Abstract

We propose an effective reconstruction method for correcting the joint misplacement of the sub-holograms caused by the displacement error of CCD in spatial synthetic aperture digital Fresnel holography. For every two adjacent sub-holograms along the motion path of CCD, we reconstruct the corresponding holographic images under different joint distances between the sub-holograms and then find out the accurate joint distance by evaluating the quality of the corresponding synthetic reconstructed images. Then the accurate relative position relationships of the sub-holograms can be confirmed according to all of the identified joint distances, with which the accurate synthetic reconstructed image can be obtained by superposing the reconstruction results of the sub-holograms. The numerical reconstruction results are in agreement with the theoretical analysis. Compared with the traditional reconstruction method, this method could be used to not only correct the joint misplacement of the sub-holograms without the limitation of the actually overlapping circumstances of the adjacent sub-holograms, but also make the joint precision of the sub-holograms reach sub-pixel accuracy.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. U. Schnars and W. P. O. Juptner, “Digital recording and numerical reconstruction of holograms,” Meas. Sci. Technol. 13(9), R85–101 (2002).
    [CrossRef]
  2. J. Zhao, H. Jiang, and J. Di, “Recording and reconstruction of a color holographic image by using digital lensless Fourier transform holography,” Opt. Express 16(4), 2514–2519 (2008).
    [CrossRef] [PubMed]
  3. A. J. Page, L. Ahrenberg, and T. J. Naughton, “Low memory distributed reconstruction of large digital holograms,” Opt. Express 16(3), 1990–1995 (2008).
    [CrossRef] [PubMed]
  4. V. Micó, Z. Zalevsky, C. Ferreira, and J. García, “Superresolution digital holographic microscopy for three-dimensional samples,” Opt. Express 16(23), 19260–19270 (2008).
    [CrossRef]
  5. P. Feng, X. Wen, and R. Lu, “Long-working-distance synthetic aperture Fresnel off-axis digital holography,” Opt. Express 17(7), 5473–5480 (2009).
    [CrossRef] [PubMed]
  6. S. A. Alexandrov, T. R. Hillman, T. Gutzler, and D. D. Sampson, “Synthetic aperture fourier holographic optical microscopy,” Phys. Rev. Lett. 97(16), 168102 (2006).
    [CrossRef] [PubMed]
  7. C. Liu, Z. Liu, F. Bo, Y. Wang, and J. Zhu, “Super-resolution digital holographic imaging method,” Appl. Phys. Lett. 81(17), 3143–3145 (2002).
    [CrossRef]
  8. J. H. Massig, “Digital off-axis holography with a synthetic aperture,” Opt. Lett. 27(24), 2179–2181 (2002).
    [CrossRef]
  9. L. Martínez-León and B. Javidi, “Synthetic aperture single-exposure on-axis digital holography,” Opt. Express 16(1), 161–169 (2008).
    [CrossRef] [PubMed]
  10. G. Indebetouw, Y. Tada, J. Rosen, and G. Brooker, “Scanning holographic microscopy with resolution exceeding the Rayleigh limit of the objective by superposition of off-axis holograms,” Appl. Opt. 46(6), 993–1000 (2007).
    [CrossRef] [PubMed]
  11. R. Binet, J. Colineau, and J. C. Lehureau, “Short-range synthetic aperture imaging at 633 nm by digital holography,” Appl. Opt. 41(23), 4775–4782 (2002).
    [CrossRef] [PubMed]
  12. J. Di, J. Zhao, H. Jiang, P. Zhang, Q. Fan, and W. Sun, “High resolution digital holographic microscopy with a wide field of view based on a synthetic aperture technique and use of linear CCD scanning,” Appl. Opt. 47(30), 5654–5659 (2008).
    [CrossRef] [PubMed]
  13. T. Kreis, M. Adams, and W. Juptner, “Aperture synthesis in digital holography,” Proc. SPIE 4777, 69–76 (2002).
    [CrossRef]
  14. R. A. Jarvis, “Focus optimization criteria for computer image processing,” Microscope 24, 163–180 (1976).
  15. S. Jutamulia, T. Asakura, R. D. Bahuguna, and P. C. De Guzman, “Autofocusing based on power-spectra analysis,” Appl. Opt. 33(26), 6210–6212 (1994).
    [CrossRef] [PubMed]
  16. P. Ferraro, S. De Nicola, G. Coppola, A. Finizio, D. Alfieri, and G. Pierattini, “Controlling image size as a function of distance and wavelength in Fresnel-transform reconstruction of digital holograms,” Opt. Lett. 29(8), 854–856 (2004).
    [CrossRef] [PubMed]

2009

2008

2007

2006

S. A. Alexandrov, T. R. Hillman, T. Gutzler, and D. D. Sampson, “Synthetic aperture fourier holographic optical microscopy,” Phys. Rev. Lett. 97(16), 168102 (2006).
[CrossRef] [PubMed]

2004

2002

C. Liu, Z. Liu, F. Bo, Y. Wang, and J. Zhu, “Super-resolution digital holographic imaging method,” Appl. Phys. Lett. 81(17), 3143–3145 (2002).
[CrossRef]

T. Kreis, M. Adams, and W. Juptner, “Aperture synthesis in digital holography,” Proc. SPIE 4777, 69–76 (2002).
[CrossRef]

U. Schnars and W. P. O. Juptner, “Digital recording and numerical reconstruction of holograms,” Meas. Sci. Technol. 13(9), R85–101 (2002).
[CrossRef]

R. Binet, J. Colineau, and J. C. Lehureau, “Short-range synthetic aperture imaging at 633 nm by digital holography,” Appl. Opt. 41(23), 4775–4782 (2002).
[CrossRef] [PubMed]

J. H. Massig, “Digital off-axis holography with a synthetic aperture,” Opt. Lett. 27(24), 2179–2181 (2002).
[CrossRef]

1994

1976

R. A. Jarvis, “Focus optimization criteria for computer image processing,” Microscope 24, 163–180 (1976).

Adams, M.

T. Kreis, M. Adams, and W. Juptner, “Aperture synthesis in digital holography,” Proc. SPIE 4777, 69–76 (2002).
[CrossRef]

Ahrenberg, L.

Alexandrov, S. A.

S. A. Alexandrov, T. R. Hillman, T. Gutzler, and D. D. Sampson, “Synthetic aperture fourier holographic optical microscopy,” Phys. Rev. Lett. 97(16), 168102 (2006).
[CrossRef] [PubMed]

Alfieri, D.

Asakura, T.

Bahuguna, R. D.

Binet, R.

Bo, F.

C. Liu, Z. Liu, F. Bo, Y. Wang, and J. Zhu, “Super-resolution digital holographic imaging method,” Appl. Phys. Lett. 81(17), 3143–3145 (2002).
[CrossRef]

Brooker, G.

Colineau, J.

Coppola, G.

De Guzman, P. C.

De Nicola, S.

Di, J.

Fan, Q.

Feng, P.

Ferraro, P.

Ferreira, C.

Finizio, A.

García, J.

Gutzler, T.

S. A. Alexandrov, T. R. Hillman, T. Gutzler, and D. D. Sampson, “Synthetic aperture fourier holographic optical microscopy,” Phys. Rev. Lett. 97(16), 168102 (2006).
[CrossRef] [PubMed]

Hillman, T. R.

S. A. Alexandrov, T. R. Hillman, T. Gutzler, and D. D. Sampson, “Synthetic aperture fourier holographic optical microscopy,” Phys. Rev. Lett. 97(16), 168102 (2006).
[CrossRef] [PubMed]

Indebetouw, G.

Jarvis, R. A.

R. A. Jarvis, “Focus optimization criteria for computer image processing,” Microscope 24, 163–180 (1976).

Javidi, B.

Jiang, H.

Juptner, W.

T. Kreis, M. Adams, and W. Juptner, “Aperture synthesis in digital holography,” Proc. SPIE 4777, 69–76 (2002).
[CrossRef]

Juptner, W. P. O.

U. Schnars and W. P. O. Juptner, “Digital recording and numerical reconstruction of holograms,” Meas. Sci. Technol. 13(9), R85–101 (2002).
[CrossRef]

Jutamulia, S.

Kreis, T.

T. Kreis, M. Adams, and W. Juptner, “Aperture synthesis in digital holography,” Proc. SPIE 4777, 69–76 (2002).
[CrossRef]

Lehureau, J. C.

Liu, C.

C. Liu, Z. Liu, F. Bo, Y. Wang, and J. Zhu, “Super-resolution digital holographic imaging method,” Appl. Phys. Lett. 81(17), 3143–3145 (2002).
[CrossRef]

Liu, Z.

C. Liu, Z. Liu, F. Bo, Y. Wang, and J. Zhu, “Super-resolution digital holographic imaging method,” Appl. Phys. Lett. 81(17), 3143–3145 (2002).
[CrossRef]

Lu, R.

Martínez-León, L.

Massig, J. H.

Micó, V.

Naughton, T. J.

Page, A. J.

Pierattini, G.

Rosen, J.

Sampson, D. D.

