Abstract

We have studied under laser diode pumping near 800 nm the continuous wave laser operation of the Nd3+ -doped La2CaB10O19 biaxial noncentrosymmetric crystal. From Z-oriented samples we have obtained lasing at 1051.4 nm of Nd3+ ions located in the regular La3+ sites. Self-frequency doubling was obtained with samples oriented at the phase matching direction of the type I ee-o nonlinear interaction. With X-oriented samples, thanks to the existence of two La3+ and Ca2+-sites for the Nd3+ location, we have obtained a two-frequency laser working in dual polarization with a frequency difference unusually large of 4.6 THz.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Zhang and T. Bosch, “Orthogonally polarized lasers and their applications,” Opt. Photon. News 18. (5), 38 (2007).
    [CrossRef]
  2. M. Koch, “Terahertz technology: a land to be discovered,” Opt. Photon. News 18 (3), 20 (2007).
    [CrossRef]
  3. I. Duling and D. Zimdars, “Compact TD-THz systems offer flexible, turnkey imaging solutions,” Laser Focus World 43. (4), 63 (2007).
  4. M. Tani, P. Gu, M. Hyodo, K. Sakai, and T. Hidaka, “Generation of coherent terahertz radiation by photomixing of dual-mode lasers,” Opt. Quantum Electron. 32(4/5), 503–520 (2000).
    [CrossRef]
  5. K. Sakai, Terahertz Optoelectronics, (Springer-Verlag Berlin Heidelberg, 2005).
  6. T. Tanabe, K. Suto, J.-I. Nishizawa, and T. Sasaki, “Characteristics of terahertz-waves from GaSe crystals,” J. Phys. D Appl. Phys. 37(2), 155–158 (2004).
    [CrossRef]
  7. Y. J. Ding, “High-power tunable terahertz sources based on parametric processes and applications,” IEEE J. Sel. Top. Quantum Electron. 13(3), 705–720 (2007).
    [CrossRef]
  8. R. Czarny, M. Alouini, C. Larat, M. Krakowski, and D. Dolfi, “THz-dual-frequency lasers for continuous wave THz generation through photomixing,” Electron. Lett. 40. (15), 942–943 (2004).
    [CrossRef]
  9. A. Brenier, C. Tu, Z. Zhu, and J. Li, “Dual-polarization and dual-wavelength diode-pumped laser operation from the birefringent Yb3+ -doped GdAl3(BO3)4 nonlinear crystal,” Appl. Phys. B 89(2-3), 323–328 (2007).
    [CrossRef]
  10. M. Brunel, F. Bretenaker, and A. Le Floch, “Tunable optical microwave source using spatially resolved laser eigenstates,” Opt. Lett. 22. (6), 384–386 (1997).
    [CrossRef] [PubMed]
  11. M. Brunel, O. Emile, M. Vallet, F. Bretenaker, A. Le Floch, L. Fulbert, J. Marty, B. Ferrand, and E. Molva, “Experimental and theoretical study of monomode vectorial lasers passively Q-switch by a Cr4+: yttrium aluminium garnet absorber,” Phys. Rev. A 60(5), 4052–4058 (1999).
    [CrossRef]
  12. J. Le Gouët, L. Morvan, M. Alouini, J. Bourderionnet, D. Dolfi, and J.-P. Huignard, “Dual-frequency single-axis laser using a lead lanthanum zirconate tantalate (PLZT) birefringent etalon for millimeter wave generation: beyond the standard limit of tenability,” Opt. Lett. 32(9), 1090–1092 (2007).
    [CrossRef] [PubMed]
  13. A. Saha, A. Ray, S. Mukhopadhyay, N. Sinha, P. K. Dutta, and P. K. Dutta, “Simultaneous multi-wavelength oscillation of Nd laser around 1.3 mum: A potential source for coherent terahertz generation,” Opt. Express 14(11), 4721–4726 (2006).
    [CrossRef] [PubMed]
  14. A. Brenier, Y. Wu, P. Fu, R. Guo, and F. Jing, “Evidence of self-frequency doubling from two inequivalent Nd3+ centers in the La2CaB10O19:Nd3+ bi-functional crystal,” J. Appl. Phys. 98(12), 123528 (2005).
    [CrossRef]
  15. G. Wang, J. Lu, D. Cui, Z. Xu, Y. Wu, P. Fu, X. Guan, and C. Chen, “efficient second harmonic generation in a new nonlinear La2CaB10O19 crystal,” Opt. Commun. 209(4-6), 481–484 (2002).
    [CrossRef]
  16. F. Jing, P. Fu, Y. Wu, Y. Zu, and X. Wang, “growth and assessment of physical properties of a new nonlinear optical crystal: lanthanum calcium borate,” Opt. Mater. 30(12), 1867–1872 (2008).
    [CrossRef]
  17. A. Brenier, D. Jaque, and A. Majchrowski, “Bi-functional laser and nonlinear optical crystals,” Opt. Mater. 28(4), 310–323 (2006).
    [CrossRef]

