Abstract

A novel high speed transmission system using all-optical sampling orthogonal frequency multiplexing (AOS-OFDM) technique is proposed and demonstrated. By utilizing polarization multiplexing (PolMUX) and non-return-to-zero (NRZ) format, the total bit rate is 100Gb/s with high spectral efficiency of 1.6. In addition, optical cyclic postfixes are inserted to help improve the system performance. The 100Gb/s PolMux-NRZ-AOS-OFDM signals can pass through 20km single-mode fiber (SMF) transmission link without any compensation.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Bao and W. Shieh, “Transmission simulation of coherent optical OFDM signals in WDM systems,” Opt. Express 15(8), 4410–4418 (2007).
    [CrossRef] [PubMed]
  2. B. J. Schmidt, A. J. Lowery, and J. Armstrong, “ Experimental demonstrations of 20 Gbit/s direct-detection optical OFDM and 12 Gbit/s with a colorless transmitter,” OFC2007, PDP18.
  3. W. Shieh and C. Athaudage, “Coherent optical orthogonal frequency division multiplexing,” Electron. Lett. 42(10), 587–589 (2006).
    [CrossRef]
  4. I. B. Djordjevic, “PMD compensation in fiber-optic communication systems with direct detection using LDPC-coded OFDM,” Opt. Express 15(7), 3692–3701 (2007).
    [CrossRef] [PubMed]
  5. A. J. Lowery, “Fiber nonlinearity pre- and post-compensation for long-haul optical links using OFDM,” Opt. Express 15(20), 12966–12970 (2006).
  6. H. Sanjoh, E. Yamada and Y. Yoshikuni, “Optical orthogonal frequency division multiplexing using frequency/time domain filtering for high spectral efficiency up to 1bit/s/Hz,” OFC2002, ThD1. 401–402 (2002).
  7. A. Sano, H. Masuda, E. Yoshida, T. Kobayashi, E. Yamada, Y. Miyamoto, F. Inuzuka, Y. Hibino, Y. Takatori, K. Hagimoto, T. Yamada, and Y. Sakamaki, “30x100-Gb/s all-optical OFDM transmission over 1300 km SMF with 10 ROADM nodes,” ECOC 2007, Paper PDS1.7.
  8. A. Ellis and F. Gunning, “Spectral Density Enhancement Using Coherent WDM,” IEEE Photon. Technol. Lett. 17(2), 504–506 (2005).
    [CrossRef]
  9. K. Yonenaga, F. Inuzuka, S. Yamamoto, H. Takara, B. Kozicki, T. Yoshimatsu, A. Takada and M. Jinno, “Bit-Rate-Flexible All-Optical OFDM Transceiver Using Variable Multi-Carrier Source and DQPSK/DPSK Mixed Multiplexing,” OFC 2009, Paper OWM1.
  10. G. Goldfarb, G. Li, and M. G. Taylor, “Orthogonal Wavelength-Division Multiplexing Using Coherent Detection,” IEEE Photon. Technol. Lett. 19(24), 2015–2017 (2007).
    [CrossRef]
  11. K. Lee, C. T. D. Thai, and J. K. Rhee, “All optical discrete Fourier transform processor for 100Gbps OFDM transmission,” Opt. Express 16(6), 4023–4028 (2008).
    [CrossRef] [PubMed]
  12. H. W. Chen, M. H. Chen and S. Z. Xie, “All-optical orthogonal frequency division multiplexing scheme with cyclic prefix inserted,” CLEO2009, Paper CMZ2.
  13. P. Petropoulos, M. Ibsen, D. J. Richardson, and Peh Chiong Teh, “A Comparative Study of the Performance of Seven- and 63-Chip Optical Code-Division Multiple-Access Encoders and Decoders Based on Superstructured Fiber Bragg Gratings,” J. Lightwave Technol. 19(9), 1352–1365 (2001).
    [CrossRef]
  14. H. W. Chen, M. H. Chen, F. F. Yin, M. Xin, and S. Z. Xie, “All-optical orthogonal frequency multiplexing scheme with cyclic postfix based on fiber Bragg gratings,” Opt. Eng. 48(6), 065002 (2009).
    [CrossRef]
  15. Richard van Nee and Ramjee Prasad, OFDM for Wireless Multimedia Communications, Artech House, 2000.

