Abstract

Femtosecond lasers have a unique ability of processing bulk transparent materials for various applications such as micromachining, waveguide manufacturing, and photonic bandgap structures, just to name a few. These applications depend on the formation of micron or submicron size features are known to be index modifications to the bulk substrate [2, 11], which were thought to persist indefinitely. However, it has been observed that some of these bulk transparent materials recover or “heal” with time. This “healing”process is studied and quantified using Nomarski Differential Interference Contrast optical microscopy and diffraction efficiency measurements of micro-machined gratings. We find healing to be accelerated in dye doped polymers.

©2009 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Femtosecond micromachining in transparent bulk materials using an anamorphic lens

G. Logan DesAutels, Chris D. Brewer, Mark A. Walker, Shane B. Juhl, Marc A. Finet, and Peter E. Powers
Opt. Express 15(20) 13139-13148 (2007)

Femtosecond laser damage threshold and nonlinear characterization in bulk transparent SiC materials

G. Logan DesAutels, Chris Brewer, Mark Walker, Shane Juhl, Marc Finet, Scott Ristich, Matt Whitaker, and Peter Powers
J. Opt. Soc. Am. B 25(1) 60-66 (2008)

Large enhancement of femtosecond laser micromachining speed in dye-doped hydrogel polymers

Li Ding, Dharmendra Jani, Jeffrey Linhardt, Jay F. Künzler, Siddhesh Pawar, Glen Labenski, Thomas Smith, and Wayne H. Knox
Opt. Express 16(26) 21914-21921 (2008)

References

  • View by:
  • |
  • |
  • |

  1. G. Petite, P. Daguzan, S. Guizard, and P. Martin, “Femtosecond history of free carriers in the conduction band of a wide-bandgap oxide,” in IEEE Annual Report Conference on Electrical Insulation and Dielectric Phenomena (IEEE, 1995), Vol. 15, pp. 40–44
  2. G. L. DesAutels, C. D. Brewer, M. A. Walker, S. B. Juhl, M. A. Finet, and P. E. Powers, “Femtosecond micromachining in transparent bulk materials using an anamorphic lens,” Opt. Express 15(20), 13139–13148 (2007).
    [Crossref]
  3. S. S. Mao, F. Quére, S. Guizard, X. Mao, R. Russo, G. Petite, and P. Martin, “Dynamics of Femtosecond Laser Interactions with Dielectrics,” Appl. Phys., A Mater. Sci.Process. 79, 1695–1709 (2004).
  4. J. W. Chan, T. Huser, S. Risbud, and D. M. Krol, “Structural changes in fused silica after exposure to focused femtosecond laser pulses,” Opt. Lett. 26(21), 1726–1728 (2001).
    [Crossref]
  5. J. Burton, L. Sun, M. Pophristic, S. Lukacs, F. Long, Z. Feng, and I. Ferguson, “Spatial Characterization of Doped SiC Wafers by Raman Spectroscopy,” J. Appl. Phys. 84(11), 6268–6273 (1998).
    [Crossref]
  6. R. Paschott, “Encyclopedia of Laser Physics and Technology,” http://www.rpphotonics. com/brillouin_scattering.html, (2008).
  7. C. Kittel, Introduction to Solid State Physics, (Wiley and Sons, Inc.1969), 4th edition, pp. 673–675.</bok>
  8. C. Palmer, Diffraction Grating Handbook, fourth edition, (Richardson Grating Laboratory, Rochester, NY, 2000) www.gratinglab.com.
  9. S. Barden, J. Arns, W. Colburn, and J. Williams, “Volume-Phase Holographic Gratings and Efficiency of Three Simple Volume-Phase Holographic Gratings,” Publ. Astron. Soc. Pac. 112(772), 809–820 (2000).
    [Crossref]
  10. L. DesAutels, C. Brewer, M. Walker, S. Juhl, M. Finet, S. Ristich, M. Whitaker, and P. Powers, “Femtosecond Laser Damage Threshold and Nonlinear Characterization in Bulk Transparent SiC Materials,” J. Opt. Soc. Am. B 25(1), 60–66 (2008).
    [Crossref]
  11. L. DesAutels, C. Brewer, P. Powers, M. Walker, D. Tomlin, A. Fratini, S. Juhl, and W. Chen, “ “Femtosecond Index Change Mechanisms and Morphology of SiC Crystalline Materials,” Phys. Lett. A 373(5), 583–591 (2009).
    [Crossref]
  12. B. F. Howell and M. G. Kuzyk, “Amplified Spontaneous Emission and Recoverable Photodegradation in polymer doped with Disperse-Orange-11,” J. Opt. Soc. Am. B 19, 1790 (2002).
    [Crossref]
  13. B. F. Howell and M. G. Kuzyk, “Lasing Action and Photodegradation of Disperse Orange 11 Dye in Liquid Solution,” Appl. Phys. Lett. 85(11), 1901 (2004).
    [Crossref]
  14. N. B. Embaye, S. K. Ramini, and M. G. Kuzyk, “Mechanisms of reversible photodegradation in disperse orange 11 dye doped in PMMA polymer,” J. Chem. Phys. 129(5), 054504 (2008).
    [Crossref]
  15. Y. Zhu, J. Zhou, and M. G. Kuzyk, “Two-photon fluorescence measurements of reversible photodegradation in a dye-doped polymer,” Opt. Lett. 32(8), 958–960 (2007).
    [Crossref]
  16. F. Ghebremichael and M. G. Kuzyk, “Optical Second Harmonic Generation as a Probe of the Temperature Dependence of the Distribution of Sites in a Poly (methyl methacrylate) Polymer Doped with Disperse Red 1 Azo Dye,” J. Appl. Phys. 77(7), 2896 (1995).
    [Crossref]
  17. D. J. Welker, J. Tostenrude, D. W. Garvey, B. K. Canfield, and M. G. Kuzyk, “Fabrication and characterization of single-mode electro-optic polymer optical fiber,” Opt. Lett. 23(23), 1826–1828 (1998).
    [Crossref]
  18. J. Rogers, J. Slagle, D. McLean, R. Sutherland, B. Sankaran, R. Kannan, L. Tan, and P. Fleitz, “Understanding the One-Photon Photophysical Properties of a Two-Photon Absorbing Chromophore,” J. Phys. Chem. A 108(26), 5514–5520 (2004).
    [Crossref]

