Abstract

The observation of latent light-assisted poling (LAP) in lithium niobate single crystals is reported. More specifically, the nucleation field is reduced and remains reduced for an extended time period (up to several hours) after irradiation with ultrafast (~150 fs) laser light at a wavelength of 400 nm. The maximum nucleation field reduction measured using latent-LAP (62%) was significantly higher in comparison with regular non-time-delayed LAP (41%) under identical irradiation conditions in undoped congruent lithium niobate crystals. No latent-LAP effect was observed in MgO-doped crystals for the experimental conditions used, despite the strong effect observed using regular LAP. The latent-LAP effect is attributed to the formation of a slowly decaying photo-induced space-charge distribution which assists local ferroelectric domain nucleation. The dynamics of latent-LAP are compared with the dynamics of photorefractive grating decay, recorded in lithium niobate crystals of different doping, confirming the space charge hypothesis.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Arizmendi, “Photonic applications of lithium niobate crystals,” Phys. Status Solidi A 201, 253–283 (2004). http://dx.doi.org/10.1002/pssa.200303911
  2. I. E. Barry, G. W. Ross, P. G. R. Smith, R. W. Eason, and G. Cook, “Microstructuring of lithium niobate using differential etch-rate between inverted and non-inverted ferroelectric domains,” Mater. Lett. 37(4-5), 246–254 (1998), http://dx.doi.org/10.1016/S0167-577X(98)00100-1 .
    [CrossRef]
  3. A. J. Boyland, S. Mailis, J. M. Hendricks, P. G. R. Smith, and R. W. Eason, “Electro-optically controlled beam switching via total internal reflection at a domain-engineered interface in LiNbO3,” Opt. Commun. 197(1-3), 193–200 (2001), http://dx.doi.org/10.1016/S0030-4018(01)01428-6 .
    [CrossRef]
  4. R. W. Eason, A. J. Boyland, S. Mailis, and P. G. R. Smith, “Electro-optically controlled beam deflection for grazing incidence geometry on a domain-engineered interface in LiNbO3,” Opt. Commun. 197(1-3), 201–207 (2001), http://dx.doi.org/10.1016/S0030-4018(01)01429-8 .
    [CrossRef]
  5. M. Yamada, N. Nada, M. Saitoh, and K. Watanabe, “First-order quasi-phase matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second-harmonic generation,” Appl. Phys. Lett. 62(5), 435–436 (1993), http://link.aip.org/link/?APL/62/435/1 .
    [CrossRef]
  6. M. Yamada and M. Saitoh, “Fabrication of a periodically poled laminar domain structure with a pitch of a few micrometers by applying an external electric field,” J. Appl. Phys. 84(4), 2199–2206 (1998), http://link.aip.org/link/?JAP/84/2199/1 .
    [CrossRef]
  7. W. Wang, Y. Kong, H. Liu, Q. Hu, S. Liu, S. Chen, and J. Xu, “Light-induced domain reversal in doped lithium niobate crystals,” J. Appl. Phys. 105(4), 043105 (2009), http://dx.doi.org/10.1063/1.3079478 .
    [CrossRef]
  8. H. Steigerwald, F. Luedtke, and K. Buse, “Ultraviolet light assisted periodic poling of near-stoichiometric, magnesium-doped lithium niobate crystals,” Appl. Phys. Lett. 94(3), 032906 (2009), http://link.aip.org/link/?APL/94/032906/1 .
    [CrossRef]
  9. M. Fujimura, T. Sohmura, and T. Suhara, “Fabrication of domain-inverted gratings in MgO:LiNbO3 by applying voltage under ultraviolet irradiation through photomask at room temperature,” Electron. Lett. 39(9), 719–721 (2003), http://ieeexplore.ieee.org/xpls/abs_all.jsp?isnumber=27015&arnumber=1199952&count=36&index=12 .
    [CrossRef]
  10. C. L. Sones, M. C. Wengler, C. E. Valdivia, S. Mailis, R. W. Eason, and K. Buse, “Light-induced order-of-magnitude decrease in the electric field for domain nucleation in MgO-doped lithium niobate crystals,” Appl. Phys. Lett. 86(21), 212901 (2005), http://link.aip.org/link/?APL/86/212901/1 .
    [CrossRef]
  11. V. Dierolf and C. Sandmann, “Direct-write method for domain inversion patterns in LiNbO3,” Appl. Phys. Lett. 84(20), 3987–3989 (2004), http://link.aip.org/link/?APL/84/3987/1 .
    [CrossRef]
  12. M. C. Wengler, B. Fassbender, E. Soergel, and K. Buse, “Impact of ultraviolet light on coercive field, poling dynamics and poling quality of various lithium niobate crystals from different sources,” J. Appl. Phys. 96(5), 2816–2820 (2004), http://link.aip.org/link/?JAP/96/2816/1 .
