Abstract

We propose a novel metal slit array Fresnel lens for wavelength-scale optical coupling into a nanophotonic waveguide. Using the plasmonic waveguide structure in Fresnel lens form, a much wider beam acceptance angle and wavelength-scale working distance of the lens was realized compared to a conventional dielectric Fresnel lens. By applying the plasmon waveguide dispersion relation to a phased antenna array model, we also develop and analyze design rules and parameters for the suggested metal slit Fresnel lens. Numerical assessment of the suggested structure shows excellent coupling efficiency (up to 59%) of the 10 μm free-space Gaussian beam to the 0.36 μm Si waveguide within a working distance of a few μm.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. F. MacDonald, Z. L. Samson, M. I. Stockman, and N. I. Zheludev, “Ultrafast active plasmonics,” Nat. Photonics 3(1), 55–58 (2008).
    [CrossRef]
  2. S. Yu, S. Koo, and N. Park, “Coded output photonic A/D converter based on photonic crystal slow-light structures,” Opt. Express 16(18), 13752–13757 (2008).
    [CrossRef] [PubMed]
  3. M. T. Hill, Y. S. Oei, B. Smalbrugge, Y. Zhu, T. D. Vries, P. J. V. Veldhoven, F. W. M. V. Otten, T. J. Eijkemans, J. P. Turkiewicz, H. De Waardt, E. J. Geluk, S. H. Kwon, Y. H. Lee, R. Notzel, and M. K. Smit, “Lasing in metallic- Coated nanocavities,” Nat. Photonics 1(10), 589–594 (2007).
    [CrossRef]
  4. L. Vivien, S. Laval, E. Cassan, X. L. Roux, and D. Pascal, “2-D taper for low-loss coupling between polarization-insensitive microwaveguides and single-mode optical fibers,” J. Lightwave Technol. 21(10), 2429–2433 (2003).
    [CrossRef]
  5. L. Pavesi, and G. Guillot, Optical Interconnects: The Silicon Approach (Springer, 2006).
  6. B. L. Miao, C. H. Chen, S. Y. Shi, and D. W. Prather, “A high-efficiency in-plane splitting coupler for planar photonic crystal self-collimation devices,” IEEE Photon. Technol. Lett. 17(1), 61–63 (2005).
    [CrossRef]
  7. D. W. Prather, J. Murakowski, S. Y. Shi, S. Venkataraman, A. Sharkawy, C. H. Chen, and D. Pustai, “High-efficiency coupling structure for a single-line-defect photonic-crystal waveguide,” Opt. Lett. 27(18), 1601–1603 (2002).
    [CrossRef]
  8. F. J. Garcı́a-Vidal, L. Martı́n-Moreno, H. J. Lezec, and T. W. Ebbesen, “Focusing light with a single subwavelength aperture flanked by surface corrugations,” Appl. Phys. Lett. 83(22), 4500 (2003).
    [CrossRef]
  9. C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445(7123), 39–46 (2007).
    [CrossRef] [PubMed]
  10. F. J. Garcia-Vidal, H. J. Lezec, T. W. Ebbesen, and L. Martin-Moreno, “Multiple paths to enhance optical transmission through a single subwavelength slit,” Physical Review Letters 90, - (2003).
  11. N. Yu, R. Blanchard, J. Fan, Q. J. Wang, C. Pflügl, L. Diehl, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, “Quantum cascade lasers with integrated plasmonic antenna-array collimators,” Opt. Express 16(24), 19447–19461 (2008).
    [CrossRef] [PubMed]
  12. T. Ishi, J. Fujikata, K. Makita, T. Baba, and K. Ohashi, “Si nano-photodiode with a surface plasmon antenna,” Japanese Journal of Applied Physics Part 2-Letters & Express Letters 44, 364–366 (2005).
    [CrossRef]
  13. N. F. Yu, J. Fan, Q. J. Wang, C. Pflugl, L. Diehl, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, “Small-divergence semiconductor lasers by plasmonic collimation,” Nat. Photonics 2(9), 564–570 (2008).
    [CrossRef]
  14. H. F. Shi, C. T. Wang, C. L. Du, X. G. Luo, X. C. Dong, and H. T. Gao, “Beam manipulating by metallic nano-slits with variant widths,” Opt. Express 13(18), 6815–6820 (2005).
    [CrossRef] [PubMed]
  15. Z. J. Sun, “Beam splitting with a modified metallic nano-optic lens,” Appl. Phys. Lett. 89, - (2006).
    [CrossRef]
  16. H. X. Yuan, B. X. Xu, and T. C. Chong, “Focusing effect and performance analysis of flat metal slit array lens,” in Optical Data Storage(2007), p. TuE2.
  17. H. X. Yuan, B. X. Xu, B. Lukiyanchuk, and T. C. Chong, “Principle and design approach of flat nano-metallic surface plasmonic lens,” Applied Physics Materials Science & Processing 89(2), 397–401 (2007).
    [CrossRef]
  18. Z. J. Sun and H. K. Kim, “Refractive transmission of light and beam shaping with metallic nano-optic lenses,” Appl. Phys. Lett. 85(4), 642–644 (2004).
    [CrossRef]
  19. T. Xu, C. L. Du, C. T. Wang, and X. G. Luo, “Subwavelength imaging by metallic slab lens with nanoslits,” Applied Physics Letters 91, - (2007).
  20. M. K. McGaugh, C. M. Verber, and R. P. Kenan, “Modified Integrated-Optic Fresnal Lens for Wave-Guide-to-Fiber Coupling,” Appl. Opt. 34(9), 1562–1568 (1995).
    [CrossRef] [PubMed]
  21. C. A. Balanis, Antenna theory: analysis and design (Wiley-Interscience, 2005).
  22. R. Qiang, R. L. Chen, and J. Chen, “Modeling electrical properties of gold films at infrared frequency using FDTD method,” Int. J. Infrared Millim. Waves 25(8), 1263–1270 (2004).
    [CrossRef]
  23. A. D. Rakic, A. B. Djurisic, J. M. Elazar, and M. L. Majewski, “Optical properties of metallic films for vertical-cavity optoelectronic devices,” Appl. Opt. 37(22), 5271–5283 (1998).
    [CrossRef]
  24. J. M. Helt, C. M. Drain, and G. Bazzan, “Stamping patterns of insulated gold nanowires with self-organized ultrathin polymer films,” J. Am. Chem. Soc. 128(29), 9371–9377 (2006).
    [CrossRef] [PubMed]