2009 (1)

L. DesAutels, C. Brewer, P. Powers, M. Walker, D. Tomlin, A. Fratini, S. Juhl, and W. Chen, “ “Femtosecond Index Change Mechanisms and Morphology of SiC Crystalline Materials,” Phys. Lett. A 373(5), 583–591 (2009).
[Crossref]

2008 (2)

L. DesAutels, C. Brewer, M. Walker, S. Juhl, M. Finet, S. Ristich, M. Whitaker, and P. Powers, “Femtosecond Laser Damage Threshold and Nonlinear Characterization in Bulk Transparent SiC Materials,” J. Opt. Soc. Am. B 25(1), 60–66 (2008).
[Crossref]

N. B. Embaye, S. K. Ramini, and M. G. Kuzyk, “Mechanisms of reversible photodegradation in disperse orange 11 dye doped in PMMA polymer,” J. Chem. Phys. 129(5), 054504 (2008).
[Crossref]

2007 (2)

Y. Zhu, J. Zhou, and M. G. Kuzyk, “Two-photon fluorescence measurements of reversible photodegradation in a dye-doped polymer,” Opt. Lett. 32(8), 958–960 (2007).
[Crossref]

G. L. DesAutels, C. D. Brewer, M. A. Walker, S. B. Juhl, M. A. Finet, and P. E. Powers, “Femtosecond micromachining in transparent bulk materials using an anamorphic lens,” Opt. Express 15(20), 13139–13148 (2007).
[Crossref]

2004 (3)

S. S. Mao, F. Quére, S. Guizard, X. Mao, R. Russo, G. Petite, and P. Martin, “Dynamics of Femtosecond Laser Interactions with Dielectrics,” Appl. Phys., A Mater. Sci.Process. 79, 1695–1709 (2004).

B. F. Howell and M. G. Kuzyk, “Lasing Action and Photodegradation of Disperse Orange 11 Dye in Liquid Solution,” Appl. Phys. Lett. 85(11), 1901 (2004).
[Crossref]

J. Rogers, J. Slagle, D. McLean, R. Sutherland, B. Sankaran, R. Kannan, L. Tan, and P. Fleitz, “Understanding the One-Photon Photophysical Properties of a Two-Photon Absorbing Chromophore,” J. Phys. Chem. A 108(26), 5514–5520 (2004).
[Crossref]

2002 (1)

2001 (1)

J. W. Chan, T. Huser, S. Risbud, and D. M. Krol, “Structural changes in fused silica after exposure to focused femtosecond laser pulses,” Opt. Lett. 26(21), 1726–1728 (2001).
[Crossref]

2000 (1)

S. Barden, J. Arns, W. Colburn, and J. Williams, “Volume-Phase Holographic Gratings and Efficiency of Three Simple Volume-Phase Holographic Gratings,” Publ. Astron. Soc. Pac. 112(772), 809–820 (2000).
[Crossref]

1998 (2)

J. Burton, L. Sun, M. Pophristic, S. Lukacs, F. Long, Z. Feng, and I. Ferguson, “Spatial Characterization of Doped SiC Wafers by Raman Spectroscopy,” J. Appl. Phys. 84(11), 6268–6273 (1998).
[Crossref]

D. J. Welker, J. Tostenrude, D. W. Garvey, B. K. Canfield, and M. G. Kuzyk, “Fabrication and characterization of single-mode electro-optic polymer optical fiber,” Opt. Lett. 23(23), 1826–1828 (1998).
[Crossref]

1995 (1)

F. Ghebremichael and M. G. Kuzyk, “Optical Second Harmonic Generation as a Probe of the Temperature Dependence of the Distribution of Sites in a Poly (methyl methacrylate) Polymer Doped with Disperse Red 1 Azo Dye,” J. Appl. Phys. 77(7), 2896 (1995).
[Crossref]

Arns, J.