2008 (1)

F. Jing, P. Fu, Y. Wu, Y. Zu, and X. Wang, “growth and assessment of physical properties of a new nonlinear optical crystal: lanthanum calcium borate,” Opt. Mater. 30(12), 1867–1872 (2008).
[CrossRef]

2007 (6)

J. Le Gouët, L. Morvan, M. Alouini, J. Bourderionnet, D. Dolfi, and J.-P. Huignard, “Dual-frequency single-axis laser using a lead lanthanum zirconate tantalate (PLZT) birefringent etalon for millimeter wave generation: beyond the standard limit of tenability,” Opt. Lett. 32(9), 1090–1092 (2007).
[CrossRef] [PubMed]

S. Zhang and T. Bosch, “Orthogonally polarized lasers and their applications,” Opt. Photon. News 18. (5), 38 (2007).
[CrossRef]

M. Koch, “Terahertz technology: a land to be discovered,” Opt. Photon. News 18 (3), 20 (2007).
[CrossRef]

I. Duling and D. Zimdars, “Compact TD-THz systems offer flexible, turnkey imaging solutions,” Laser Focus World 43. (4), 63 (2007).

Y. J. Ding, “High-power tunable terahertz sources based on parametric processes and applications,” IEEE J. Sel. Top. Quantum Electron. 13(3), 705–720 (2007).
[CrossRef]

A. Brenier, C. Tu, Z. Zhu, and J. Li, “Dual-polarization and dual-wavelength diode-pumped laser operation from the birefringent Yb3+ -doped GdAl3(BO3)4 nonlinear crystal,” Appl. Phys. B 89(2-3), 323–328 (2007).
[CrossRef]

2006 (2)

2005 (1)

A. Brenier, Y. Wu, P. Fu, R. Guo, and F. Jing, “Evidence of self-frequency doubling from two inequivalent Nd3+ centers in the La2CaB10O19:Nd3+ bi-functional crystal,” J. Appl. Phys. 98(12), 123528 (2005).
[CrossRef]

2004 (2)

T. Tanabe, K. Suto, J.-I. Nishizawa, and T. Sasaki, “Characteristics of terahertz-waves from GaSe crystals,” J. Phys. D Appl. Phys. 37(2), 155–158 (2004).
[CrossRef]

R. Czarny, M. Alouini, C. Larat, M. Krakowski, and D. Dolfi, “THz-dual-frequency lasers for continuous wave THz generation through photomixing,” Electron. Lett. 40. (15), 942–943 (2004).
[CrossRef]

2002 (1)

G. Wang, J. Lu, D. Cui, Z. Xu, Y. Wu, P. Fu, X. Guan, and C. Chen, “efficient second harmonic generation in a new nonlinear La2CaB10O19 crystal,” Opt. Commun. 209(4-6), 481–484 (2002).
[CrossRef]

2000 (1)

M. Tani, P. Gu, M. Hyodo, K. Sakai, and T. Hidaka, “Generation of coherent terahertz radiation by photomixing of dual-mode lasers,” Opt. Quantum Electron. 32(4/5), 503–520 (2000).
[CrossRef]

1999 (1)

M. Brunel, O. Emile, M. Vallet, F. Bretenaker, A. Le Floch, L. Fulbert, J. Marty, B. Ferrand, and E. Molva, “Experimental and theoretical study of monomode vectorial lasers passively Q-switch by a Cr4+: yttrium aluminium garnet absorber,” Phys. Rev. A 60(5), 4052–4058 (1999).
[CrossRef]

1997 (1)

Alouini, M.

