Abstract

In this contribution it is reported that circularly polarized light is advantageous if the Kerr-effect has to be minimized during laser-amplification. The experimental demonstration is based on a fiber CPA-system. The different polarization states result in different B-integrals, which are measured using phase-only pulse-shaping. The theoretical value of 2/3 for the ratio of the B-integrals of circularly and linearly polarized light is experimentally verified. In laser-amplifiers circularly polarized light reduces the detrimental impact of the Kerr-nonlinearity, and thus, increases the peak-power and the self-focussing threshold.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. M. Strickland, and G. Mourou, "Compression of amplified chirped optical pulses," Opt. Commun. 56,219-221 (1985).
    [CrossRef]
  2. D. N. Schimpf, J. Limpert, and A. Tünnermann, "Controlling the influence of SPM in fiber-based chirped pulse amplification systems by using an actively shaped parabolic spectrum," Opt. Express 15,16945-16953 (2007).
    [CrossRef] [PubMed]
  3. J. Limpert, O. Schmidt, J. Rothhardt, F. Röser, T. Schreiber, A. Tünnermann, S. Ermeneux, P. Yvernault, and F. Salin, "Extended single-mode photonic crystal fiber lasers," Opt. Express 14,2715 (2006).
    [CrossRef] [PubMed]
  4. F. Röser, T. Eidam, J. Rothhardt, O. Schmidt, D. N. Schimpf, J. Limpert, and A. Tünnermann, "Millijoule pulse energy high repetition rate femtosecond fiber chirped-pulse amplification system," Opt. Lett. 32,3495-3497 (2007).
    [CrossRef] [PubMed]
  5. T. Schreiber, F. Röser, O. Schmidt, J. Limpert, R. Iliew, F. Lederer, A. Petersson, C. Jacobsen, K. Hansen, J. Broeng, and A. Tünnermann, "Stress-induced single-polarization single-transverse mode photonic crystal fiber with low nonlinearity," Opt. Express 13,7621-7630 (2005).
    [CrossRef] [PubMed]
  6. R. W. Boyd, Nonlinear Optics 2nd edition (Academic Press, 2003).
  7. P. N. Butcher, D. Cotter, The Elements of Nonlinear Optics (Cambridge University Press, 1990).
  8. P. D. Maker, R.W. Terhune, and C. M. Savage, "Intensity-Dependent Changes in the Refractive Index of Liquids," Phys. Rev. Lett. 12,507 (1964).
    [CrossRef]
  9. A. E. Siegman, Lasers (University Science Books, 1986).
  10. D. N. Schimpf, E. Seise, J. Limpert, and A. Tünnermann, "Self-phase modulation compensated by positive dispersion in chirped-pulse systems," Opt. Express 17,4997-5007 (2009).
    [CrossRef] [PubMed]
  11. D. N. Schimpf, C. Ruchert, D. Nodop, J. Limpert, and A. Tünnermann, "Compensation of pulse-distortion in saturated laser amplifiers," Opt. Express 16,17637-17646 (2008).
    [CrossRef] [PubMed]
  12. A. M. Weiner, "Femtosecond pulse shaping using spatial light modulators," Rev. Sci. Instrum. 71,1929-1960 (2000).
    [CrossRef]
  13. A. V. Smith, B. T. Do, G. R. Hadley, and R. L. Farrow, "Optical Damage Limits to Pulse Energy From Fibers," IEEE J. Sel. Top. Quantum Electron. 15,153-158 (2009).
    [CrossRef]

2009 (2)

D. N. Schimpf, E. Seise, J. Limpert, and A. Tünnermann, "Self-phase modulation compensated by positive dispersion in chirped-pulse systems," Opt. Express 17,4997-5007 (2009).
[CrossRef] [PubMed]

A. V. Smith, B. T. Do, G. R. Hadley, and R. L. Farrow, "Optical Damage Limits to Pulse Energy From Fibers," IEEE J. Sel. Top. Quantum Electron. 15,153-158 (2009).
[CrossRef]

2008 (1)

2007 (2)

2006 (1)

2005 (1)

2000 (1)

A. M. Weiner, "Femtosecond pulse shaping using spatial light modulators," Rev. Sci. Instrum. 71,1929-1960 (2000).
[CrossRef]

1985 (1)

D. M. Strickland, and G. Mourou, "Compression of amplified chirped optical pulses," Opt. Commun. 56,219-221 (1985).
[CrossRef]

1964 (1)

P. D. Maker, R.W. Terhune, and C. M. Savage, "Intensity-Dependent Changes in the Refractive Index of Liquids," Phys. Rev. Lett. 12,507 (1964).
[CrossRef]

Broeng, J.

Do, B. T.

A. V. Smith, B. T. Do, G. R. Hadley, and R. L. Farrow, "Optical Damage Limits to Pulse Energy From Fibers," IEEE J. Sel. Top. Quantum Electron. 15,153-158 (2009).
[CrossRef]

Eidam, T.

Ermeneux, S.

Farrow, R. L.

A. V. Smith, B. T. Do, G. R. Hadley, and R. L. Farrow, "Optical Damage Limits to Pulse Energy From Fibers," IEEE J. Sel. Top. Quantum Electron. 15,153-158 (2009).
[CrossRef]

Hadley, G. R.