S. Barden, J. Arns, W. Colburn, and J. Williams, “Volume-Phase Holographic Gratings and Efficiency of Three Simple Volume-Phase Holographic Gratings,” Publ. Astron. Soc. Pac. 112(772), 809–820 (2000).
[Crossref]

Barden, S.

S. Barden, J. Arns, W. Colburn, and J. Williams, “Volume-Phase Holographic Gratings and Efficiency of Three Simple Volume-Phase Holographic Gratings,” Publ. Astron. Soc. Pac. 112(772), 809–820 (2000).
[Crossref]

Brewer, C.

L. DesAutels, C. Brewer, P. Powers, M. Walker, D. Tomlin, A. Fratini, S. Juhl, and W. Chen, “ “Femtosecond Index Change Mechanisms and Morphology of SiC Crystalline Materials,” Phys. Lett. A 373(5), 583–591 (2009).
[Crossref]

L. DesAutels, C. Brewer, M. Walker, S. Juhl, M. Finet, S. Ristich, M. Whitaker, and P. Powers, “Femtosecond Laser Damage Threshold and Nonlinear Characterization in Bulk Transparent SiC Materials,” J. Opt. Soc. Am. B 25(1), 60–66 (2008).
[Crossref]

Brewer, C. D.

G. L. DesAutels, C. D. Brewer, M. A. Walker, S. B. Juhl, M. A. Finet, and P. E. Powers, “Femtosecond micromachining in transparent bulk materials using an anamorphic lens,” Opt. Express 15(20), 13139–13148 (2007).
[Crossref]

Burton, J.

J. Burton, L. Sun, M. Pophristic, S. Lukacs, F. Long, Z. Feng, and I. Ferguson, “Spatial Characterization of Doped SiC Wafers by Raman Spectroscopy,” J. Appl. Phys. 84(11), 6268–6273 (1998).
[Crossref]

Canfield, B. K.

D. J. Welker, J. Tostenrude, D. W. Garvey, B. K. Canfield, and M. G. Kuzyk, “Fabrication and characterization of single-mode electro-optic polymer optical fiber,” Opt. Lett. 23(23), 1826–1828 (1998).
[Crossref]

Chan, J. W.

J. W. Chan, T. Huser, S. Risbud, and D. M. Krol, “Structural changes in fused silica after exposure to focused femtosecond laser pulses,” Opt. Lett. 26(21), 1726–1728 (2001).
[Crossref]

Chen, W.

L. DesAutels, C. Brewer, P. Powers, M. Walker, D. Tomlin, A. Fratini, S. Juhl, and W. Chen, “ “Femtosecond Index Change Mechanisms and Morphology of SiC Crystalline Materials,” Phys. Lett. A 373(5), 583–591 (2009).
[Crossref]

Colburn, W.

S. Barden, J. Arns, W. Colburn, and J. Williams, “Volume-Phase Holographic Gratings and Efficiency of Three Simple Volume-Phase Holographic Gratings,” Publ. Astron. Soc. Pac. 112(772), 809–820 (2000).
[Crossref]

Daguzan, P.

G. Petite, P. Daguzan, S. Guizard, and P. Martin, “Femtosecond history of free carriers in the conduction band of a wide-bandgap oxide,” in IEEE Annual Report Conference on Electrical Insulation and Dielectric Phenomena (IEEE, 1995), Vol. 15, pp. 40–44

DesAutels, G. L.

G. L. DesAutels, C. D. Brewer, M. A. Walker, S. B. Juhl, M. A. Finet, and P. E. Powers, “Femtosecond micromachining in transparent bulk materials using an anamorphic lens,” Opt. Express 15(20), 13139–13148 (2007).
[Crossref]

DesAutels, L.

L. DesAutels, C. Brewer, P. Powers, M. Walker, D. Tomlin, A. Fratini, S. Juhl, and W. Chen, “ “Femtosecond Index Change Mechanisms and Morphology of SiC Crystalline Materials,” Phys. Lett. A 373(5), 583–591 (2009).
[Crossref]

L. DesAutels, C. Brewer, M. Walker, S. Juhl, M. Finet, S. Ristich, M. Whitaker, and P. Powers, “Femtosecond Laser Damage Threshold and Nonlinear Characterization in Bulk Transparent SiC Materials,” J. Opt. Soc. Am. B 25(1), 60–66 (2008).
[Crossref]

Embaye, N. B.

N. B. Embaye, S. K. Ramini, and M. G. Kuzyk, “Mechanisms of reversible photodegradation in disperse orange 11 dye doped in PMMA polymer,” J. Chem. Phys. 129(5), 054504 (2008).
[Crossref]

Feng, Z.

J. Burton, L. Sun, M. Pophristic, S. Lukacs, F. Long, Z. Feng, and I. Ferguson, “Spatial Characterization of Doped SiC Wafers by Raman Spectroscopy,” J. Appl. Phys. 84(11), 6268–6273 (1998).
[Crossref]

Ferguson, I.