Bosch, T.

S. Zhang and T. Bosch, “Orthogonally polarized lasers and their applications,” Opt. Photon. News 18. (5), 38 (2007).
[CrossRef]

Bourderionnet, J.

Brenier, A.

A. Brenier, C. Tu, Z. Zhu, and J. Li, “Dual-polarization and dual-wavelength diode-pumped laser operation from the birefringent Yb3+ -doped GdAl3(BO3)4 nonlinear crystal,” Appl. Phys. B 89(2-3), 323–328 (2007).
[CrossRef]

A. Brenier, D. Jaque, and A. Majchrowski, “Bi-functional laser and nonlinear optical crystals,” Opt. Mater. 28(4), 310–323 (2006).
[CrossRef]

A. Brenier, Y. Wu, P. Fu, R. Guo, and F. Jing, “Evidence of self-frequency doubling from two inequivalent Nd3+ centers in the La2CaB10O19:Nd3+ bi-functional crystal,” J. Appl. Phys. 98(12), 123528 (2005).
[CrossRef]

Bretenaker, F.

M. Brunel, O. Emile, M. Vallet, F. Bretenaker, A. Le Floch, L. Fulbert, J. Marty, B. Ferrand, and E. Molva, “Experimental and theoretical study of monomode vectorial lasers passively Q-switch by a Cr4+: yttrium aluminium garnet absorber,” Phys. Rev. A 60(5), 4052–4058 (1999).
[CrossRef]

M. Brunel, F. Bretenaker, and A. Le Floch, “Tunable optical microwave source using spatially resolved laser eigenstates,” Opt. Lett. 22. (6), 384–386 (1997).
[CrossRef] [PubMed]

Brunel, M.

M. Brunel, O. Emile, M. Vallet, F. Bretenaker, A. Le Floch, L. Fulbert, J. Marty, B. Ferrand, and E. Molva, “Experimental and theoretical study of monomode vectorial lasers passively Q-switch by a Cr4+: yttrium aluminium garnet absorber,” Phys. Rev. A 60(5), 4052–4058 (1999).
[CrossRef]

M. Brunel, F. Bretenaker, and A. Le Floch, “Tunable optical microwave source using spatially resolved laser eigenstates,” Opt. Lett. 22. (6), 384–386 (1997).
[CrossRef] [PubMed]

Chen, C.

G. Wang, J. Lu, D. Cui, Z. Xu, Y. Wu, P. Fu, X. Guan, and C. Chen, “efficient second harmonic generation in a new nonlinear La2CaB10O19 crystal,” Opt. Commun. 209(4-6), 481–484 (2002).
[CrossRef]

Cui, D.

G. Wang, J. Lu, D. Cui, Z. Xu, Y. Wu, P. Fu, X. Guan, and C. Chen, “efficient second harmonic generation in a new nonlinear La2CaB10O19 crystal,” Opt. Commun. 209(4-6), 481–484 (2002).
[CrossRef]

Czarny, R.

R. Czarny, M. Alouini, C. Larat, M. Krakowski, and D. Dolfi, “THz-dual-frequency lasers for continuous wave THz generation through photomixing,” Electron. Lett. 40. (15), 942–943 (2004).
[CrossRef]

Ding, Y. J.

Y. J. Ding, “High-power tunable terahertz sources based on parametric processes and applications,” IEEE J. Sel. Top. Quantum Electron. 13(3), 705–720 (2007).
[CrossRef]

Dolfi, D.

Duling, I.

I. Duling and D. Zimdars, “Compact TD-THz systems offer flexible, turnkey imaging solutions,” Laser Focus World 43. (4), 63 (2007).

Dutta, P. K.

Emile, O.

M. Brunel, O. Emile, M. Vallet, F. Bretenaker, A. Le Floch, L. Fulbert, J. Marty, B. Ferrand, and E. Molva, “Experimental and theoretical study of monomode vectorial lasers passively Q-switch by a Cr4+: yttrium aluminium garnet absorber,” Phys. Rev. A 60(5), 4052–4058 (1999).
[CrossRef]

Ferrand, B.