2008 (4)

K. F. MacDonald, Z. L. Samson, M. I. Stockman, and N. I. Zheludev, “Ultrafast active plasmonics,” Nat. Photonics 3(1), 55–58 (2008).
[CrossRef]

S. Yu, S. Koo, and N. Park, “Coded output photonic A/D converter based on photonic crystal slow-light structures,” Opt. Express 16(18), 13752–13757 (2008).
[CrossRef] [PubMed]

N. Yu, R. Blanchard, J. Fan, Q. J. Wang, C. Pflügl, L. Diehl, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, “Quantum cascade lasers with integrated plasmonic antenna-array collimators,” Opt. Express 16(24), 19447–19461 (2008).
[CrossRef] [PubMed]

N. F. Yu, J. Fan, Q. J. Wang, C. Pflugl, L. Diehl, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, “Small-divergence semiconductor lasers by plasmonic collimation,” Nat. Photonics 2(9), 564–570 (2008).
[CrossRef]

2007 (3)

H. X. Yuan, B. X. Xu, B. Lukiyanchuk, and T. C. Chong, “Principle and design approach of flat nano-metallic surface plasmonic lens,” Applied Physics Materials Science & Processing 89(2), 397–401 (2007).
[CrossRef]

M. T. Hill, Y. S. Oei, B. Smalbrugge, Y. Zhu, T. D. Vries, P. J. V. Veldhoven, F. W. M. V. Otten, T. J. Eijkemans, J. P. Turkiewicz, H. De Waardt, E. J. Geluk, S. H. Kwon, Y. H. Lee, R. Notzel, and M. K. Smit, “Lasing in metallic- Coated nanocavities,” Nat. Photonics 1(10), 589–594 (2007).
[CrossRef]

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445(7123), 39–46 (2007).
[CrossRef] [PubMed]

2006 (2)

Z. J. Sun, “Beam splitting with a modified metallic nano-optic lens,” Appl. Phys. Lett. 89, - (2006).
[CrossRef]

J. M. Helt, C. M. Drain, and G. Bazzan, “Stamping patterns of insulated gold nanowires with self-organized ultrathin polymer films,” J. Am. Chem. Soc. 128(29), 9371–9377 (2006).
[CrossRef] [PubMed]

2005 (3)

B. L. Miao, C. H. Chen, S. Y. Shi, and D. W. Prather, “A high-efficiency in-plane splitting coupler for planar photonic crystal self-collimation devices,” IEEE Photon. Technol. Lett. 17(1), 61–63 (2005).
[CrossRef]

H. F. Shi, C. T. Wang, C. L. Du, X. G. Luo, X. C. Dong, and H. T. Gao, “Beam manipulating by metallic nano-slits with variant widths,” Opt. Express 13(18), 6815–6820 (2005).
[CrossRef] [PubMed]

T. Ishi, J. Fujikata, K. Makita, T. Baba, and K. Ohashi, “Si nano-photodiode with a surface plasmon antenna,” Japanese Journal of Applied Physics Part 2-Letters & Express Letters 44, 364–366 (2005).
[CrossRef]

2004 (2)

Z. J. Sun and H. K. Kim, “Refractive transmission of light and beam shaping with metallic nano-optic lenses,” Appl. Phys. Lett. 85(4), 642–644 (2004).
[CrossRef]

R. Qiang, R. L. Chen, and J. Chen, “Modeling electrical properties of gold films at infrared frequency using FDTD method,” Int. J. Infrared Millim. Waves 25(8), 1263–1270 (2004).
[CrossRef]

2003 (2)

F. J. Garcı́a-Vidal, L. Martı́n-Moreno, H. J. Lezec, and T. W. Ebbesen, “Focusing light with a single subwavelength aperture flanked by surface corrugations,” Appl. Phys. Lett. 83(22), 4500 (2003).
[CrossRef]

L. Vivien, S. Laval, E. Cassan, X. L. Roux, and D. Pascal, “2-D taper for low-loss coupling between polarization-insensitive microwaveguides and single-mode optical fibers,” J. Lightwave Technol. 21(10), 2429–2433 (2003).
[CrossRef]

2002 (1)

1998 (1)

1995 (1)

Baba, T.

T. Ishi, J. Fujikata, K. Makita, T. Baba, and K. Ohashi, “Si nano-photodiode with a surface plasmon antenna,” Japanese Journal of Applied Physics Part 2-Letters & Express Letters 44, 364–366 (2005).
[CrossRef]

Bazzan, G.

J. M. Helt, C. M. Drain, and G. Bazzan, “Stamping patterns of insulated gold nanowires with self-organized ultrathin polymer films,” J. Am. Chem. Soc. 128(29), 9371–9377 (2006).
[CrossRef] [PubMed]

Blanchard, R.

Capasso, F.

N. Yu, R. Blanchard, J. Fan, Q. J. Wang, C. Pflügl, L. Diehl, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, “Quantum cascade lasers with integrated plasmonic antenna-array collimators,” Opt. Express 16(24), 19447–19461 (2008).
[CrossRef] [PubMed]

N. F. Yu, J. Fan, Q. J. Wang, C. Pflugl, L. Diehl, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, “Small-divergence semiconductor lasers by plasmonic collimation,” Nat. Photonics 2(9), 564–570 (2008).
[CrossRef]

Cassan, E.

Chen, C. H.

B. L. Miao, C. H. Chen, S. Y. Shi, and D. W. Prather, “A high-efficiency in-plane splitting coupler for planar photonic crystal self-collimation devices,” IEEE Photon. Technol. Lett. 17(1), 61–63 (2005).
[CrossRef]

D. W. Prather, J. Murakowski, S. Y. Shi, S. Venkataraman, A. Sharkawy, C. H. Chen, and D. Pustai, “High-efficiency coupling structure for a single-line-defect photonic-crystal waveguide,” Opt. Lett. 27(18), 1601–1603 (2002).
[CrossRef]

Chen, J.

R. Qiang, R. L. Chen, and J. Chen, “Modeling electrical properties of gold films at infrared frequency using FDTD method,” Int. J. Infrared Millim. Waves 25(8), 1263–1270 (2004).
[CrossRef]

Chen, R. L.

R. Qiang, R. L. Chen, and J. Chen, “Modeling electrical properties of gold films at infrared frequency using FDTD method,” Int. J. Infrared Millim. Waves 25(8), 1263–1270 (2004).
[CrossRef]

Chong, T. C.

H. X. Yuan, B. X. Xu, B. Lukiyanchuk, and T. C. Chong, “Principle and design approach of flat nano-metallic surface plasmonic lens,” Applied Physics Materials Science & Processing 89(2), 397–401 (2007).
[CrossRef]

De Waardt, H.

M. T. Hill, Y. S. Oei, B. Smalbrugge, Y. Zhu, T. D. Vries, P. J. V. Veldhoven, F. W. M. V. Otten, T. J. Eijkemans, J. P. Turkiewicz, H. De Waardt, E. J. Geluk, S. H. Kwon, Y. H. Lee, R. Notzel, and M. K. Smit, “Lasing in metallic- Coated nanocavities,” Nat. Photonics 1(10), 589–594 (2007).
[CrossRef]

Diehl, L.

N. F. Yu, J. Fan, Q. J. Wang, C. Pflugl, L. Diehl, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, “Small-divergence semiconductor lasers by plasmonic collimation,” Nat. Photonics 2(9), 564–570 (2008).
[CrossRef]

N. Yu, R. Blanchard, J. Fan, Q. J. Wang, C. Pflügl, L. Diehl, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, “Quantum cascade lasers with integrated plasmonic antenna-array collimators,” Opt. Express 16(24), 19447–19461 (2008).
[CrossRef] [PubMed]

Djurisic, A. B.

Dong, X. C.

Drain, C. M.