J. Burton, L. Sun, M. Pophristic, S. Lukacs, F. Long, Z. Feng, and I. Ferguson, “Spatial Characterization of Doped SiC Wafers by Raman Spectroscopy,” J. Appl. Phys. 84(11), 6268–6273 (1998).
[Crossref]

Finet, M.

L. DesAutels, C. Brewer, M. Walker, S. Juhl, M. Finet, S. Ristich, M. Whitaker, and P. Powers, “Femtosecond Laser Damage Threshold and Nonlinear Characterization in Bulk Transparent SiC Materials,” J. Opt. Soc. Am. B 25(1), 60–66 (2008).
[Crossref]

Finet, M. A.

G. L. DesAutels, C. D. Brewer, M. A. Walker, S. B. Juhl, M. A. Finet, and P. E. Powers, “Femtosecond micromachining in transparent bulk materials using an anamorphic lens,” Opt. Express 15(20), 13139–13148 (2007).
[Crossref]

Fleitz, P.

J. Rogers, J. Slagle, D. McLean, R. Sutherland, B. Sankaran, R. Kannan, L. Tan, and P. Fleitz, “Understanding the One-Photon Photophysical Properties of a Two-Photon Absorbing Chromophore,” J. Phys. Chem. A 108(26), 5514–5520 (2004).
[Crossref]

Fratini, A.

L. DesAutels, C. Brewer, P. Powers, M. Walker, D. Tomlin, A. Fratini, S. Juhl, and W. Chen, “ “Femtosecond Index Change Mechanisms and Morphology of SiC Crystalline Materials,” Phys. Lett. A 373(5), 583–591 (2009).
[Crossref]

Garvey, D. W.

D. J. Welker, J. Tostenrude, D. W. Garvey, B. K. Canfield, and M. G. Kuzyk, “Fabrication and characterization of single-mode electro-optic polymer optical fiber,” Opt. Lett. 23(23), 1826–1828 (1998).
[Crossref]

Ghebremichael, F.

F. Ghebremichael and M. G. Kuzyk, “Optical Second Harmonic Generation as a Probe of the Temperature Dependence of the Distribution of Sites in a Poly (methyl methacrylate) Polymer Doped with Disperse Red 1 Azo Dye,” J. Appl. Phys. 77(7), 2896 (1995).
[Crossref]

Guizard, S.

S. S. Mao, F. Quére, S. Guizard, X. Mao, R. Russo, G. Petite, and P. Martin, “Dynamics of Femtosecond Laser Interactions with Dielectrics,” Appl. Phys., A Mater. Sci.Process. 79, 1695–1709 (2004).

G. Petite, P. Daguzan, S. Guizard, and P. Martin, “Femtosecond history of free carriers in the conduction band of a wide-bandgap oxide,” in IEEE Annual Report Conference on Electrical Insulation and Dielectric Phenomena (IEEE, 1995), Vol. 15, pp. 40–44

Howell, B. F.

B. F. Howell and M. G. Kuzyk, “Lasing Action and Photodegradation of Disperse Orange 11 Dye in Liquid Solution,” Appl. Phys. Lett. 85(11), 1901 (2004).
[Crossref]

B. F. Howell and M. G. Kuzyk, “Amplified Spontaneous Emission and Recoverable Photodegradation in polymer doped with Disperse-Orange-11,” J. Opt. Soc. Am. B 19, 1790 (2002).
[Crossref]

Huser, T.

J. W. Chan, T. Huser, S. Risbud, and D. M. Krol, “Structural changes in fused silica after exposure to focused femtosecond laser pulses,” Opt. Lett. 26(21), 1726–1728 (2001).
[Crossref]

Juhl, S.

L. DesAutels, C. Brewer, P. Powers, M. Walker, D. Tomlin, A. Fratini, S. Juhl, and W. Chen, “ “Femtosecond Index Change Mechanisms and Morphology of SiC Crystalline Materials,” Phys. Lett. A 373(5), 583–591 (2009).
[Crossref]

L. DesAutels, C. Brewer, M. Walker, S. Juhl, M. Finet, S. Ristich, M. Whitaker, and P. Powers, “Femtosecond Laser Damage Threshold and Nonlinear Characterization in Bulk Transparent SiC Materials,” J. Opt. Soc. Am. B 25(1), 60–66 (2008).
[Crossref]

Juhl, S. B.

G. L. DesAutels, C. D. Brewer, M. A. Walker, S. B. Juhl, M. A. Finet, and P. E. Powers, “Femtosecond micromachining in transparent bulk materials using an anamorphic lens,” Opt. Express 15(20), 13139–13148 (2007).
[Crossref]

Kannan, R.

J. Rogers, J. Slagle, D. McLean, R. Sutherland, B. Sankaran, R. Kannan, L. Tan, and P. Fleitz, “Understanding the One-Photon Photophysical Properties of a Two-Photon Absorbing Chromophore,” J. Phys. Chem. A 108(26), 5514–5520 (2004).
[Crossref]

Kittel, C.

C. Kittel, Introduction to Solid State Physics, (Wiley and Sons, Inc.1969), 4th edition, pp. 673–675.</bok>

Krol, D. M.

J. W. Chan, T. Huser, S. Risbud, and D. M. Krol, “Structural changes in fused silica after exposure to focused femtosecond laser pulses,” Opt. Lett. 26(21), 1726–1728 (2001).
[Crossref]

Kuzyk, M. G.

N. B. Embaye, S. K. Ramini, and M. G. Kuzyk, “Mechanisms of reversible photodegradation in disperse orange 11 dye doped in PMMA polymer,” J. Chem. Phys. 129(5), 054504 (2008).
[Crossref]

Y. Zhu, J. Zhou, and M. G. Kuzyk, “Two-photon fluorescence measurements of reversible photodegradation in a dye-doped polymer,” Opt. Lett. 32(8), 958–960 (2007).
[Crossref]

B. F. Howell and M. G. Kuzyk, “Lasing Action and Photodegradation of Disperse Orange 11 Dye in Liquid Solution,” Appl. Phys. Lett. 85(11), 1901 (2004).
[Crossref]

B. F. Howell and M. G. Kuzyk, “Amplified Spontaneous Emission and Recoverable Photodegradation in polymer doped with Disperse-Orange-11,” J. Opt. Soc. Am. B 19, 1790 (2002).
[Crossref]

D. J. Welker, J. Tostenrude, D. W. Garvey, B. K. Canfield, and M. G. Kuzyk, “Fabrication and characterization of single-mode electro-optic polymer optical fiber,” Opt. Lett. 23(23), 1826–1828 (1998).
[Crossref]

F. Ghebremichael and M. G. Kuzyk, “Optical Second Harmonic Generation as a Probe of the Temperature Dependence of the Distribution of Sites in a Poly (methyl methacrylate) Polymer Doped with Disperse Red 1 Azo Dye,” J. Appl. Phys. 77(7), 2896 (1995).
[Crossref]

Long, F.

J. Burton, L. Sun, M. Pophristic, S. Lukacs, F. Long, Z. Feng, and I. Ferguson, “Spatial Characterization of Doped SiC Wafers by Raman Spectroscopy,” J. Appl. Phys. 84(11), 6268–6273 (1998).
[Crossref]

Lukacs, S.

J. Burton, L. Sun, M. Pophristic, S. Lukacs, F. Long, Z. Feng, and I. Ferguson, “Spatial Characterization of Doped SiC Wafers by Raman Spectroscopy,” J. Appl. Phys. 84(11), 6268–6273 (1998).
[Crossref]

Mao, S. S.

S. S. Mao, F. Quére, S. Guizard, X. Mao, R. Russo, G. Petite, and P. Martin, “Dynamics of Femtosecond Laser Interactions with Dielectrics,” Appl. Phys., A Mater. Sci.Process. 79, 1695–1709 (2004).

Mao, X.

S. S. Mao, F. Quére, S. Guizard, X. Mao, R. Russo, G. Petite, and P. Martin, “Dynamics of Femtosecond Laser Interactions with Dielectrics,” Appl. Phys., A Mater. Sci.Process. 79, 1695–1709 (2004).

Martin, P.

S. S. Mao, F. Quére, S. Guizard, X. Mao, R. Russo, G. Petite, and P. Martin, “Dynamics of Femtosecond Laser Interactions with Dielectrics,” Appl. Phys., A Mater. Sci.Process. 79, 1695–1709 (2004).

G. Petite, P. Daguzan, S. Guizard, and P. Martin, “Femtosecond history of free carriers in the conduction band of a wide-bandgap oxide,” in IEEE Annual Report Conference on Electrical Insulation and Dielectric Phenomena (IEEE, 1995), Vol. 15, pp. 40–44

McLean, D.

J. Rogers, J. Slagle, D. McLean, R. Sutherland, B. Sankaran, R. Kannan, L. Tan, and P. Fleitz, “Understanding the One-Photon Photophysical Properties of a Two-Photon Absorbing Chromophore,” J. Phys. Chem. A 108(26), 5514–5520 (2004).
[Crossref]

Palmer, C.

C. Palmer, Diffraction Grating Handbook, fourth edition, (Richardson Grating Laboratory, Rochester, NY, 2000) www.gratinglab.com.

Paschott, R.

R. Paschott, “Encyclopedia of Laser Physics and Technology,” http://www.rpphotonics. com/brillouin_scattering.html, (2008).

Petite, G.

S. S. Mao, F. Quére, S. Guizard, X. Mao, R. Russo, G. Petite, and P. Martin, “Dynamics of Femtosecond Laser Interactions with Dielectrics,” Appl. Phys., A Mater. Sci.Process. 79, 1695–1709 (2004).

G. Petite, P. Daguzan, S. Guizard, and P. Martin, “Femtosecond history of free carriers in the conduction band of a wide-bandgap oxide,” in IEEE Annual Report Conference on Electrical Insulation and Dielectric Phenomena (IEEE, 1995), Vol. 15, pp. 40–44

Pophristic, M.