M. Brunel, O. Emile, M. Vallet, F. Bretenaker, A. Le Floch, L. Fulbert, J. Marty, B. Ferrand, and E. Molva, “Experimental and theoretical study of monomode vectorial lasers passively Q-switch by a Cr4+: yttrium aluminium garnet absorber,” Phys. Rev. A 60(5), 4052–4058 (1999).
[CrossRef]

Fu, P.

F. Jing, P. Fu, Y. Wu, Y. Zu, and X. Wang, “growth and assessment of physical properties of a new nonlinear optical crystal: lanthanum calcium borate,” Opt. Mater. 30(12), 1867–1872 (2008).
[CrossRef]

A. Brenier, Y. Wu, P. Fu, R. Guo, and F. Jing, “Evidence of self-frequency doubling from two inequivalent Nd3+ centers in the La2CaB10O19:Nd3+ bi-functional crystal,” J. Appl. Phys. 98(12), 123528 (2005).
[CrossRef]

G. Wang, J. Lu, D. Cui, Z. Xu, Y. Wu, P. Fu, X. Guan, and C. Chen, “efficient second harmonic generation in a new nonlinear La2CaB10O19 crystal,” Opt. Commun. 209(4-6), 481–484 (2002).
[CrossRef]

Fulbert, L.

M. Brunel, O. Emile, M. Vallet, F. Bretenaker, A. Le Floch, L. Fulbert, J. Marty, B. Ferrand, and E. Molva, “Experimental and theoretical study of monomode vectorial lasers passively Q-switch by a Cr4+: yttrium aluminium garnet absorber,” Phys. Rev. A 60(5), 4052–4058 (1999).
[CrossRef]

Gu, P.

M. Tani, P. Gu, M. Hyodo, K. Sakai, and T. Hidaka, “Generation of coherent terahertz radiation by photomixing of dual-mode lasers,” Opt. Quantum Electron. 32(4/5), 503–520 (2000).
[CrossRef]

Guan, X.

G. Wang, J. Lu, D. Cui, Z. Xu, Y. Wu, P. Fu, X. Guan, and C. Chen, “efficient second harmonic generation in a new nonlinear La2CaB10O19 crystal,” Opt. Commun. 209(4-6), 481–484 (2002).
[CrossRef]

Guo, R.

A. Brenier, Y. Wu, P. Fu, R. Guo, and F. Jing, “Evidence of self-frequency doubling from two inequivalent Nd3+ centers in the La2CaB10O19:Nd3+ bi-functional crystal,” J. Appl. Phys. 98(12), 123528 (2005).
[CrossRef]

Hidaka, T.

M. Tani, P. Gu, M. Hyodo, K. Sakai, and T. Hidaka, “Generation of coherent terahertz radiation by photomixing of dual-mode lasers,” Opt. Quantum Electron. 32(4/5), 503–520 (2000).
[CrossRef]

Huignard, J.-P.

Hyodo, M.

M. Tani, P. Gu, M. Hyodo, K. Sakai, and T. Hidaka, “Generation of coherent terahertz radiation by photomixing of dual-mode lasers,” Opt. Quantum Electron. 32(4/5), 503–520 (2000).
[CrossRef]

Jaque, D.

A. Brenier, D. Jaque, and A. Majchrowski, “Bi-functional laser and nonlinear optical crystals,” Opt. Mater. 28(4), 310–323 (2006).
[CrossRef]

Jing, F.

F. Jing, P. Fu, Y. Wu, Y. Zu, and X. Wang, “growth and assessment of physical properties of a new nonlinear optical crystal: lanthanum calcium borate,” Opt. Mater. 30(12), 1867–1872 (2008).
[CrossRef]

A. Brenier, Y. Wu, P. Fu, R. Guo, and F. Jing, “Evidence of self-frequency doubling from two inequivalent Nd3+ centers in the La2CaB10O19:Nd3+ bi-functional crystal,” J. Appl. Phys. 98(12), 123528 (2005).
[CrossRef]

Koch, M.

M. Koch, “Terahertz technology: a land to be discovered,” Opt. Photon. News 18 (3), 20 (2007).
[CrossRef]

Krakowski, M.

