Abstract

The impact of storage conditions on laser induced damage density at 351 nm on bare fused polished silica samples has been studied. Intentionally outgassing of polypropylene pieces on silica samples was done. We evidenced an important increase of laser induced damage density on contaminated samples demonstrating that storage could limit optics lifetime performances. Atomic Force Microscopy (AFM) and Gas Chromatography -Mass Spectrometry (GC-MS) have been used to identify the potential causes of this effect. It shows that a small quantity of organic contamination deposited on silica surface is responsible for this degradation. Various hypotheses are proposed to explain the damage mechanism. The more likely hypothesis is a coupling between surface defects of optics and organic contaminants.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. L. André, “Status of the LMJ project,” Proc. SPIE 3047, 38–42 (1996).
  2. W. H. Lowdermilk, “Status of the National Ignition Facility project,” Proc. SPIE 3047, 16–37 (1996).
  3. H. Bercegol, A. Boscheron, J.-M. Di-Nicola, E. Journot, L. Lamaignère, J. Néauport, and G. Razé, “Laser damage phenomena relevant to the design and operation of an ICF laser driver,” J. Phys. Conf. Series 112 (2008).
  4. D. W. Camp and ., “Subsurface damage and polishing compound affect the 355 nm laser damage threshold of fused silica surfaces,” Proc. SPIE 3244, 356–364 (1998).
    [CrossRef]
  5. J. Neauport, L. Lamaignere, H. Bercegol, F. Pilon, and J.-C. Birolleau, “Polishing-induced contamination of fused silica optics and laser induced damage density at 351 nm,” Opt. Express 13(25), 10163–10171 (2005).
    [CrossRef] [PubMed]
  6. R. Chow, R. Bickel, and J. Ertel, “Cleanliness validation of NIF small optics,” Proc. SPIE 4774, 19–24 (2002).
    [CrossRef]
  7. R. R. Kunz, D. K. Downs, and V. Libermann, “Experimentation and modelling of organic photocontamination on lithographic optics,” J. Vac. Sci. Technol. B 18(3), 1306–1313 (2000).
    [CrossRef] [PubMed]
  8. A. E. Duisterwinkel and A. T. G. M. Bastein, “Feasibility of UV cleaning of 157nm reticles,” Microelectron. Eng. 67–68, 3–9 (2003).
    [CrossRef]
  9. F. E. Hovis, B. A. Shepherd, C. T. Radcliffe, and H. A. Maliborski, “Contamination damage in pulsed 1µm lasers,” Proc. SPIE 2714, 707–716 (1996).
    [CrossRef]
  10. C. Scurlock, “A phenomenological study of contamination enhanced laser induced damage in sealed lasers,” Proc. SPIE 5647, 86–91 (2004).
    [CrossRef]
  11. C. Y. Sheng, “Effect of laser-induced damage on optical windows in the presence of adhesives under simulated thermal-vacuum conditions,” Proc. SPIE 6403, 1–12 (2007).
    [PubMed]
  12. L. Bruel, “Environmental effects on optical component aging,” Proc. SPIE 4932, 158–169 (2003).
    [CrossRef]
  13. G. Ravel and P. Bouchut, “Long term performances of very-high laser damage resistance mirrors,” Proc. SPIE 4932, 170–179 (2003).
    [CrossRef] [PubMed]
  14. G. Guéhenneux, Ph. Bouchut, M. Veillerot, A. Pereira, and I. Tovena, “Impact of outgassing organic contamination on laser-induced damage threshold of optics. Effect of laser conditioning,” Proc. SPIE 5991, 59910F (2005).
    [CrossRef]
  15. G. Guéhenneux, M. Veillerot, and I. Tovena, “Evaluation of the airborne molecular contamination inside the LIL,” Nucl. Instrum. Methods Phys. Res. A 557(2), 676–683 (2006).
    [CrossRef] [PubMed]
  16. K. Bien-Aimé, J. Néauport, I. Tovena-Pecault, E. Fargin, C. Labrugère, C. Belin, and M. Couzi, “Laser induced damage of fused silica polished optics due to a droplet forming organic contaminant,” Appl. Opt. 48(12), 2228–2235 (2009).
    [CrossRef] [PubMed]
  17. A. Pereira, J.-G. Coutard, S. Becker, I. Tovena, P. Bouchut, and G. Ravel, “Impact of organics contamination on 1064 nm laser induced damage threshold of dielectric mirrors,” Proc. SPIE 6403, 64030I (2006).
    [CrossRef] [PubMed]
  18. L. Lamaignère, S. Bouillet, R. Courchinoux, T. Donval, M. Josse, J.-C. Poncetta, and H. Bercegol, “An accurate, repeatable, and well characterized measurement of laser damage density of optical materials,” Rev. Sci. Instrum. 78(10), 103105 (2007).
    [CrossRef] [PubMed]
  19. P. West and N. Starostina, « AFM image artefacts», LOT-Oriel Gruppe Europa.
  20. T. Pompe, A. Fery, and S. Herminghaus, “Imaging liquid structures on inhomogeneous surfaces by scanning force microscopy,” Langmuir 14(10), 2585–2588 (1998).
    [CrossRef]
  21. M. Commandre and P. Roche, “Characterization of optical coatings by photothermal deflection,” Appl. Opt. 35(25), 5021–5034 (1996).
    [CrossRef] [PubMed]
  22. S. Palmier, S. Garcia, and J.-L. Rullier, “Method to characterize superficial particulate pollution and to evaluate its impact on optical components under a high power laser,” Opt. Eng. 47(8), 084203 (2008).
    [CrossRef]
  23. S. Palmier, J. L. Rullier, J. Capoulade, and J. Y. Natoli, “Effect of laser irradiation on silica substrate contaminated by aluminum particles,” Appl. Opt. 47(8), 1164–1170 (2008).
    [CrossRef] [PubMed]
  24. H. M. Lai, P. T. Leung, K. L. Poon, and K. Young, “Electrostrictive distortion of micrometer-sized droplet by a laser pulse,” J. Opt. Soc. Am. B 6(12), 2430–2437 (1989).
    [CrossRef]
  25. H. M. Lai, W. M. Suen, and K. Young, “Microscopic derivation of the force on a dielectric fluid in an electromagnetic field,” Phys. Rev. A 25(3), 1755–1763 (1982).
    [CrossRef]
  26. H. Bercegol, P. Grua, and J.-P. Morreeuw, “Progress in understanding of fracture related laser damage of fused silica,” Proc. SPIE 6720, 672003 (2007).
    [CrossRef]