    [CrossRef]
  13. C. E. Valdivia, C. L. Sones, S. Mailis, J. D. Mills, and R. W. Eason, “Ultrashort-pulse optically-assisted domain engineering in lithium niobate,” Ferroelectrics 340(1), 75–82 (2006), http://www.informaworld.com/10.1080/00150190600888983 .
    [CrossRef]
  14. J. H. Ro and M. Cha, “Subsecond relaxation of internal field after polarization reversal in congruent LiNbO3 and LiTaO3 crystals,” Appl. Phys. Lett. 77(15), 2391–2393 (2000), http://link.aip.org/link/?APL/77/2391/1 .
    [CrossRef]
  15. A. I. Lobov, V. Y. Shur, I. S. Baturin, E. I. Shishkin, D. K. Kuznetsov, A. G. Shur, M. A. Dolbilov, and K. Gallo, “Field induced evolution of regular and random 2D domain structures and shape of isolated domains in LiNbO3 and LiTaO3,” Ferroelectrics 341(1), 109–116 (2006), http://www.informaworld.com/smpp/content~db=all~content=a769409747~tab=content .
    [CrossRef]
  16. Ya. Vladimir, Shur, “Correlated Nucleation and Self-Organized Kinetics of Ferroelectric Domains,” in Nucleation Theory and Applications, W. P. S. Dr. Jürn, ed. (2005), pp. 178–214. http://dx.doi.org/10.1002/3527604790.ch6
  17. W. Yan, L. Shi, Y. Kong, Y. Wang, H. Liu, J. Xu, S. Chen, L. Zhang, Z. Huang, S. Liu, and G. Zhang, “The electrostatic depinning mechanism of domain wall for near-stoichiometric lithium niobate crystals,” J. Phys. D Appl. Phys. 39(19), 4245–4249 (2006), http://www.iop.org/EJ/abstract/0022-3727/39/19/018 .
    [CrossRef]
  18. B. Sturman, M. Carrascosa, and F. Agulló-López, “Light-induced charge transport in LiNbO3 crystals,” Phys. Rev. B 78(24), 245114 (2008), http://link.aps.org/doi/10.1103/PhysRevB.78.245114 .
    [CrossRef]
  19. O. Beyer, D. Maxein, K. Buse, B. Sturman, H. T. Hsieh, and D. Psaltis, “Femtosecond time-resolved absorption processes in lithium niobate crystals,” Opt. Lett. 30(11), 1366–1368 (2005), http://ol.osa.org/abstract.cfm?URI=ol-30-11-1366 .
    [CrossRef] [PubMed]
  20. L. Arizmendi and F. Agulló-López, “LiNbO3: A paradigm for photorefractive materials,” MRS Bull. 19, 32–38 (1994).
  21. F. H. Mok, “Angle-multiplexed storage of 5000 holograms in lithium niobate,” Opt. Lett. 18(11), 915–917 (1993), http://www.opticsinfobase.org/abstract.cfm?URI=ol-18-11-915 .
    [CrossRef] [PubMed]
  22. Y. S. Bai and R. Kachru, “Nonvolatile holographic storage with two-step recording in lithium niobate using cw lasers,” Phys. Rev. Lett. 78(15), 2944–2947 (1997), http://prola.aps.org/abstract/PRL/v78/i15/p2944_1 .
    [CrossRef]
  23. F. Jermann, M. Simon, and E. Krätzig, “Photorefractive properties of congruent and stoichiometric lithium niobate at high light intensities,” J. Opt. Soc. Am. B 12(11), 2066–2070 (1995), http://josab.osa.org/abstract.cfm?URI=josab-12-11-2066 .
    [CrossRef]
  24. D. Berben, K. Buse, S. Wevering, P. Herth, M. Imlau, and T. Woike, “Lifetime of small polarons in iron-doped lithium–niobate crystals,” J. Appl. Phys. 87(3), 1034–1041 (2000), http://link.aip.org/link/?JAP/87/1034/1 .
    [CrossRef]
  25. K. Mizuuchi, A. Morikawa, T. Sugita, and K. Yamamoto, “Polarisation-switching-induced resistance change in ferroelectric Mg-doped LiNbO3 single crystals,” Electron. Lett. 40(13), 819–820 (2004), http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1309740 .
    [CrossRef]
  26. I. Nee, M. Müller, K. Buse, and E. Krätzig, “Role of iron in lithium-niobate crystals for the dark-storage time of holograms,” J. Appl. Phys. 88(7), 4282–4286 (2000), http://link.aip.org/link/?JAP/88/4282/1 .
    [CrossRef]
  27. A. Mansingh and A. Dhar, “The AC conductivity and dielectric constant of lithium niobate single crystals,” J. Phys. D Appl. Phys. 18(10), 2059–2071 (1985), http://www.iop.org/EJ/abstract/0022-3727/18/10/016 .
    [CrossRef]
  28. R. T. Smith and F. S. Welsh, “Temperature dependence of the elastic, piezoelectric, and dielectric constants of lithium tantalate and lithium niobate,” J. Appl. Phys. 42(6), 2219–2230 (1971), http://link.aip.org/link/?JAPIAU/42/2219/1 .
    [CrossRef]
  29. C. E. Valdivia, “Light-induced ferroelectric domain engineering in lithium niobate & lithium tantalate,” (PhD thesis, University of Southampton, Southampton, 2007). http://www.orc.soton.ac.uk/viewpublication.html?pid=3846