S. A. Alexandrov, T. R. Hillman, T. Gutzler, and D. D. Sampson, “Synthetic aperture fourier holographic optical microscopy,” Phys. Rev. Lett. 97(16), 168102 (2006).
[CrossRef] [PubMed]

Schnars, U.

U. Schnars and W. P. O. Juptner, “Digital recording and numerical reconstruction of holograms,” Meas. Sci. Technol. 13(9), R85–101 (2002).
[CrossRef]

Sun, W.

Tada, Y.

Wang, Y.

C. Liu, Z. Liu, F. Bo, Y. Wang, and J. Zhu, “Super-resolution digital holographic imaging method,” Appl. Phys. Lett. 81(17), 3143–3145 (2002).
[CrossRef]

Wen, X.

Zalevsky, Z.

Zhang, P.

Zhao, J.

Zhu, J.

C. Liu, Z. Liu, F. Bo, Y. Wang, and J. Zhu, “Super-resolution digital holographic imaging method,” Appl. Phys. Lett. 81(17), 3143–3145 (2002).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

C. Liu, Z. Liu, F. Bo, Y. Wang, and J. Zhu, “Super-resolution digital holographic imaging method,” Appl. Phys. Lett. 81(17), 3143–3145 (2002).
[CrossRef]

Meas. Sci. Technol.

U. Schnars and W. P. O. Juptner, “Digital recording and numerical reconstruction of holograms,” Meas. Sci. Technol. 13(9), R85–101 (2002).
[CrossRef]

Microscope

R. A. Jarvis, “Focus optimization criteria for computer image processing,” Microscope 24, 163–180 (1976).

Opt. Express

Opt. Lett.

Phys. Rev. Lett.

S. A. Alexandrov, T. R. Hillman, T. Gutzler, and D. D. Sampson, “Synthetic aperture fourier holographic optical microscopy,” Phys. Rev. Lett. 97(16), 168102 (2006).
[CrossRef] [PubMed]

Proc. SPIE

T. Kreis, M. Adams, and W. Juptner, “Aperture synthesis in digital holography,” Proc. SPIE 4777, 69–76 (2002).
[CrossRef]

Supplementary Material (3)

» Media 1: MOV (29 KB)     
» Media 2: MOV (175 KB)     
» Media 3: MOV (111 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Recording principle of spatial synthetic aperture digital Fresnel holography

Fig. 2
Fig. 2

Relative position relationships of the sub-holograms. (a) D 0 <L; (b) D 0 = L; (c) D 0>L.

Fig. 3
Fig. 3

Reconstruction coordinates of the hologram. (a) Synthetic aperture digital hologram; (b) Sub-hologram.

Fig. 4
Fig. 4

Experimental setup for recording synthetic aperture digital Fresnel hologram. BS: beam splitters; M: mirrors; MO: microscope objective; PH: pinholes; L: lens; CCD: charge coupled device.

Fig. 5
Fig. 5

Recording process of the synthetic aperture digital hologram. (a) Motion path and translation interval of CCD; (b) Synthetic aperture digital hologram obtained by image mosaic.

Fig. 6
Fig. 6

Reconstruction process of the sub-holograms A and B. (a) and (b) Zeros-padding holograms of A and B; (c) and (d) Gradual change process of the reconstructed image (Media 1) and the spectra (Media 2) vs. the variety of the joint distance D; (e) and (f) Relationship of D with variance γ of the reconstructed image and energy ratio τ between the high and the low spectral component; (g) and (h) Reconstructed image obtained under D = 6467.5μm and 6472.5μm; (i) and (j) Magnification of the marked area in (g) and (h)

Fig. 7
Fig. 7

Reconstruction result of the synthetic aperture digital Fresnel holographic image. (a) Reconstruction process along the motion path of CCD (Media 3); (b) Reconstruction result obtained by the proposed method; (c) Reconstructed image of Fig. 5(b); (d), (e) and (f), (g) Magnification of the marked area in (b), (c) and (d), (e), respectively.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

un(x',y')=1jλdexp(jkd)exp[jk2d(x'2+y'2)]F{In(x,y)exp[jk2d(x2+y2)]}=CF{g(x,y)}=CG(fx',fy'),
un'(x',y')=1jλdexp(jkd)exp[jk2d(x'2+y'2)]F{In(xa,yb)exp[jk2d(x2+y2)]}=Cexp[jπλd(a2+b2)]exp[-j2π(fx'a+fy'b)]G(fx'fa,fy'fb),
un(x',y')=CF{g(xa,yb)}=un(x',y')exp[j2π(fx'a+fy'b)]

Metrics