2009 (1)

2008 (2)

S. Palmier, J. L. Rullier, J. Capoulade, and J. Y. Natoli, “Effect of laser irradiation on silica substrate contaminated by aluminum particles,” Appl. Opt. 47(8), 1164–1170 (2008).
[CrossRef] [PubMed]

S. Palmier, S. Garcia, and J.-L. Rullier, “Method to characterize superficial particulate pollution and to evaluate its impact on optical components under a high power laser,” Opt. Eng. 47(8), 084203 (2008).
[CrossRef]

2007 (3)

L. Lamaignère, S. Bouillet, R. Courchinoux, T. Donval, M. Josse, J.-C. Poncetta, and H. Bercegol, “An accurate, repeatable, and well characterized measurement of laser damage density of optical materials,” Rev. Sci. Instrum. 78(10), 103105 (2007).
[CrossRef] [PubMed]

C. Y. Sheng, “Effect of laser-induced damage on optical windows in the presence of adhesives under simulated thermal-vacuum conditions,” Proc. SPIE 6403, 1–12 (2007).
[PubMed]

H. Bercegol, P. Grua, and J.-P. Morreeuw, “Progress in understanding of fracture related laser damage of fused silica,” Proc. SPIE 6720, 672003 (2007).
[CrossRef]

2006 (2)

G. Guéhenneux, M. Veillerot, and I. Tovena, “Evaluation of the airborne molecular contamination inside the LIL,” Nucl. Instrum. Methods Phys. Res. A 557(2), 676–683 (2006).
[CrossRef] [PubMed]