J. M. Helt, C. M. Drain, and G. Bazzan, “Stamping patterns of insulated gold nanowires with self-organized ultrathin polymer films,” J. Am. Chem. Soc. 128(29), 9371–9377 (2006).
[CrossRef] [PubMed]

Du, C. L.

Ebbesen, T. W.

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445(7123), 39–46 (2007).
[CrossRef] [PubMed]

F. J. Garcı́a-Vidal, L. Martı́n-Moreno, H. J. Lezec, and T. W. Ebbesen, “Focusing light with a single subwavelength aperture flanked by surface corrugations,” Appl. Phys. Lett. 83(22), 4500 (2003).
[CrossRef]

Edamura, T.

N. F. Yu, J. Fan, Q. J. Wang, C. Pflugl, L. Diehl, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, “Small-divergence semiconductor lasers by plasmonic collimation,” Nat. Photonics 2(9), 564–570 (2008).
[CrossRef]

N. Yu, R. Blanchard, J. Fan, Q. J. Wang, C. Pflügl, L. Diehl, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, “Quantum cascade lasers with integrated plasmonic antenna-array collimators,” Opt. Express 16(24), 19447–19461 (2008).
[CrossRef] [PubMed]

Eijkemans, T. J.

M. T. Hill, Y. S. Oei, B. Smalbrugge, Y. Zhu, T. D. Vries, P. J. V. Veldhoven, F. W. M. V. Otten, T. J. Eijkemans, J. P. Turkiewicz, H. De Waardt, E. J. Geluk, S. H. Kwon, Y. H. Lee, R. Notzel, and M. K. Smit, “Lasing in metallic- Coated nanocavities,” Nat. Photonics 1(10), 589–594 (2007).
[CrossRef]

Elazar, J. M.

Fan, J.

N. F. Yu, J. Fan, Q. J. Wang, C. Pflugl, L. Diehl, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, “Small-divergence semiconductor lasers by plasmonic collimation,” Nat. Photonics 2(9), 564–570 (2008).
[CrossRef]

N. Yu, R. Blanchard, J. Fan, Q. J. Wang, C. Pflügl, L. Diehl, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, “Quantum cascade lasers with integrated plasmonic antenna-array collimators,” Opt. Express 16(24), 19447–19461 (2008).
[CrossRef] [PubMed]

Fujikata, J.

T. Ishi, J. Fujikata, K. Makita, T. Baba, and K. Ohashi, “Si nano-photodiode with a surface plasmon antenna,” Japanese Journal of Applied Physics Part 2-Letters & Express Letters 44, 364–366 (2005).
[CrossRef]

Gao, H. T.

Garci´a-Vidal, F. J.

F. J. Garcı́a-Vidal, L. Martı́n-Moreno, H. J. Lezec, and T. W. Ebbesen, “Focusing light with a single subwavelength aperture flanked by surface corrugations,” Appl. Phys. Lett. 83(22), 4500 (2003).
[CrossRef]

Geluk, E. J.

M. T. Hill, Y. S. Oei, B. Smalbrugge, Y. Zhu, T. D. Vries, P. J. V. Veldhoven, F. W. M. V. Otten, T. J. Eijkemans, J. P. Turkiewicz, H. De Waardt, E. J. Geluk, S. H. Kwon, Y. H. Lee, R. Notzel, and M. K. Smit, “Lasing in metallic- Coated nanocavities,” Nat. Photonics 1(10), 589–594 (2007).
[CrossRef]

Genet, C.

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445(7123), 39–46 (2007).
[CrossRef] [PubMed]

Helt, J. M.

J. M. Helt, C. M. Drain, and G. Bazzan, “Stamping patterns of insulated gold nanowires with self-organized ultrathin polymer films,” J. Am. Chem. Soc. 128(29), 9371–9377 (2006).
[CrossRef] [PubMed]

Hill, M. T.

M. T. Hill, Y. S. Oei, B. Smalbrugge, Y. Zhu, T. D. Vries, P. J. V. Veldhoven, F. W. M. V. Otten, T. J. Eijkemans, J. P. Turkiewicz, H. De Waardt, E. J. Geluk, S. H. Kwon, Y. H. Lee, R. Notzel, and M. K. Smit, “Lasing in metallic- Coated nanocavities,” Nat. Photonics 1(10), 589–594 (2007).
[CrossRef]

Ishi, T.

T. Ishi, J. Fujikata, K. Makita, T. Baba, and K. Ohashi, “Si nano-photodiode with a surface plasmon antenna,” Japanese Journal of Applied Physics Part 2-Letters & Express Letters 44, 364–366 (2005).
[CrossRef]

Kan, H.

N. F. Yu, J. Fan, Q. J. Wang, C. Pflugl, L. Diehl, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, “Small-divergence semiconductor lasers by plasmonic collimation,” Nat. Photonics 2(9), 564–570 (2008).
[CrossRef]

N. Yu, R. Blanchard, J. Fan, Q. J. Wang, C. Pflügl, L. Diehl, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, “Quantum cascade lasers with integrated plasmonic antenna-array collimators,” Opt. Express 16(24), 19447–19461 (2008).
[CrossRef] [PubMed]

Kenan, R. P.

Kim, H. K.

Z. J. Sun and H. K. Kim, “Refractive transmission of light and beam shaping with metallic nano-optic lenses,” Appl. Phys. Lett. 85(4), 642–644 (2004).
[CrossRef]

Koo, S.

Kwon, S. H.

M. T. Hill, Y. S. Oei, B. Smalbrugge, Y. Zhu, T. D. Vries, P. J. V. Veldhoven, F. W. M. V. Otten, T. J. Eijkemans, J. P. Turkiewicz, H. De Waardt, E. J. Geluk, S. H. Kwon, Y. H. Lee, R. Notzel, and M. K. Smit, “Lasing in metallic- Coated nanocavities,” Nat. Photonics 1(10), 589–594 (2007).
[CrossRef]

Laval, S.

Lee, Y. H.

M. T. Hill, Y. S. Oei, B. Smalbrugge, Y. Zhu, T. D. Vries, P. J. V. Veldhoven, F. W. M. V. Otten, T. J. Eijkemans, J. P. Turkiewicz, H. De Waardt, E. J. Geluk, S. H. Kwon, Y. H. Lee, R. Notzel, and M. K. Smit, “Lasing in metallic- Coated nanocavities,” Nat. Photonics 1(10), 589–594 (2007).
[CrossRef]

Lezec, H. J.

F. J. Garcı́a-Vidal, L. Martı́n-Moreno, H. J. Lezec, and T. W. Ebbesen, “Focusing light with a single subwavelength aperture flanked by surface corrugations,” Appl. Phys. Lett. 83(22), 4500 (2003).
[CrossRef]

Lukiyanchuk, B.

H. X. Yuan, B. X. Xu, B. Lukiyanchuk, and T. C. Chong, “Principle and design approach of flat nano-metallic surface plasmonic lens,” Applied Physics Materials Science & Processing 89(2), 397–401 (2007).
[CrossRef]

Luo, X. G.

MacDonald, K. F.

K. F. MacDonald, Z. L. Samson, M. I. Stockman, and N. I. Zheludev, “Ultrafast active plasmonics,” Nat. Photonics 3(1), 55–58 (2008).
[CrossRef]

Majewski, M. L.

Makita, K.

T. Ishi, J. Fujikata, K. Makita, T. Baba, and K. Ohashi, “Si nano-photodiode with a surface plasmon antenna,” Japanese Journal of Applied Physics Part 2-Letters & Express Letters 44, 364–366 (2005).
[CrossRef]

Marti´n-Moreno, L.

F. J. Garcı́a-Vidal, L. Martı́n-Moreno, H. J. Lezec, and T. W. Ebbesen, “Focusing light with a single subwavelength aperture flanked by surface corrugations,” Appl. Phys. Lett. 83(22), 4500 (2003).
[CrossRef]

McGaugh, M. K.

Miao, B. L.

B. L. Miao, C. H. Chen, S. Y. Shi, and D. W. Prather, “A high-efficiency in-plane splitting coupler for planar photonic crystal self-collimation devices,” IEEE Photon. Technol. Lett. 17(1), 61–63 (2005).
[CrossRef]

Murakowski, J.

Notzel, R.

M. T. Hill, Y. S. Oei, B. Smalbrugge, Y. Zhu, T. D. Vries, P. J. V. Veldhoven, F. W. M. V. Otten, T. J. Eijkemans, J. P. Turkiewicz, H. De Waardt, E. J. Geluk, S. H. Kwon, Y. H. Lee, R. Notzel, and M. K. Smit, “Lasing in metallic- Coated nanocavities,” Nat. Photonics 1(10), 589–594 (2007).
[CrossRef]

Oei, Y. S.

M. T. Hill, Y. S. Oei, B. Smalbrugge, Y. Zhu, T. D. Vries, P. J. V. Veldhoven, F. W. M. V. Otten, T. J. Eijkemans, J. P. Turkiewicz, H. De Waardt, E. J. Geluk, S. H. Kwon, Y. H. Lee, R. Notzel, and M. K. Smit, “Lasing in metallic- Coated nanocavities,” Nat. Photonics 1(10), 589–594 (2007).
[CrossRef]

Ohashi, K.

T. Ishi, J. Fujikata, K. Makita, T. Baba, and K. Ohashi, “Si nano-photodiode with a surface plasmon antenna,” Japanese Journal of Applied Physics Part 2-Letters & Express Letters 44, 364–366 (2005).
[CrossRef]

Otten, F. W. M. V.