J. Burton, L. Sun, M. Pophristic, S. Lukacs, F. Long, Z. Feng, and I. Ferguson, “Spatial Characterization of Doped SiC Wafers by Raman Spectroscopy,” J. Appl. Phys. 84(11), 6268–6273 (1998).
[Crossref]

Powers, P.

L. DesAutels, C. Brewer, P. Powers, M. Walker, D. Tomlin, A. Fratini, S. Juhl, and W. Chen, “ “Femtosecond Index Change Mechanisms and Morphology of SiC Crystalline Materials,” Phys. Lett. A 373(5), 583–591 (2009).
[Crossref]

L. DesAutels, C. Brewer, M. Walker, S. Juhl, M. Finet, S. Ristich, M. Whitaker, and P. Powers, “Femtosecond Laser Damage Threshold and Nonlinear Characterization in Bulk Transparent SiC Materials,” J. Opt. Soc. Am. B 25(1), 60–66 (2008).
[Crossref]

Powers, P. E.

G. L. DesAutels, C. D. Brewer, M. A. Walker, S. B. Juhl, M. A. Finet, and P. E. Powers, “Femtosecond micromachining in transparent bulk materials using an anamorphic lens,” Opt. Express 15(20), 13139–13148 (2007).
[Crossref]

Quére, F.

S. S. Mao, F. Quére, S. Guizard, X. Mao, R. Russo, G. Petite, and P. Martin, “Dynamics of Femtosecond Laser Interactions with Dielectrics,” Appl. Phys., A Mater. Sci.Process. 79, 1695–1709 (2004).

Ramini, S. K.

N. B. Embaye, S. K. Ramini, and M. G. Kuzyk, “Mechanisms of reversible photodegradation in disperse orange 11 dye doped in PMMA polymer,” J. Chem. Phys. 129(5), 054504 (2008).
[Crossref]

Risbud, S.

J. W. Chan, T. Huser, S. Risbud, and D. M. Krol, “Structural changes in fused silica after exposure to focused femtosecond laser pulses,” Opt. Lett. 26(21), 1726–1728 (2001).
[Crossref]

Ristich, S.

L. DesAutels, C. Brewer, M. Walker, S. Juhl, M. Finet, S. Ristich, M. Whitaker, and P. Powers, “Femtosecond Laser Damage Threshold and Nonlinear Characterization in Bulk Transparent SiC Materials,” J. Opt. Soc. Am. B 25(1), 60–66 (2008).
[Crossref]

Rogers, J.

J. Rogers, J. Slagle, D. McLean, R. Sutherland, B. Sankaran, R. Kannan, L. Tan, and P. Fleitz, “Understanding the One-Photon Photophysical Properties of a Two-Photon Absorbing Chromophore,” J. Phys. Chem. A 108(26), 5514–5520 (2004).
[Crossref]

Russo, R.

S. S. Mao, F. Quére, S. Guizard, X. Mao, R. Russo, G. Petite, and P. Martin, “Dynamics of Femtosecond Laser Interactions with Dielectrics,” Appl. Phys., A Mater. Sci.Process. 79, 1695–1709 (2004).

Sankaran, B.

J. Rogers, J. Slagle, D. McLean, R. Sutherland, B. Sankaran, R. Kannan, L. Tan, and P. Fleitz, “Understanding the One-Photon Photophysical Properties of a Two-Photon Absorbing Chromophore,” J. Phys. Chem. A 108(26), 5514–5520 (2004).
[Crossref]

Slagle, J.

J. Rogers, J. Slagle, D. McLean, R. Sutherland, B. Sankaran, R. Kannan, L. Tan, and P. Fleitz, “Understanding the One-Photon Photophysical Properties of a Two-Photon Absorbing Chromophore,” J. Phys. Chem. A 108(26), 5514–5520 (2004).
[Crossref]

Sun, L.

J. Burton, L. Sun, M. Pophristic, S. Lukacs, F. Long, Z. Feng, and I. Ferguson, “Spatial Characterization of Doped SiC Wafers by Raman Spectroscopy,” J. Appl. Phys. 84(11), 6268–6273 (1998).
[Crossref]

Sutherland, R.

J. Rogers, J. Slagle, D. McLean, R. Sutherland, B. Sankaran, R. Kannan, L. Tan, and P. Fleitz, “Understanding the One-Photon Photophysical Properties of a Two-Photon Absorbing Chromophore,” J. Phys. Chem. A 108(26), 5514–5520 (2004).
[Crossref]

Tan, L.

J. Rogers, J. Slagle, D. McLean, R. Sutherland, B. Sankaran, R. Kannan, L. Tan, and P. Fleitz, “Understanding the One-Photon Photophysical Properties of a Two-Photon Absorbing Chromophore,” J. Phys. Chem. A 108(26), 5514–5520 (2004).
[Crossref]

Tomlin, D.

L. DesAutels, C. Brewer, P. Powers, M. Walker, D. Tomlin, A. Fratini, S. Juhl, and W. Chen, “ “Femtosecond Index Change Mechanisms and Morphology of SiC Crystalline Materials,” Phys. Lett. A 373(5), 583–591 (2009).
[Crossref]

Tostenrude, J.