A. Pereira, J.-G. Coutard, S. Becker, I. Tovena, P. Bouchut, and G. Ravel, “Impact of organics contamination on 1064 nm laser induced damage threshold of dielectric mirrors,” Proc. SPIE 6403, 64030I (2006).
[CrossRef] [PubMed]

2005 (2)

G. Guéhenneux, Ph. Bouchut, M. Veillerot, A. Pereira, and I. Tovena, “Impact of outgassing organic contamination on laser-induced damage threshold of optics. Effect of laser conditioning,” Proc. SPIE 5991, 59910F (2005).
[CrossRef]

J. Neauport, L. Lamaignere, H. Bercegol, F. Pilon, and J.-C. Birolleau, “Polishing-induced contamination of fused silica optics and laser induced damage density at 351 nm,” Opt. Express 13(25), 10163–10171 (2005).
[CrossRef] [PubMed]

2004 (1)

C. Scurlock, “A phenomenological study of contamination enhanced laser induced damage in sealed lasers,” Proc. SPIE 5647, 86–91 (2004).
[CrossRef]

2003 (3)

L. Bruel, “Environmental effects on optical component aging,” Proc. SPIE 4932, 158–169 (2003).
[CrossRef]

G. Ravel and P. Bouchut, “Long term performances of very-high laser damage resistance mirrors,” Proc. SPIE 4932, 170–179 (2003).
[CrossRef] [PubMed]

A. E. Duisterwinkel and A. T. G. M. Bastein, “Feasibility of UV cleaning of 157nm reticles,” Microelectron. Eng. 67–68, 3–9 (2003).
[CrossRef]

2002 (1)

R. Chow, R. Bickel, and J. Ertel, “Cleanliness validation of NIF small optics,” Proc. SPIE 4774, 19–24 (2002).
[CrossRef]

2000 (1)

R. R. Kunz, D. K. Downs, and V. Libermann, “Experimentation and modelling of organic photocontamination on lithographic optics,” J. Vac. Sci. Technol. B 18(3), 1306–1313 (2000).
[CrossRef] [PubMed]

1998 (2)

D. W. Camp and ., “Subsurface damage and polishing compound affect the 355 nm laser damage threshold of fused silica surfaces,” Proc. SPIE 3244, 356–364 (1998).
[CrossRef]

T. Pompe, A. Fery, and S. Herminghaus, “Imaging liquid structures on inhomogeneous surfaces by scanning force microscopy,” Langmuir 14(10), 2585–2588 (1998).
[CrossRef]

1996 (4)

M. L. André, “Status of the LMJ project,” Proc. SPIE 3047, 38–42 (1996).

W. H. Lowdermilk, “Status of the National Ignition Facility project,” Proc. SPIE 3047, 16–37 (1996).

F. E. Hovis, B. A. Shepherd, C. T. Radcliffe, and H. A. Maliborski, “Contamination damage in pulsed 1µm lasers,” Proc. SPIE 2714, 707–716 (1996).
[CrossRef]

M. Commandre and P. Roche, “Characterization of optical coatings by photothermal deflection,” Appl. Opt. 35(25), 5021–5034 (1996).
[CrossRef] [PubMed]

1989 (1)

1982 (1)

H. M. Lai, W. M. Suen, and K. Young, “Microscopic derivation of the force on a dielectric fluid in an electromagnetic field,” Phys. Rev. A 25(3), 1755–1763 (1982).
[CrossRef]

André, M. L.

M. L. André, “Status of the LMJ project,” Proc. SPIE 3047, 38–42 (1996).

Bastein, A. T. G. M.

A. E. Duisterwinkel and A. T. G. M. Bastein, “Feasibility of UV cleaning of 157nm reticles,” Microelectron. Eng. 67–68, 3–9 (2003).
[CrossRef]

Becker, S.

A. Pereira, J.-G. Coutard, S. Becker, I. Tovena, P. Bouchut, and G. Ravel, “Impact of organics contamination on 1064 nm laser induced damage threshold of dielectric mirrors,” Proc. SPIE 6403, 64030I (2006).
[CrossRef] [PubMed]

Belin, C.

Bercegol, H.