A. V. Smith, B. T. Do, G. R. Hadley, and R. L. Farrow, "Optical Damage Limits to Pulse Energy From Fibers," IEEE J. Sel. Top. Quantum Electron. 15,153-158 (2009).
[CrossRef]

Hansen, K.

Iliew, R.

Jacobsen, C.

Lederer, F.

Limpert, J.

Maker, P. D.

P. D. Maker, R.W. Terhune, and C. M. Savage, "Intensity-Dependent Changes in the Refractive Index of Liquids," Phys. Rev. Lett. 12,507 (1964).
[CrossRef]

Mourou, G.

D. M. Strickland, and G. Mourou, "Compression of amplified chirped optical pulses," Opt. Commun. 56,219-221 (1985).
[CrossRef]

Nodop, D.

Petersson, A.

Röser, F.

Rothhardt, J.

Ruchert, C.

Salin, F.

Savage, C. M.

P. D. Maker, R.W. Terhune, and C. M. Savage, "Intensity-Dependent Changes in the Refractive Index of Liquids," Phys. Rev. Lett. 12,507 (1964).
[CrossRef]

Schimpf, D. N.

Schmidt, O.

Schreiber, T.

Seise, E.

Smith, A. V.

A. V. Smith, B. T. Do, G. R. Hadley, and R. L. Farrow, "Optical Damage Limits to Pulse Energy From Fibers," IEEE J. Sel. Top. Quantum Electron. 15,153-158 (2009).
[CrossRef]

Strickland, D. M.

D. M. Strickland, and G. Mourou, "Compression of amplified chirped optical pulses," Opt. Commun. 56,219-221 (1985).
[CrossRef]

Terhune, R.W.

P. D. Maker, R.W. Terhune, and C. M. Savage, "Intensity-Dependent Changes in the Refractive Index of Liquids," Phys. Rev. Lett. 12,507 (1964).
[CrossRef]

Tünnermann, A.

Weiner, A. M.

A. M. Weiner, "Femtosecond pulse shaping using spatial light modulators," Rev. Sci. Instrum. 71,1929-1960 (2000).
[CrossRef]

Yvernault, P.

IEEE J. Sel. Top. Quantum Electron. (1)

A. V. Smith, B. T. Do, G. R. Hadley, and R. L. Farrow, "Optical Damage Limits to Pulse Energy From Fibers," IEEE J. Sel. Top. Quantum Electron. 15,153-158 (2009).
[CrossRef]

Opt. Commun. (1)

D. M. Strickland, and G. Mourou, "Compression of amplified chirped optical pulses," Opt. Commun. 56,219-221 (1985).
[CrossRef]

Opt. Express (5)

Opt. Lett. (1)

Phys. Rev. Lett. (1)

P. D. Maker, R.W. Terhune, and C. M. Savage, "Intensity-Dependent Changes in the Refractive Index of Liquids," Phys. Rev. Lett. 12,507 (1964).
[CrossRef]

Rev. Sci. Instrum. (1)

A. M. Weiner, "Femtosecond pulse shaping using spatial light modulators," Rev. Sci. Instrum. 71,1929-1960 (2000).
[CrossRef]

Other (3)

A. E. Siegman, Lasers (University Science Books, 1986).

R. W. Boyd, Nonlinear Optics 2nd edition (Academic Press, 2003).

P. N. Butcher, D. Cotter, The Elements of Nonlinear Optics (Cambridge University Press, 1990).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

(a) Strehl-ratio of the output pulse after nonlinear chirped pulse amplification as a function of the B-integral. (b) relative peak-powe enhancement if circularly polarized light is used instead of linearly polarized light for different pulse shapes.

Fig. 2.
Fig. 2.

Schematic of the experimental setup of the fiber CPA-system with a pulse-shaper for phase-only shaping. AOM, acousto-optical modulator; OSA, optical spectrum analyzer; SHG, second harmonic stage; AC, autocorrelator.

Fig. 3.
Fig. 3.

Results from the measurement with the polarimeter: representation of the states of polarization on the Poincare-sphere for the case of circularly polarized light (a), and linearly polarized light (b).

Fig. 4.
Fig. 4.

(a) The spectrum measured at the output of the main-amplifier. (b) The SLM produces phases that show different maximum phase-shifts Δϕ. The autocorrelation traces measured at the output of the fiber CPA-system for the different values of the phase-compensation parameter Δϕ : (c) for the case of circularly polarized light and (d) linearly polarized light.

Fig. 5.
Fig. 5.

Peak of the autocorrelation traces at the output of the fiber CPA-system for the different values of the phase-compensation parameter Δϕ. The blueish and redish line correspond to linearly and circularly polarized light, respectively. They represent the mean values of the experimental data (grey curves). The vertical lines mark the position of Δϕ=-B.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

P (t)=P(0)(t)+P(1)+(t)+P(2)(t)+P(3)(t)
P̂μ(3) = ε0 14 χxxxx(3) [2ÊμÊ2+Êμ*Ê2] ,
P̂(3) (t)=ε034χxxxx(3)Ê3(t)ex.
P̂(3) (t)=ε024χxxxx(3)Ê3(t)e.
n2,L = 34 Re(χxxxx(3))ε0cn02 .
n2,C = 24 Re(χxxxx(3))ε0cn02 .
B = n2 ωc 0LdzÎ(z),
φSPM (Ω)=Bs (Ω),

Metrics