D. J. Welker, J. Tostenrude, D. W. Garvey, B. K. Canfield, and M. G. Kuzyk, “Fabrication and characterization of single-mode electro-optic polymer optical fiber,” Opt. Lett. 23(23), 1826–1828 (1998).
[Crossref]

Walker, M.

L. DesAutels, C. Brewer, P. Powers, M. Walker, D. Tomlin, A. Fratini, S. Juhl, and W. Chen, “ “Femtosecond Index Change Mechanisms and Morphology of SiC Crystalline Materials,” Phys. Lett. A 373(5), 583–591 (2009).
[Crossref]

L. DesAutels, C. Brewer, M. Walker, S. Juhl, M. Finet, S. Ristich, M. Whitaker, and P. Powers, “Femtosecond Laser Damage Threshold and Nonlinear Characterization in Bulk Transparent SiC Materials,” J. Opt. Soc. Am. B 25(1), 60–66 (2008).
[Crossref]

Walker, M. A.

G. L. DesAutels, C. D. Brewer, M. A. Walker, S. B. Juhl, M. A. Finet, and P. E. Powers, “Femtosecond micromachining in transparent bulk materials using an anamorphic lens,” Opt. Express 15(20), 13139–13148 (2007).
[Crossref]

Welker, D. J.

D. J. Welker, J. Tostenrude, D. W. Garvey, B. K. Canfield, and M. G. Kuzyk, “Fabrication and characterization of single-mode electro-optic polymer optical fiber,” Opt. Lett. 23(23), 1826–1828 (1998).
[Crossref]

Whitaker, M.

L. DesAutels, C. Brewer, M. Walker, S. Juhl, M. Finet, S. Ristich, M. Whitaker, and P. Powers, “Femtosecond Laser Damage Threshold and Nonlinear Characterization in Bulk Transparent SiC Materials,” J. Opt. Soc. Am. B 25(1), 60–66 (2008).
[Crossref]

Williams, J.

S. Barden, J. Arns, W. Colburn, and J. Williams, “Volume-Phase Holographic Gratings and Efficiency of Three Simple Volume-Phase Holographic Gratings,” Publ. Astron. Soc. Pac. 112(772), 809–820 (2000).
[Crossref]

Zhou, J.

Y. Zhu, J. Zhou, and M. G. Kuzyk, “Two-photon fluorescence measurements of reversible photodegradation in a dye-doped polymer,” Opt. Lett. 32(8), 958–960 (2007).
[Crossref]

Zhu, Y.

Y. Zhu, J. Zhou, and M. G. Kuzyk, “Two-photon fluorescence measurements of reversible photodegradation in a dye-doped polymer,” Opt. Lett. 32(8), 958–960 (2007).
[Crossref]

Appl. Phys. Lett. (1)

B. F. Howell and M. G. Kuzyk, “Lasing Action and Photodegradation of Disperse Orange 11 Dye in Liquid Solution,” Appl. Phys. Lett. 85(11), 1901 (2004).
[Crossref]

Appl. Phys., A Mater. Sci.Process. (1)

S. S. Mao, F. Quére, S. Guizard, X. Mao, R. Russo, G. Petite, and P. Martin, “Dynamics of Femtosecond Laser Interactions with Dielectrics,” Appl. Phys., A Mater. Sci.Process. 79, 1695–1709 (2004).

J. Appl. Phys. (2)

J. Burton, L. Sun, M. Pophristic, S. Lukacs, F. Long, Z. Feng, and I. Ferguson, “Spatial Characterization of Doped SiC Wafers by Raman Spectroscopy,” J. Appl. Phys. 84(11), 6268–6273 (1998).
[Crossref]

F. Ghebremichael and M. G. Kuzyk, “Optical Second Harmonic Generation as a Probe of the Temperature Dependence of the Distribution of Sites in a Poly (methyl methacrylate) Polymer Doped with Disperse Red 1 Azo Dye,” J. Appl. Phys. 77(7), 2896 (1995).
[Crossref]

J. Chem. Phys. (1)

N. B. Embaye, S. K. Ramini, and M. G. Kuzyk, “Mechanisms of reversible photodegradation in disperse orange 11 dye doped in PMMA polymer,” J. Chem. Phys. 129(5), 054504 (2008).
[Crossref]

J. Opt. Soc. Am. B (2)

L. DesAutels, C. Brewer, M. Walker, S. Juhl, M. Finet, S. Ristich, M. Whitaker, and P. Powers, “Femtosecond Laser Damage Threshold and Nonlinear Characterization in Bulk Transparent SiC Materials,” J. Opt. Soc. Am. B 25(1), 60–66 (2008).
[Crossref]

B. F. Howell and M. G. Kuzyk, “Amplified Spontaneous Emission and Recoverable Photodegradation in polymer doped with Disperse-Orange-11,” J. Opt. Soc. Am. B 19, 1790 (2002).
[Crossref]