H. Bercegol, P. Grua, and J.-P. Morreeuw, “Progress in understanding of fracture related laser damage of fused silica,” Proc. SPIE 6720, 672003 (2007).
[CrossRef]

L. Lamaignère, S. Bouillet, R. Courchinoux, T. Donval, M. Josse, J.-C. Poncetta, and H. Bercegol, “An accurate, repeatable, and well characterized measurement of laser damage density of optical materials,” Rev. Sci. Instrum. 78(10), 103105 (2007).
[CrossRef] [PubMed]

J. Neauport, L. Lamaignere, H. Bercegol, F. Pilon, and J.-C. Birolleau, “Polishing-induced contamination of fused silica optics and laser induced damage density at 351 nm,” Opt. Express 13(25), 10163–10171 (2005).
[CrossRef] [PubMed]

Bickel, R.

R. Chow, R. Bickel, and J. Ertel, “Cleanliness validation of NIF small optics,” Proc. SPIE 4774, 19–24 (2002).
[CrossRef]

Bien-Aimé, K.

Birolleau, J.-C.

Bouchut, P.

A. Pereira, J.-G. Coutard, S. Becker, I. Tovena, P. Bouchut, and G. Ravel, “Impact of organics contamination on 1064 nm laser induced damage threshold of dielectric mirrors,” Proc. SPIE 6403, 64030I (2006).
[CrossRef] [PubMed]

G. Ravel and P. Bouchut, “Long term performances of very-high laser damage resistance mirrors,” Proc. SPIE 4932, 170–179 (2003).
[CrossRef] [PubMed]

Bouchut, Ph.

G. Guéhenneux, Ph. Bouchut, M. Veillerot, A. Pereira, and I. Tovena, “Impact of outgassing organic contamination on laser-induced damage threshold of optics. Effect of laser conditioning,” Proc. SPIE 5991, 59910F (2005).
[CrossRef]

Bouillet, S.

L. Lamaignère, S. Bouillet, R. Courchinoux, T. Donval, M. Josse, J.-C. Poncetta, and H. Bercegol, “An accurate, repeatable, and well characterized measurement of laser damage density of optical materials,” Rev. Sci. Instrum. 78(10), 103105 (2007).
[CrossRef] [PubMed]

Bruel, L.

L. Bruel, “Environmental effects on optical component aging,” Proc. SPIE 4932, 158–169 (2003).
[CrossRef]

Camp, D. W.

D. W. Camp and ., “Subsurface damage and polishing compound affect the 355 nm laser damage threshold of fused silica surfaces,” Proc. SPIE 3244, 356–364 (1998).
[CrossRef]

Capoulade, J.

Chow, R.

R. Chow, R. Bickel, and J. Ertel, “Cleanliness validation of NIF small optics,” Proc. SPIE 4774, 19–24 (2002).
[CrossRef]

Commandre, M.

Courchinoux, R.

L. Lamaignère, S. Bouillet, R. Courchinoux, T. Donval, M. Josse, J.-C. Poncetta, and H. Bercegol, “An accurate, repeatable, and well characterized measurement of laser damage density of optical materials,” Rev. Sci. Instrum. 78(10), 103105 (2007).
[CrossRef] [PubMed]

Coutard, J.-G.

A. Pereira, J.-G. Coutard, S. Becker, I. Tovena, P. Bouchut, and G. Ravel, “Impact of organics contamination on 1064 nm laser induced damage threshold of dielectric mirrors,” Proc. SPIE 6403, 64030I (2006).
[CrossRef] [PubMed]

Couzi, M.

Donval, T.

L. Lamaignère, S. Bouillet, R. Courchinoux, T. Donval, M. Josse, J.-C. Poncetta, and H. Bercegol, “An accurate, repeatable, and well characterized measurement of laser damage density of optical materials,” Rev. Sci. Instrum. 78(10), 103105 (2007).
[CrossRef] [PubMed]

Downs, D. K.

R. R. Kunz, D. K. Downs, and V. Libermann, “Experimentation and modelling of organic photocontamination on lithographic optics,” J. Vac. Sci. Technol. B 18(3), 1306–1313 (2000).
[CrossRef] [PubMed]

Duisterwinkel, A. E.

A. E. Duisterwinkel and A. T. G. M. Bastein, “Feasibility of UV cleaning of 157nm reticles,” Microelectron. Eng. 67–68, 3–9 (2003).
[CrossRef]

Ertel, J.

R. Chow, R. Bickel, and J. Ertel, “Cleanliness validation of NIF small optics,” Proc. SPIE 4774, 19–24 (2002).
[CrossRef]

Fargin, E.

Fery, A.

T. Pompe, A. Fery, and S. Herminghaus, “Imaging liquid structures on inhomogeneous surfaces by scanning force microscopy,” Langmuir 14(10), 2585–2588 (1998).
[CrossRef]

Garcia, S.

S. Palmier, S. Garcia, and J.-L. Rullier, “Method to characterize superficial particulate pollution and to evaluate its impact on optical components under a high power laser,” Opt. Eng. 47(8), 084203 (2008).
[CrossRef]

Grua, P.

H. Bercegol, P. Grua, and J.-P. Morreeuw, “Progress in understanding of fracture related laser damage of fused silica,” Proc. SPIE 6720, 672003 (2007).
[CrossRef]

Guéhenneux, G.

G. Guéhenneux, M. Veillerot, and I. Tovena, “Evaluation of the airborne molecular contamination inside the LIL,” Nucl. Instrum. Methods Phys. Res. A 557(2), 676–683 (2006).
[CrossRef] [PubMed]

G. Guéhenneux, Ph. Bouchut, M. Veillerot, A. Pereira, and I. Tovena, “Impact of outgassing organic contamination on laser-induced damage threshold of optics. Effect of laser conditioning,” Proc. SPIE 5991, 59910F (2005).
[CrossRef]

Herminghaus, S.

T. Pompe, A. Fery, and S. Herminghaus, “Imaging liquid structures on inhomogeneous surfaces by scanning force microscopy,” Langmuir 14(10), 2585–2588 (1998).
[CrossRef]

Hovis, F. E.

F. E. Hovis, B. A. Shepherd, C. T. Radcliffe, and H. A. Maliborski, “Contamination damage in pulsed 1µm lasers,” Proc. SPIE 2714, 707–716 (1996).
[CrossRef]

Josse, M.

L. Lamaignère, S. Bouillet, R. Courchinoux, T. Donval, M. Josse, J.-C. Poncetta, and H. Bercegol, “An accurate, repeatable, and well characterized measurement of laser damage density of optical materials,” Rev. Sci. Instrum. 78(10), 103105 (2007).
[CrossRef] [PubMed]

Kunz, R. R.

R. R. Kunz, D. K. Downs, and V. Libermann, “Experimentation and modelling of organic photocontamination on lithographic optics,” J. Vac. Sci. Technol. B 18(3), 1306–1313 (2000).
[CrossRef] [PubMed]

Labrugère, C.

Lai, H. M.

H. M. Lai, P. T. Leung, K. L. Poon, and K. Young, “Electrostrictive distortion of micrometer-sized droplet by a laser pulse,” J. Opt. Soc. Am. B 6(12), 2430–2437 (1989).
[CrossRef]

H. M. Lai, W. M. Suen, and K. Young, “Microscopic derivation of the force on a dielectric fluid in an electromagnetic field,” Phys. Rev. A 25(3), 1755–1763 (1982).
[CrossRef]

Lamaignere, L.

Lamaignère, L.

L. Lamaignère, S. Bouillet, R. Courchinoux, T. Donval, M. Josse, J.-C. Poncetta, and H. Bercegol, “An accurate, repeatable, and well characterized measurement of laser damage density of optical materials,” Rev. Sci. Instrum. 78(10), 103105 (2007).
[CrossRef] [PubMed]

Leung, P. T.

Libermann, V.

R. R. Kunz, D. K. Downs, and V. Libermann, “Experimentation and modelling of organic photocontamination on lithographic optics,” J. Vac. Sci. Technol. B 18(3), 1306–1313 (2000).
[CrossRef] [PubMed]

Lowdermilk, W. H.

W. H. Lowdermilk, “Status of the National Ignition Facility project,” Proc. SPIE 3047, 16–37 (1996).

Maliborski, H. A.

F. E. Hovis, B. A. Shepherd, C. T. Radcliffe, and H. A. Maliborski, “Contamination damage in pulsed 1µm lasers,” Proc. SPIE 2714, 707–716 (1996).
[CrossRef]

Morreeuw, J.-P.

H. Bercegol, P. Grua, and J.-P. Morreeuw, “Progress in understanding of fracture related laser damage of fused silica,” Proc. SPIE 6720, 672003 (2007).
[CrossRef]

Natoli, J. Y.

Neauport, J.

Néauport, J.

Palmier, S.

S. Palmier, J. L. Rullier, J. Capoulade, and J. Y. Natoli, “Effect of laser irradiation on silica substrate contaminated by aluminum particles,” Appl. Opt. 47(8), 1164–1170 (2008).
[CrossRef] [PubMed]

S. Palmier, S. Garcia, and J.-L. Rullier, “Method to characterize superficial particulate pollution and to evaluate its impact on optical components under a high power laser,” Opt. Eng. 47(8), 084203 (2008).
[CrossRef]

Pereira, A.

A. Pereira, J.-G. Coutard, S. Becker, I. Tovena, P. Bouchut, and G. Ravel, “Impact of organics contamination on 1064 nm laser induced damage threshold of dielectric mirrors,” Proc. SPIE 6403, 64030I (2006).
[CrossRef] [PubMed]

G. Guéhenneux, Ph. Bouchut, M. Veillerot, A. Pereira, and I. Tovena, “Impact of outgassing organic contamination on laser-induced damage threshold of optics. Effect of laser conditioning,” Proc. SPIE 5991, 59910F (2005).
[CrossRef]

Pilon, F.

Pompe, T.

T. Pompe, A. Fery, and S. Herminghaus, “Imaging liquid structures on inhomogeneous surfaces by scanning force microscopy,” Langmuir 14(10), 2585–2588 (1998).
[CrossRef]

Poncetta, J.-C.

L. Lamaignère, S. Bouillet, R. Courchinoux, T. Donval, M. Josse, J.-C. Poncetta, and H. Bercegol, “An accurate, repeatable, and well characterized measurement of laser damage density of optical materials,” Rev. Sci. Instrum. 78(10), 103105 (2007).
[CrossRef] [PubMed]

Poon, K. L.

Radcliffe, C. T.

F. E. Hovis, B. A. Shepherd, C. T. Radcliffe, and H. A. Maliborski, “Contamination damage in pulsed 1µm lasers,” Proc. SPIE 2714, 707–716 (1996).
[CrossRef]

Ravel, G.

A. Pereira, J.-G. Coutard, S. Becker, I. Tovena, P. Bouchut, and G. Ravel, “Impact of organics contamination on 1064 nm laser induced damage threshold of dielectric mirrors,” Proc. SPIE 6403, 64030I (2006).
[CrossRef] [PubMed]

G. Ravel and P. Bouchut, “Long term performances of very-high laser damage resistance mirrors,” Proc. SPIE 4932, 170–179 (2003).
[CrossRef] [PubMed]

Roche, P.

Rullier, J. L.

Rullier, J.-L.

S. Palmier, S. Garcia, and J.-L. Rullier, “Method to characterize superficial particulate pollution and to evaluate its impact on optical components under a high power laser,” Opt. Eng. 47(8), 084203 (2008).
[CrossRef]

Scurlock, C.

C. Scurlock, “A phenomenological study of contamination enhanced laser induced damage in sealed lasers,” Proc. SPIE 5647, 86–91 (2004).
[CrossRef]

Sheng, C. Y.

C. Y. Sheng, “Effect of laser-induced damage on optical windows in the presence of adhesives under simulated thermal-vacuum conditions,” Proc. SPIE 6403, 1–12 (2007).
[PubMed]

Shepherd, B. A.

F. E. Hovis, B. A. Shepherd, C. T. Radcliffe, and H. A. Maliborski, “Contamination damage in pulsed 1µm lasers,” Proc. SPIE 2714, 707–716 (1996).
[CrossRef]

Suen, W. M.

H. M. Lai, W. M. Suen, and K. Young, “Microscopic derivation of the force on a dielectric fluid in an electromagnetic field,” Phys. Rev. A 25(3), 1755–1763 (1982).
[CrossRef]

Tovena, I.

G. Guéhenneux, M. Veillerot, and I. Tovena, “Evaluation of the airborne molecular contamination inside the LIL,” Nucl. Instrum. Methods Phys. Res. A 557(2), 676–683 (2006).
[CrossRef] [PubMed]

A. Pereira, J.-G. Coutard, S. Becker, I. Tovena, P. Bouchut, and G. Ravel, “Impact of organics contamination on 1064 nm laser induced damage threshold of dielectric mirrors,” Proc. SPIE 6403, 64030I (2006).
[CrossRef] [PubMed]

G. Guéhenneux, Ph. Bouchut, M. Veillerot, A. Pereira, and I. Tovena, “Impact of outgassing organic contamination on laser-induced damage threshold of optics. Effect of laser conditioning,” Proc. SPIE 5991, 59910F (2005).
[CrossRef]

Tovena-Pecault, I.

Veillerot, M.

G. Guéhenneux, M. Veillerot, and I. Tovena, “Evaluation of the airborne molecular contamination inside the LIL,” Nucl. Instrum. Methods Phys. Res. A 557(2), 676–683 (2006).
[CrossRef] [PubMed]

G. Guéhenneux, Ph. Bouchut, M. Veillerot, A. Pereira, and I. Tovena, “Impact of outgassing organic contamination on laser-induced damage threshold of optics. Effect of laser conditioning,” Proc. SPIE 5991, 59910F (2005).
[CrossRef]

Young, K.

H. M. Lai, P. T. Leung, K. L. Poon, and K. Young, “Electrostrictive distortion of micrometer-sized droplet by a laser pulse,” J. Opt. Soc. Am. B 6(12), 2430–2437 (1989).
[CrossRef]

H. M. Lai, W. M. Suen, and K. Young, “Microscopic derivation of the force on a dielectric fluid in an electromagnetic field,” Phys. Rev. A 25(3), 1755–1763 (1982).
[CrossRef]

Appl. Opt. (3)

J. Opt. Soc. Am. B (1)

J. Vac. Sci. Technol. B (1)

R. R. Kunz, D. K. Downs, and V. Libermann, “Experimentation and modelling of organic photocontamination on lithographic optics,” J. Vac. Sci. Technol. B 18(3), 1306–1313 (2000).
[CrossRef] [PubMed]

Langmuir (1)

T. Pompe, A. Fery, and S. Herminghaus, “Imaging liquid structures on inhomogeneous surfaces by scanning force microscopy,” Langmuir 14(10), 2585–2588 (1998).
[CrossRef]

Microelectron. Eng. (1)

A. E. Duisterwinkel and A. T. G. M. Bastein, “Feasibility of UV cleaning of 157nm reticles,” Microelectron. Eng. 67–68, 3–9 (2003).
[CrossRef]

Nucl. Instrum. Methods Phys. Res. A (1)

G. Guéhenneux, M. Veillerot, and I. Tovena, “Evaluation of the airborne molecular contamination inside the LIL,” Nucl. Instrum. Methods Phys. Res. A 557(2), 676–683 (2006).
[CrossRef] [PubMed]

Opt. Eng. (1)

S. Palmier, S. Garcia, and J.-L. Rullier, “Method to characterize superficial particulate pollution and to evaluate its impact on optical components under a high power laser,” Opt. Eng. 47(8), 084203 (2008).
[CrossRef]

Opt. Express (1)

Phys. Rev. A (1)

H. M. Lai, W. M. Suen, and K. Young, “Microscopic derivation of the force on a dielectric fluid in an electromagnetic field,” Phys. Rev. A 25(3), 1755–1763 (1982).
[CrossRef]

Proc. SPIE (12)