R. Czarny, M. Alouini, C. Larat, M. Krakowski, and D. Dolfi, “THz-dual-frequency lasers for continuous wave THz generation through photomixing,” Electron. Lett. 40. (15), 942–943 (2004).
[CrossRef]

Larat, C.

R. Czarny, M. Alouini, C. Larat, M. Krakowski, and D. Dolfi, “THz-dual-frequency lasers for continuous wave THz generation through photomixing,” Electron. Lett. 40. (15), 942–943 (2004).
[CrossRef]

Le Floch, A.

M. Brunel, O. Emile, M. Vallet, F. Bretenaker, A. Le Floch, L. Fulbert, J. Marty, B. Ferrand, and E. Molva, “Experimental and theoretical study of monomode vectorial lasers passively Q-switch by a Cr4+: yttrium aluminium garnet absorber,” Phys. Rev. A 60(5), 4052–4058 (1999).
[CrossRef]

M. Brunel, F. Bretenaker, and A. Le Floch, “Tunable optical microwave source using spatially resolved laser eigenstates,” Opt. Lett. 22. (6), 384–386 (1997).
[CrossRef] [PubMed]

Le Gouët, J.

Li, J.

A. Brenier, C. Tu, Z. Zhu, and J. Li, “Dual-polarization and dual-wavelength diode-pumped laser operation from the birefringent Yb3+ -doped GdAl3(BO3)4 nonlinear crystal,” Appl. Phys. B 89(2-3), 323–328 (2007).
[CrossRef]

Lu, J.

G. Wang, J. Lu, D. Cui, Z. Xu, Y. Wu, P. Fu, X. Guan, and C. Chen, “efficient second harmonic generation in a new nonlinear La2CaB10O19 crystal,” Opt. Commun. 209(4-6), 481–484 (2002).
[CrossRef]

Majchrowski, A.

A. Brenier, D. Jaque, and A. Majchrowski, “Bi-functional laser and nonlinear optical crystals,” Opt. Mater. 28(4), 310–323 (2006).
[CrossRef]

Marty, J.

M. Brunel, O. Emile, M. Vallet, F. Bretenaker, A. Le Floch, L. Fulbert, J. Marty, B. Ferrand, and E. Molva, “Experimental and theoretical study of monomode vectorial lasers passively Q-switch by a Cr4+: yttrium aluminium garnet absorber,” Phys. Rev. A 60(5), 4052–4058 (1999).
[CrossRef]

Molva, E.

M. Brunel, O. Emile, M. Vallet, F. Bretenaker, A. Le Floch, L. Fulbert, J. Marty, B. Ferrand, and E. Molva, “Experimental and theoretical study of monomode vectorial lasers passively Q-switch by a Cr4+: yttrium aluminium garnet absorber,” Phys. Rev. A 60(5), 4052–4058 (1999).
[CrossRef]

Morvan, L.

Mukhopadhyay, S.

Nishizawa, J.-I.

T. Tanabe, K. Suto, J.-I. Nishizawa, and T. Sasaki, “Characteristics of terahertz-waves from GaSe crystals,” J. Phys. D Appl. Phys. 37(2), 155–158 (2004).
[CrossRef]

Ray, A.

Saha, A.

Sakai, K.

M. Tani, P. Gu, M. Hyodo, K. Sakai, and T. Hidaka, “Generation of coherent terahertz radiation by photomixing of dual-mode lasers,” Opt. Quantum Electron. 32(4/5), 503–520 (2000).
[CrossRef]

Sasaki, T.

T. Tanabe, K. Suto, J.-I. Nishizawa, and T. Sasaki, “Characteristics of terahertz-waves from GaSe crystals,” J. Phys. D Appl. Phys. 37(2), 155–158 (2004).
[CrossRef]

Sinha, N.

Suto, K.

T. Tanabe, K. Suto, J.-I. Nishizawa, and T. Sasaki, “Characteristics of terahertz-waves from GaSe crystals,” J. Phys. D Appl. Phys. 37(2), 155–158 (2004).
[CrossRef]

Tanabe, T.

T. Tanabe, K. Suto, J.-I. Nishizawa, and T. Sasaki, “Characteristics of terahertz-waves from GaSe crystals,” J. Phys. D Appl. Phys. 37(2), 155–158 (2004).
[CrossRef]

Tani, M.