M. T. Hill, Y. S. Oei, B. Smalbrugge, Y. Zhu, T. D. Vries, P. J. V. Veldhoven, F. W. M. V. Otten, T. J. Eijkemans, J. P. Turkiewicz, H. De Waardt, E. J. Geluk, S. H. Kwon, Y. H. Lee, R. Notzel, and M. K. Smit, “Lasing in metallic- Coated nanocavities,” Nat. Photonics 1(10), 589–594 (2007).
[CrossRef]

Park, N.

Pascal, D.

Pflugl, C.

N. F. Yu, J. Fan, Q. J. Wang, C. Pflugl, L. Diehl, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, “Small-divergence semiconductor lasers by plasmonic collimation,” Nat. Photonics 2(9), 564–570 (2008).
[CrossRef]

Pflügl, C.

Prather, D. W.

B. L. Miao, C. H. Chen, S. Y. Shi, and D. W. Prather, “A high-efficiency in-plane splitting coupler for planar photonic crystal self-collimation devices,” IEEE Photon. Technol. Lett. 17(1), 61–63 (2005).
[CrossRef]

D. W. Prather, J. Murakowski, S. Y. Shi, S. Venkataraman, A. Sharkawy, C. H. Chen, and D. Pustai, “High-efficiency coupling structure for a single-line-defect photonic-crystal waveguide,” Opt. Lett. 27(18), 1601–1603 (2002).
[CrossRef]

Pustai, D.

Qiang, R.

R. Qiang, R. L. Chen, and J. Chen, “Modeling electrical properties of gold films at infrared frequency using FDTD method,” Int. J. Infrared Millim. Waves 25(8), 1263–1270 (2004).
[CrossRef]

Rakic, A. D.

Roux, X. L.

Samson, Z. L.

K. F. MacDonald, Z. L. Samson, M. I. Stockman, and N. I. Zheludev, “Ultrafast active plasmonics,” Nat. Photonics 3(1), 55–58 (2008).
[CrossRef]

Sharkawy, A.

Shi, H. F.

Shi, S. Y.

B. L. Miao, C. H. Chen, S. Y. Shi, and D. W. Prather, “A high-efficiency in-plane splitting coupler for planar photonic crystal self-collimation devices,” IEEE Photon. Technol. Lett. 17(1), 61–63 (2005).
[CrossRef]

D. W. Prather, J. Murakowski, S. Y. Shi, S. Venkataraman, A. Sharkawy, C. H. Chen, and D. Pustai, “High-efficiency coupling structure for a single-line-defect photonic-crystal waveguide,” Opt. Lett. 27(18), 1601–1603 (2002).
[CrossRef]

Smalbrugge, B.

M. T. Hill, Y. S. Oei, B. Smalbrugge, Y. Zhu, T. D. Vries, P. J. V. Veldhoven, F. W. M. V. Otten, T. J. Eijkemans, J. P. Turkiewicz, H. De Waardt, E. J. Geluk, S. H. Kwon, Y. H. Lee, R. Notzel, and M. K. Smit, “Lasing in metallic- Coated nanocavities,” Nat. Photonics 1(10), 589–594 (2007).
[CrossRef]

Smit, M. K.

M. T. Hill, Y. S. Oei, B. Smalbrugge, Y. Zhu, T. D. Vries, P. J. V. Veldhoven, F. W. M. V. Otten, T. J. Eijkemans, J. P. Turkiewicz, H. De Waardt, E. J. Geluk, S. H. Kwon, Y. H. Lee, R. Notzel, and M. K. Smit, “Lasing in metallic- Coated nanocavities,” Nat. Photonics 1(10), 589–594 (2007).
[CrossRef]

Stockman, M. I.

K. F. MacDonald, Z. L. Samson, M. I. Stockman, and N. I. Zheludev, “Ultrafast active plasmonics,” Nat. Photonics 3(1), 55–58 (2008).
[CrossRef]

Sun, Z. J.

Z. J. Sun, “Beam splitting with a modified metallic nano-optic lens,” Appl. Phys. Lett. 89, - (2006).
[CrossRef]

Z. J. Sun and H. K. Kim, “Refractive transmission of light and beam shaping with metallic nano-optic lenses,” Appl. Phys. Lett. 85(4), 642–644 (2004).
[CrossRef]

Turkiewicz, J. P.

M. T. Hill, Y. S. Oei, B. Smalbrugge, Y. Zhu, T. D. Vries, P. J. V. Veldhoven, F. W. M. V. Otten, T. J. Eijkemans, J. P. Turkiewicz, H. De Waardt, E. J. Geluk, S. H. Kwon, Y. H. Lee, R. Notzel, and M. K. Smit, “Lasing in metallic- Coated nanocavities,” Nat. Photonics 1(10), 589–594 (2007).
[CrossRef]

Veldhoven, P. J. V.