H. Bercegol, P. Grua, and J.-P. Morreeuw, “Progress in understanding of fracture related laser damage of fused silica,” Proc. SPIE 6720, 672003 (2007).
[CrossRef]

R. Chow, R. Bickel, and J. Ertel, “Cleanliness validation of NIF small optics,” Proc. SPIE 4774, 19–24 (2002).
[CrossRef]

M. L. André, “Status of the LMJ project,” Proc. SPIE 3047, 38–42 (1996).

W. H. Lowdermilk, “Status of the National Ignition Facility project,” Proc. SPIE 3047, 16–37 (1996).

D. W. Camp and ., “Subsurface damage and polishing compound affect the 355 nm laser damage threshold of fused silica surfaces,” Proc. SPIE 3244, 356–364 (1998).
[CrossRef]

A. Pereira, J.-G. Coutard, S. Becker, I. Tovena, P. Bouchut, and G. Ravel, “Impact of organics contamination on 1064 nm laser induced damage threshold of dielectric mirrors,” Proc. SPIE 6403, 64030I (2006).
[CrossRef] [PubMed]

F. E. Hovis, B. A. Shepherd, C. T. Radcliffe, and H. A. Maliborski, “Contamination damage in pulsed 1µm lasers,” Proc. SPIE 2714, 707–716 (1996).
[CrossRef]

C. Scurlock, “A phenomenological study of contamination enhanced laser induced damage in sealed lasers,” Proc. SPIE 5647, 86–91 (2004).
[CrossRef]

C. Y. Sheng, “Effect of laser-induced damage on optical windows in the presence of adhesives under simulated thermal-vacuum conditions,” Proc. SPIE 6403, 1–12 (2007).
[PubMed]

L. Bruel, “Environmental effects on optical component aging,” Proc. SPIE 4932, 158–169 (2003).
[CrossRef]

G. Ravel and P. Bouchut, “Long term performances of very-high laser damage resistance mirrors,” Proc. SPIE 4932, 170–179 (2003).
[CrossRef] [PubMed]

G. Guéhenneux, Ph. Bouchut, M. Veillerot, A. Pereira, and I. Tovena, “Impact of outgassing organic contamination on laser-induced damage threshold of optics. Effect of laser conditioning,” Proc. SPIE 5991, 59910F (2005).
[CrossRef]

Rev. Sci. Instrum. (1)

L. Lamaignère, S. Bouillet, R. Courchinoux, T. Donval, M. Josse, J.-C. Poncetta, and H. Bercegol, “An accurate, repeatable, and well characterized measurement of laser damage density of optical materials,” Rev. Sci. Instrum. 78(10), 103105 (2007).
[CrossRef] [PubMed]

Other (2)

P. West and N. Starostina, « AFM image artefacts», LOT-Oriel Gruppe Europa.

H. Bercegol, A. Boscheron, J.-M. Di-Nicola, E. Journot, L. Lamaignère, J. Néauport, and G. Razé, “Laser damage phenomena relevant to the design and operation of an ICF laser driver,” J. Phys. Conf. Series 112 (2008).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Outgassing rate of polypropylene at different temperatures, flow rates and durations

Fig. 2
Fig. 2

Outgased species at 70°C during 24 h by the selected polypropylene

Fig. 3
Fig. 3

Experimental protocol

Fig. 4
Fig. 4

Laser induced damage tests of clean, heated and contaminated silica samples

Fig. 5
Fig. 5

Chemical species measured by GC-MS on clean, heated and contaminated silica samples

Fig. 6
Fig. 6

AFM picture of bare silica samples after cleaning (a) and after contamination (b) – solvent spread on a fused silica sample (c)

Fig. 7
Fig. 7

AFM picture of bare silica samples after cleaning (a and b) and after contamination (c and d) for different set point amplitude values

Fig. 8
Fig. 8

Absorption mapping of clean (a) and contaminated (b) samples obtained by photothermal deflection with a sampling step of 20 µm

Tables (1)

Tables Icon

Table 1 Experimental parameters of GC-MS analysis

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

ΔT=αFCpρ
CvTt=S
S(t)=σabsI0(t)43πa3

Metrics