2009 (1)

H. W. Chen, M. H. Chen, F. F. Yin, M. Xin, and S. Z. Xie, “All-optical orthogonal frequency multiplexing scheme with cyclic postfix based on fiber Bragg gratings,” Opt. Eng. 48(6), 065002 (2009).
[CrossRef]

2008 (1)

2007 (3)

2006 (2)

W. Shieh and C. Athaudage, “Coherent optical orthogonal frequency division multiplexing,” Electron. Lett. 42(10), 587–589 (2006).
[CrossRef]

A. J. Lowery, “Fiber nonlinearity pre- and post-compensation for long-haul optical links using OFDM,” Opt. Express 15(20), 12966–12970 (2006).

2005 (1)

A. Ellis and F. Gunning, “Spectral Density Enhancement Using Coherent WDM,” IEEE Photon. Technol. Lett. 17(2), 504–506 (2005).
[CrossRef]

2001 (1)

Athaudage, C.

W. Shieh and C. Athaudage, “Coherent optical orthogonal frequency division multiplexing,” Electron. Lett. 42(10), 587–589 (2006).
[CrossRef]

Bao, H.

Chen, H. W.

H. W. Chen, M. H. Chen, F. F. Yin, M. Xin, and S. Z. Xie, “All-optical orthogonal frequency multiplexing scheme with cyclic postfix based on fiber Bragg gratings,” Opt. Eng. 48(6), 065002 (2009).
[CrossRef]

Chen, M. H.

H. W. Chen, M. H. Chen, F. F. Yin, M. Xin, and S. Z. Xie, “All-optical orthogonal frequency multiplexing scheme with cyclic postfix based on fiber Bragg gratings,” Opt. Eng. 48(6), 065002 (2009).
[CrossRef]

Djordjevic, I. B.

Ellis, A.

A. Ellis and F. Gunning, “Spectral Density Enhancement Using Coherent WDM,” IEEE Photon. Technol. Lett. 17(2), 504–506 (2005).
[CrossRef]

Goldfarb, G.

G. Goldfarb, G. Li, and M. G. Taylor, “Orthogonal Wavelength-Division Multiplexing Using Coherent Detection,” IEEE Photon. Technol. Lett. 19(24), 2015–2017 (2007).
[CrossRef]

Gunning, F.

A. Ellis and F. Gunning, “Spectral Density Enhancement Using Coherent WDM,” IEEE Photon. Technol. Lett. 17(2), 504–506 (2005).
[CrossRef]

Ibsen, M.

Lee, K.

Li, G.

G. Goldfarb, G. Li, and M. G. Taylor, “Orthogonal Wavelength-Division Multiplexing Using Coherent Detection,” IEEE Photon. Technol. Lett. 19(24), 2015–2017 (2007).
[CrossRef]

Lowery, A. J.

A. J. Lowery, “Fiber nonlinearity pre- and post-compensation for long-haul optical links using OFDM,” Opt. Express 15(20), 12966–12970 (2006).

Petropoulos, P.

Rhee, J. K.

Richardson, D. J.

Shieh, W.

H. Bao and W. Shieh, “Transmission simulation of coherent optical OFDM signals in WDM systems,” Opt. Express 15(8), 4410–4418 (2007).
[CrossRef] [PubMed]

W. Shieh and C. Athaudage, “Coherent optical orthogonal frequency division multiplexing,” Electron. Lett. 42(10), 587–589 (2006).
[CrossRef]

Taylor, M. G.

G. Goldfarb, G. Li, and M. G. Taylor, “Orthogonal Wavelength-Division Multiplexing Using Coherent Detection,” IEEE Photon. Technol. Lett. 19(24), 2015–2017 (2007).
[CrossRef]

Teh, Peh Chiong

Thai, C. T. D.

Xie, S. Z.

H. W. Chen, M. H. Chen, F. F. Yin, M. Xin, and S. Z. Xie, “All-optical orthogonal frequency multiplexing scheme with cyclic postfix based on fiber Bragg gratings,” Opt. Eng. 48(6), 065002 (2009).
[CrossRef]

Xin, M.

H. W. Chen, M. H. Chen, F. F. Yin, M. Xin, and S. Z. Xie, “All-optical orthogonal frequency multiplexing scheme with cyclic postfix based on fiber Bragg gratings,” Opt. Eng. 48(6), 065002 (2009).
[CrossRef]

Yin, F. F.

H. W. Chen, M. H. Chen, F. F. Yin, M. Xin, and S. Z. Xie, “All-optical orthogonal frequency multiplexing scheme with cyclic postfix based on fiber Bragg gratings,” Opt. Eng. 48(6), 065002 (2009).
[CrossRef]

Electron. Lett. (1)

W. Shieh and C. Athaudage, “Coherent optical orthogonal frequency division multiplexing,” Electron. Lett. 42(10), 587–589 (2006).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

G. Goldfarb, G. Li, and M. G. Taylor, “Orthogonal Wavelength-Division Multiplexing Using Coherent Detection,” IEEE Photon. Technol. Lett. 19(24), 2015–2017 (2007).
[CrossRef]

A. Ellis and F. Gunning, “Spectral Density Enhancement Using Coherent WDM,” IEEE Photon. Technol. Lett. 17(2), 504–506 (2005).
[CrossRef]

J. Lightwave Technol. (1)

Opt. Eng. (1)

H. W. Chen, M. H. Chen, F. F. Yin, M. Xin, and S. Z. Xie, “All-optical orthogonal frequency multiplexing scheme with cyclic postfix based on fiber Bragg gratings,” Opt. Eng. 48(6), 065002 (2009).
[CrossRef]

Opt. Express (4)

Other (6)

H. Sanjoh, E. Yamada and Y. Yoshikuni, “Optical orthogonal frequency division multiplexing using frequency/time domain filtering for high spectral efficiency up to 1bit/s/Hz,” OFC2002, ThD1. 401–402 (2002).

A. Sano, H. Masuda, E. Yoshida, T. Kobayashi, E. Yamada, Y. Miyamoto, F. Inuzuka, Y. Hibino, Y. Takatori, K. Hagimoto, T. Yamada, and Y. Sakamaki, “30x100-Gb/s all-optical OFDM transmission over 1300 km SMF with 10 ROADM nodes,” ECOC 2007, Paper PDS1.7.

K. Yonenaga, F. Inuzuka, S. Yamamoto, H. Takara, B. Kozicki, T. Yoshimatsu, A. Takada and M. Jinno, “Bit-Rate-Flexible All-Optical OFDM Transceiver Using Variable Multi-Carrier Source and DQPSK/DPSK Mixed Multiplexing,” OFC 2009, Paper OWM1.

B. J. Schmidt, A. J. Lowery, and J. Armstrong, “ Experimental demonstrations of 20 Gbit/s direct-detection optical OFDM and 12 Gbit/s with a colorless transmitter,” OFC2007, PDP18.

H. W. Chen, M. H. Chen and S. Z. Xie, “All-optical orthogonal frequency division multiplexing scheme with cyclic prefix inserted,” CLEO2009, Paper CMZ2.

Richard van Nee and Ramjee Prasad, OFDM for Wireless Multimedia Communications, Artech House, 2000.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Principle of AOS-OFDM with optical CPs inserted.

Fig. 2
Fig. 2

Experimental Setup. MLLD: mode-locked laser diode; PPG: pulse pattern generator; EDL: electrical delay line; MZM: Mach-Zehnder modulator; MUX: multiplexer; ODL: optical delay line; PC: polarization controller; PBS: polarization beam splitter; PBC: polarization beam coupler; SMF: single mode fiber; DMUX: demultiplexer; PD: photon detector.

Fig. 3
Fig. 3

Spectra of AOS-OFDM and demultiplexed signals.

Fig. 4
Fig. 4

Eyediagrams of SC5 in (a) B2B and (b) after 20km SMF cases.

Fig. 5
Fig. 5

BER performance at receive power of −4dBm.

Tables (1)

Tables Icon

Table 1 Parameters for AOS-OFDM MUX/DMUX

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Si=X[n=1NA((n1)τ)exp(jφ(i,n))Normalsamples+c=1CA[(N+c1)τ]exp(jφ(i,c))Cyclicpostfixes]=Xm=1MA((m1)τ)exp(jφ(i,m))

Metrics