M. T. Hill, Y. S. Oei, B. Smalbrugge, Y. Zhu, T. D. Vries, P. J. V. Veldhoven, F. W. M. V. Otten, T. J. Eijkemans, J. P. Turkiewicz, H. De Waardt, E. J. Geluk, S. H. Kwon, Y. H. Lee, R. Notzel, and M. K. Smit, “Lasing in metallic- Coated nanocavities,” Nat. Photonics 1(10), 589–594 (2007).
[CrossRef]

Venkataraman, S.

Verber, C. M.

Vivien, L.

Vries, T. D.

M. T. Hill, Y. S. Oei, B. Smalbrugge, Y. Zhu, T. D. Vries, P. J. V. Veldhoven, F. W. M. V. Otten, T. J. Eijkemans, J. P. Turkiewicz, H. De Waardt, E. J. Geluk, S. H. Kwon, Y. H. Lee, R. Notzel, and M. K. Smit, “Lasing in metallic- Coated nanocavities,” Nat. Photonics 1(10), 589–594 (2007).
[CrossRef]

Wang, C. T.

Wang, Q. J.

N. Yu, R. Blanchard, J. Fan, Q. J. Wang, C. Pflügl, L. Diehl, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, “Quantum cascade lasers with integrated plasmonic antenna-array collimators,” Opt. Express 16(24), 19447–19461 (2008).
[CrossRef] [PubMed]

N. F. Yu, J. Fan, Q. J. Wang, C. Pflugl, L. Diehl, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, “Small-divergence semiconductor lasers by plasmonic collimation,” Nat. Photonics 2(9), 564–570 (2008).
[CrossRef]

Xu, B. X.

H. X. Yuan, B. X. Xu, B. Lukiyanchuk, and T. C. Chong, “Principle and design approach of flat nano-metallic surface plasmonic lens,” Applied Physics Materials Science & Processing 89(2), 397–401 (2007).
[CrossRef]

Yamanishi, M.

N. F. Yu, J. Fan, Q. J. Wang, C. Pflugl, L. Diehl, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, “Small-divergence semiconductor lasers by plasmonic collimation,” Nat. Photonics 2(9), 564–570 (2008).
[CrossRef]

N. Yu, R. Blanchard, J. Fan, Q. J. Wang, C. Pflügl, L. Diehl, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, “Quantum cascade lasers with integrated plasmonic antenna-array collimators,” Opt. Express 16(24), 19447–19461 (2008).
[CrossRef] [PubMed]

Yu, N.

Yu, N. F.

N. F. Yu, J. Fan, Q. J. Wang, C. Pflugl, L. Diehl, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, “Small-divergence semiconductor lasers by plasmonic collimation,” Nat. Photonics 2(9), 564–570 (2008).
[CrossRef]

Yu, S.

Yuan, H. X.

H. X. Yuan, B. X. Xu, B. Lukiyanchuk, and T. C. Chong, “Principle and design approach of flat nano-metallic surface plasmonic lens,” Applied Physics Materials Science & Processing 89(2), 397–401 (2007).
[CrossRef]

Zheludev, N. I.

K. F. MacDonald, Z. L. Samson, M. I. Stockman, and N. I. Zheludev, “Ultrafast active plasmonics,” Nat. Photonics 3(1), 55–58 (2008).
[CrossRef]

Zhu, Y.

M. T. Hill, Y. S. Oei, B. Smalbrugge, Y. Zhu, T. D. Vries, P. J. V. Veldhoven, F. W. M. V. Otten, T. J. Eijkemans, J. P. Turkiewicz, H. De Waardt, E. J. Geluk, S. H. Kwon, Y. H. Lee, R. Notzel, and M. K. Smit, “Lasing in metallic- Coated nanocavities,” Nat. Photonics 1(10), 589–594 (2007).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. Lett. (2)

F. J. Garcı́a-Vidal, L. Martı́n-Moreno, H. J. Lezec, and T. W. Ebbesen, “Focusing light with a single subwavelength aperture flanked by surface corrugations,” Appl. Phys. Lett. 83(22), 4500 (2003).
[CrossRef]

Appl. Phys. Lett. (1)

Z. J. Sun, “Beam splitting with a modified metallic nano-optic lens,” Appl. Phys. Lett. 89, - (2006).
[CrossRef]

Appl. Phys. Lett. (2)

Z. J. Sun and H. K. Kim, “Refractive transmission of light and beam shaping with metallic nano-optic lenses,” Appl. Phys. Lett. 85(4), 642–644 (2004).
[CrossRef]

Applied Physics Materials Science & Processing (1)

H. X. Yuan, B. X. Xu, B. Lukiyanchuk, and T. C. Chong, “Principle and design approach of flat nano-metallic surface plasmonic lens,” Applied Physics Materials Science & Processing 89(2), 397–401 (2007).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