2009

W. Wang, Y. Kong, H. Liu, Q. Hu, S. Liu, S. Chen, and J. Xu, “Light-induced domain reversal in doped lithium niobate crystals,” J. Appl. Phys. 105(4), 043105 (2009), http://dx.doi.org/10.1063/1.3079478 .
[CrossRef]

H. Steigerwald, F. Luedtke, and K. Buse, “Ultraviolet light assisted periodic poling of near-stoichiometric, magnesium-doped lithium niobate crystals,” Appl. Phys. Lett. 94(3), 032906 (2009), http://link.aip.org/link/?APL/94/032906/1 .
[CrossRef]

2008

B. Sturman, M. Carrascosa, and F. Agulló-López, “Light-induced charge transport in LiNbO3 crystals,” Phys. Rev. B 78(24), 245114 (2008), http://link.aps.org/doi/10.1103/PhysRevB.78.245114 .
[CrossRef]

2006

C. E. Valdivia, C. L. Sones, S. Mailis, J. D. Mills, and R. W. Eason, “Ultrashort-pulse optically-assisted domain engineering in lithium niobate,” Ferroelectrics 340(1), 75–82 (2006), http://www.informaworld.com/10.1080/00150190600888983 .
[CrossRef]

A. I. Lobov, V. Y. Shur, I. S. Baturin, E. I. