” Electron. Lett. 33(15), 1331–1333 (1997).
[CrossRef]

Androz, G.

Aslund, M.

Åslund, M. L.

Bennion, I.

A. Martinez, M. Dubov, I. Khrushchev, and I. Bennion, “Direct writing of fiber Bragg gratings by femtosecond laser,” Electron. Lett. 40(19), 1170–1172 (2004).
[CrossRef]

Bernier, M.

Brambilla, G.

Burghoff, J.

Canning, J.

Chin, S. L.

Dubov, M.

A. Martinez, M. Dubov, I. Khrushchev, and I. Bennion, “Direct writing of fiber Bragg gratings by femtosecond laser,” Electron. Lett. 40(19), 1170–1172 (2004).
[CrossRef]

Faucher, D.

Feinberg, J.

D. S. Starodubov, V. Grubsky, and J. Feinberg, “Efficient Bragg grating fabrication in a fiber through its polymer jacket using near-UV light,” Electron. Lett. 33(15), 1331–1333 (1997).
[CrossRef]

Fuchs, U.

Fuerbach, A.

Groothoff, N.

Grubsky, V.

D. S. Starodubov, V. Grubsky, and J. Feinberg, “Efficient Bragg grating fabrication in a fiber through its polymer jacket using near-UV light,” Electron. Lett. 33(15), 1331–1333 (1997).
[CrossRef]

Jackson, S. D.

Jovanovic, N.

Khrushchev, I.

A. Martinez, M. Dubov, I. Khrushchev, and I. Bennion, “Direct writing of fiber Bragg gratings by femtosecond laser,” Electron. Lett. 40(19), 1170–1172 (2004).
[CrossRef]

Klingebiel, S.

Limpert, J.

Marshall, G. D.

Martinez, A.

A. Martinez, M. Dubov, I. Khrushchev, and I. Bennion, “Direct writing of fiber Bragg gratings by femtosecond laser,” Electron. Lett. 40(19), 1170–1172 (2004).
[CrossRef]

Nemanja, N.

Nikogosyan, D. N.

Nolte, S.

Ortaç, B.

Saliminia, A.

Sheng, Y.

Slattery, S. A.

Starodubov, D. S.

D. S. Starodubov, V. Grubsky, and J. Feinberg, “Efficient Bragg grating fabrication in a fiber through its polymer jacket using near-UV light,” Electron. Lett. 33(15), 1331–1333 (1997).
[CrossRef]

Steel, M. J.

Thomas, J.

Tünnermann, A.

Vallée, R.

Wikszak, E.

Williams, R. J.

Withford, M. J.

Electron. Lett. (2)

A. Martinez, M. Dubov, I. Khrushchev, and I. Bennion, “Direct writing of fiber Bragg gratings by femtosecond laser,” Electron. Lett. 40(19), 1170–1172 (2004).
[CrossRef]

D. S. Starodubov, V. Grubsky, and J. Feinberg, “Efficient Bragg grating fabrication in a fiber through its polymer jacket using near-UV light,” Electron. Lett. 33(15), 1331–1333 (1997).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Express (3)

Opt. Lett. (6)

Other (3)

J. Jaspara, M. Andrejco, and D. DiGiovanni, “Effet of heat and H2 gas on the photo-darkening of Yb3+ fibers,” in Conference of Lasers and Electro-Optics CLEO Technical Digest (OSA, 2006), CTuQ5.

M.-A. Lapointe, and M. Piché, “Linewidth of high-power fiber lasers,” Proc. of SPIE, Photonics North, (2009)

S. J. Mihailov, D. Grobnic, C. W. Smelser, P. Lu, R. B. Walker, and H. Ding, “Induced Bragg Gratings in Optical Fibers and Waveguides Using an Ultrafast Infrared Laser and a Phase Mask,” Laser Chem. vol. 2008, Article ID 416251, 20 pages (2008)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Ytterbium fiber laser configuration used to test the laser operation incorporating an integrated FBG as a high reflector.

Fig. 2
Fig. 2

Measured transmission and reflection spectra of a FBG written in the doped fiber over 15 mm at 0.9 mJ, 1 kHz, during 20 s

Fig. 3
Fig. 3

Measured transmission spectrum of a FBG written in the doped fiber over 15mm at 0.9 mJ, 1 kHz, during 40s before and after thermal annealing at up to 500°C.

Fig. 4
Fig. 4

Evolution of the refractive index modulation (blue) and throughput losses (red) of the FBG introduced at Fig. 2 as a function of the annealing temperature. The corresponding refractive index modulation was evaluated under adiabatic conditions, i.e. after 30 minutes of annealing at the corresponding temperature.

Fig. 5
Fig. 5

Measured laser power as a function of the launched pump power when the laser is incorporating the annealed Bragg grating presented in Fig. 3. The inset shows the power spectrum of the laser for different output power of the fiber laser.

Fig. 6
Fig. 6

a) Measured transmission spectrum of a FBG written in the active fiber over 15mm at 0.9 mJ, 1kHz, during 100s before and after a thermal annealing process at 400°C during 90 seconds. b) Corresponding broadband fiber transmission spectrum before and after a thermal annealing at 400°C during 90 seconds.

Fig. 7
Fig. 7

Measured laser power as a function of the launched pump power at 915 nm when the laser is incorporating the annealed Bragg grating presented in Fig. 6. The inset shows the power spectrum of the laser for three output power.

Metrics