B. L. Miao, C. H. Chen, S. Y. Shi, and D. W. Prather, “A high-efficiency in-plane splitting coupler for planar photonic crystal self-collimation devices,” IEEE Photon. Technol. Lett. 17(1), 61–63 (2005).
[CrossRef]

Int. J. Infrared Millim. Waves (1)

R. Qiang, R. L. Chen, and J. Chen, “Modeling electrical properties of gold films at infrared frequency using FDTD method,” Int. J. Infrared Millim. Waves 25(8), 1263–1270 (2004).
[CrossRef]

J. Am. Chem. Soc. (1)

J. M. Helt, C. M. Drain, and G. Bazzan, “Stamping patterns of insulated gold nanowires with self-organized ultrathin polymer films,” J. Am. Chem. Soc. 128(29), 9371–9377 (2006).
[CrossRef] [PubMed]

J. Lightwave Technol. (1)

Japanese Journal of Applied Physics Part 2-Letters & Express Letters (1)

T. Ishi, J. Fujikata, K. Makita, T. Baba, and K. Ohashi, “Si nano-photodiode with a surface plasmon antenna,” Japanese Journal of Applied Physics Part 2-Letters & Express Letters 44, 364–366 (2005).
[CrossRef]

Nat. Photonics (3)

N. F. Yu, J. Fan, Q. J. Wang, C. Pflugl, L. Diehl, T. Edamura, M. Yamanishi, H. Kan, and F. Capasso, “Small-divergence semiconductor lasers by plasmonic collimation,” Nat. Photonics 2(9), 564–570 (2008).
[CrossRef]

M. T. Hill, Y. S. Oei, B. Smalbrugge, Y. Zhu, T. D. Vries, P. J. V. Veldhoven, F. W. M. V. Otten, T. J. Eijkemans, J. P. Turkiewicz, H. De Waardt, E. J. Geluk, S. H. Kwon, Y. H. Lee, R. Notzel, and M. K. Smit, “Lasing in metallic- Coated nanocavities,” Nat. Photonics 1(10), 589–594 (2007).
[CrossRef]

K. F. MacDonald, Z. L. Samson, M. I. Stockman, and N. I. Zheludev, “Ultrafast active plasmonics,” Nat. Photonics 3(1), 55–58 (2008).
[CrossRef]

Nature (1)

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445(7123), 39–46 (2007).
[CrossRef] [PubMed]

Opt. Express (3)

Opt. Lett. (1)

Other (5)

F. J. Garcia-Vidal, H. J. Lezec, T. W. Ebbesen, and L. Martin-Moreno, “Multiple paths to enhance optical transmission through a single subwavelength slit,” Physical Review Letters 90, - (2003).

L. Pavesi, and G. Guillot, Optical Interconnects: The Silicon Approach (Springer, 2006).

T. Xu, C. L. Du, C. T. Wang, and X. G. Luo, “Subwavelength imaging by metallic slab lens with nanoslits,” Applied Physics Letters 91, - (2007).

H. X. Yuan, B. X. Xu, and T. C. Chong, “Focusing effect and performance analysis of flat metal slit array lens,” in Optical Data Storage(2007), p. TuE2.

C. A. Balanis, Antenna theory: analysis and design (Wiley-Interscience, 2005).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Structure of the (a) silicon Fresnel lens coupler, and (b) metal slit array Fresnel lens coupler. Propagation paths of the light are shown with a dotted line (ideal path) and solid line (actual path).

Fig. 3
Fig. 3

Plot of the poynting vector magnitude for (a) silicon Fresnel lens, and (b) metallic Fresnel lens (wd = 100 nm, wm = 50 nm). (c) metallic lens with variant width [14]. Gray lines show the outline of each lens structure and coupling Si waveguide (ww = 0.36 μm)

Fig. 2
Fig. 2

Design parameters of the metal slit array Fresnel lens coupler. Inset shows a zoomed-in view of the MIM surface plasmon waveguide. β1 , β2 , and β3 are the propagation constants of free space, silicon, and the MIM waveguide. wi : width of waveguide (w), metal (m), dielectric (d)

Fig. 4
Fig. 4

Propagation of the wave in MIM waveguide for (a) wd = 10 nm, and (b) wd = 50 nm. Interference between waveguides for the metal barrier (c) wm = 10 nm and (d) wm = 50 nm. FDTD grid size was set to 1 nm.

Fig. 5
Fig. 5

Plot of coupling efficiencies for Fresnel lenses for focal lengths of (a) 1.5 μm and (b) 4 μm as a function of silicon dielectric width wd and metallic barrier width wm . Operation wavelength = 1.55 μm.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

β2(l0+lf)=β1(l0ls)+β2(ls+lf)2+ds2+2πM=β1(l0lp)+β3lp+β2lf2+dp2+2πN
tanh(β32k02εdwd/2)=εdβ32k02εmεmβ32k02εd

Metrics