M. Tani, P. Gu, M. Hyodo, K. Sakai, and T. Hidaka, “Generation of coherent terahertz radiation by photomixing of dual-mode lasers,” Opt. Quantum Electron. 32(4/5), 503–520 (2000).
[CrossRef]

Tu, C.

A. Brenier, C. Tu, Z. Zhu, and J. Li, “Dual-polarization and dual-wavelength diode-pumped laser operation from the birefringent Yb3+ -doped GdAl3(BO3)4 nonlinear crystal,” Appl. Phys. B 89(2-3), 323–328 (2007).
[CrossRef]

Vallet, M.

M. Brunel, O. Emile, M. Vallet, F. Bretenaker, A. Le Floch, L. Fulbert, J. Marty, B. Ferrand, and E. Molva, “Experimental and theoretical study of monomode vectorial lasers passively Q-switch by a Cr4+: yttrium aluminium garnet absorber,” Phys. Rev. A 60(5), 4052–4058 (1999).
[CrossRef]

Wang, G.

G. Wang, J. Lu, D. Cui, Z. Xu, Y. Wu, P. Fu, X. Guan, and C. Chen, “efficient second harmonic generation in a new nonlinear La2CaB10O19 crystal,” Opt. Commun. 209(4-6), 481–484 (2002).
[CrossRef]

Wang, X.

F. Jing, P. Fu, Y. Wu, Y. Zu, and X. Wang, “growth and assessment of physical properties of a new nonlinear optical crystal: lanthanum calcium borate,” Opt. Mater. 30(12), 1867–1872 (2008).
[CrossRef]

Wu, Y.

F. Jing, P. Fu, Y. Wu, Y. Zu, and X. Wang, “growth and assessment of physical properties of a new nonlinear optical crystal: lanthanum calcium borate,” Opt. Mater. 30(12), 1867–1872 (2008).
[CrossRef]

A. Brenier, Y. Wu, P. Fu, R. Guo, and F. Jing, “Evidence of self-frequency doubling from two inequivalent Nd3+ centers in the La2CaB10O19:Nd3+ bi-functional crystal,” J. Appl. Phys. 98(12), 123528 (2005).
[CrossRef]

G. Wang, J. Lu, D. Cui, Z. Xu, Y. Wu, P. Fu, X. Guan, and C. Chen, “efficient second harmonic generation in a new nonlinear La2CaB10O19 crystal,” Opt. Commun. 209(4-6), 481–484 (2002).
[CrossRef]

Xu, Z.

G. Wang, J. Lu, D. Cui, Z. Xu, Y. Wu, P. Fu, X. Guan, and C. Chen, “efficient second harmonic generation in a new nonlinear La2CaB10O19 crystal,” Opt. Commun. 209(4-6), 481–484 (2002).
[CrossRef]

Zhang, S.

S. Zhang and T. Bosch, “Orthogonally polarized lasers and their applications,” Opt. Photon. News 18. (5), 38 (2007).
[CrossRef]

Zhu, Z.

A. Brenier, C. Tu, Z. Zhu, and J. Li, “Dual-polarization and dual-wavelength diode-pumped laser operation from the birefringent Yb3+ -doped GdAl3(BO3)4 nonlinear crystal,” Appl. Phys. B 89(2-3), 323–328 (2007).
[CrossRef]

Zimdars, D.

I. Duling and D. Zimdars, “Compact TD-THz systems offer flexible, turnkey imaging solutions,” Laser Focus World 43. (4), 63 (2007).

Zu, Y.

F. Jing, P. Fu, Y. Wu, Y. Zu, and X. Wang, “growth and assessment of physical properties of a new nonlinear optical crystal: lanthanum calcium borate,” Opt. Mater. 30(12), 1867–1872 (2008).
[CrossRef]

Appl. Phys. B (1)

A. Brenier, C. Tu, Z. Zhu, and J. Li, “Dual-polarization and dual-wavelength diode-pumped laser operation from the birefringent Yb3+ -doped GdAl3(BO3)4 nonlinear crystal,” Appl. Phys. B 89(2-3), 323–328 (2007).
[CrossRef]

Electron. Lett. (1)

R. Czarny, M. Alouini, C. Larat, M. Krakowski, and D. Dolfi, “THz-dual-frequency lasers for continuous wave THz generation through photomixing,” Electron. Lett. 40. (15), 942–943 (2004).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

Y. J. Ding, “High-power tunable terahertz sources based on parametric processes and applications,” IEEE J. Sel. Top. Quantum Electron. 13(3), 705–720 (2007).
[CrossRef]

J. Appl. Phys. (1)

A. Brenier, Y. Wu, P. Fu, R. Guo, and F. Jing, “Evidence of self-frequency doubling from two inequivalent Nd3+ centers in the La2CaB10O19:Nd3+ bi-functional crystal,” J. Appl. Phys. 98(12), 123528 (2005).
[CrossRef]

J. Phys. D Appl. Phys. (1)

T. Tanabe, K. Suto, J.-I. Nishizawa, and T. Sasaki, “Characteristics of terahertz-waves from GaSe crystals,” J. Phys. D Appl. Phys. 37(2), 155–158 (2004).
[CrossRef]

Laser Focus World (1)

I. Duling and D. Zimdars, “Compact TD-THz systems offer flexible, turnkey imaging solutions,” Laser Focus World 43. (4), 63 (2007).

Opt. Commun. (1)

G. Wang, J. Lu, D. Cui, Z. Xu, Y. Wu, P. Fu, X. Guan, and C. Chen, “efficient second harmonic generation in a new nonlinear La2CaB10O19 crystal,” Opt. Commun. 209(4-6), 481–484 (2002).
[CrossRef]

Opt. Express (1)

Opt. Lett. (2)

Opt. Mater. (2)

F. Jing, P. Fu, Y. Wu, Y. Zu, and X. Wang, “growth and assessment of physical properties of a new nonlinear optical crystal: lanthanum calcium borate,” Opt. Mater. 30(12), 1867–1872 (2008).
[CrossRef]

A. Brenier, D. Jaque, and A. Majchrowski, “Bi-functional laser and nonlinear optical crystals,” Opt. Mater. 28(4), 310–323 (2006).
[CrossRef]

Opt. Photon. News (2)

S. Zhang and T. Bosch, “Orthogonally polarized lasers and their applications,” Opt. Photon. News 18. (5), 38 (2007).
[CrossRef]

M. Koch, “Terahertz technology: a land to be discovered,” Opt. Photon. News 18 (3), 20 (2007).
[CrossRef]

Opt. Quantum Electron. (1)

M. Tani, P. Gu, M. Hyodo, K. Sakai, and T. Hidaka, “Generation of coherent terahertz radiation by photomixing of dual-mode lasers,” Opt. Quantum Electron. 32(4/5), 503–520 (2000).
[CrossRef]

Phys. Rev. A (1)

M. Brunel, O. Emile, M. Vallet, F. Bretenaker, A. Le Floch, L. Fulbert, J. Marty, B. Ferrand, and E. Molva, “Experimental and theoretical study of monomode vectorial lasers passively Q-switch by a Cr4+: yttrium aluminium garnet absorber,” Phys. Rev. A 60(5), 4052–4058 (1999).
[CrossRef]

Other (1)

K. Sakai, Terahertz Optoelectronics, (Springer-Verlag Berlin Heidelberg, 2005).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

X-polarized absorption spectrum of LCB:Nd and emission spectrum of the diode used in the laser experiment.

Fig. 2
Fig. 2

X and Y-polarized emission spectra of LCB:Nd under 799.2 nm excitation, with value of the fluorescence lifetime.

Fig. 3
Fig. 3

Experimental set-up for the laser experiments.

Fig. 4
Fig. 4

X-polarized laser output power at 1051.4 nm from the Z-oriented LCB:Nd 8% sample and the thermal effect.

Fig. 5
Fig. 5

Self-frequency doubling at 525.5 nm from the phase matched oriented LCB:Nd 8% sample.

Fig. 6
Fig. 6

Emission spectra of the 6% Nd-doped LCB sample under 799.2 nm excitation (a) and 800.5 nm excitation (b), with values of fluorescence lifetimes.

Fig. 7
Fig. 7

Two-frequency laser output power from the X-oriented LCB:Nd 8% sample.

Fig. 8
Fig. 8

Emission wavelengths of the two-frequency laser and its beam profile.

Metrics