J. Phys. Chem. A (1)

J. Rogers, J. Slagle, D. McLean, R. Sutherland, B. Sankaran, R. Kannan, L. Tan, and P. Fleitz, “Understanding the One-Photon Photophysical Properties of a Two-Photon Absorbing Chromophore,” J. Phys. Chem. A 108(26), 5514–5520 (2004).
[Crossref]

Opt. Express (1)

G. L. DesAutels, C. D. Brewer, M. A. Walker, S. B. Juhl, M. A. Finet, and P. E. Powers, “Femtosecond micromachining in transparent bulk materials using an anamorphic lens,” Opt. Express 15(20), 13139–13148 (2007).
[Crossref]

Opt. Lett. (3)

J. W. Chan, T. Huser, S. Risbud, and D. M. Krol, “Structural changes in fused silica after exposure to focused femtosecond laser pulses,” Opt. Lett. 26(21), 1726–1728 (2001).
[Crossref]

Y. Zhu, J. Zhou, and M. G. Kuzyk, “Two-photon fluorescence measurements of reversible photodegradation in a dye-doped polymer,” Opt. Lett. 32(8), 958–960 (2007).
[Crossref]

D. J. Welker, J. Tostenrude, D. W. Garvey, B. K. Canfield, and M. G. Kuzyk, “Fabrication and characterization of single-mode electro-optic polymer optical fiber,” Opt. Lett. 23(23), 1826–1828 (1998).
[Crossref]

Phys. Lett. A (1)

L. DesAutels, C. Brewer, P. Powers, M. Walker, D. Tomlin, A. Fratini, S. Juhl, and W. Chen, “ “Femtosecond Index Change Mechanisms and Morphology of SiC Crystalline Materials,” Phys. Lett. A 373(5), 583–591 (2009).
[Crossref]

Publ. Astron. Soc. Pac. (1)

S. Barden, J. Arns, W. Colburn, and J. Williams, “Volume-Phase Holographic Gratings and Efficiency of Three Simple Volume-Phase Holographic Gratings,” Publ. Astron. Soc. Pac. 112(772), 809–820 (2000).
[Crossref]

Other (4)

G. Petite, P. Daguzan, S. Guizard, and P. Martin, “Femtosecond history of free carriers in the conduction band of a wide-bandgap oxide,” in IEEE Annual Report Conference on Electrical Insulation and Dielectric Phenomena (IEEE, 1995), Vol. 15, pp. 40–44

R. Paschott, “Encyclopedia of Laser Physics and Technology,” http://www.rpphotonics. com/brillouin_scattering.html, (2008).

C. Kittel, Introduction to Solid State Physics, (Wiley and Sons, Inc.1969), 4th edition, pp. 673–675.</bok>

C. Palmer, Diffraction Grating Handbook, fourth edition, (Richardson Grating Laboratory, Rochester, NY, 2000) www.gratinglab.com.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1. (Left) SiC grating view with an optical microscope using Nomarski DIC for semi-insulating SiC with 10X magnification; (right) 50X magnification. Image processing was performed in order to better resolve the modified surface lines [11].
Fig. 2.
Fig. 2. Diffraction efficiency, η, versus fluence for 2, 6, 12, and 36 femtosecond laser pulses in semi-insulating 6H-SiC; date: January 2006.
Fig. 3.
Fig. 3. η versus fluence for single femtosecond pulse in SLG; date: December 2005.
Fig. 4.
Fig. 4. η versus fluence for two times: time t=0 is defined by the time the diffraction efficiency is measured directly after writing the gratings and time t=1year shows an approximate drop in η by about 2 times. After two years the features have completely vanished. Note that this plot uses a linear scales (as opposed to log scale as in previous figures) to best depict the change in η.
Fig. 5.
Fig. 5. Subsurface SLG gratings: (Top) are the optical microscope images, (Bottom) are the lineout images; the lineout lengths are not calibrated, but the length of the grating structure (which is the length of the lineout) is approximately 500µm. The lineout images represent contrast resolution amplitude in arbitrary units.
Fig. 6.
Fig. 6. Subsurface semi-insulating 6H-SiC gratings: (Top) optical microscope images, (Bottom) lineout images; the lineout lengths are not calibrated, but the length of the grating structure (which is the length of the lineout) is approximately 500µm. The lineout images represent contrast resolution amplitude in arbitrary units. (Top) the color of these images is false color that is dependent on the polarization setting of the polarizer and is difficult to match precisely between measurements (2006 and 2008).
Fig. 7.
Fig. 7. PMMA host (without dopant): (Top) are the Nomarski DIC microscopy images, (Middle) are the line outs of those images, and then (Bottom) are the same images from the Top view only image processed for better viewing.
Fig. 8.
Fig. 8. PMMA with AF455 doped: (Top) are the Nomarski DIC microscopy images, (Middle) are the line outs of those images, and then (Bottom) are the same images from the Top view only image processed for better viewing.
Fig. 9.
Fig. 9. AF455/PMMA dye-doped polymer immediately after laser exposure and one month after exposure.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

η=2·P1·10(ND0ND1)P0·100,

Metrics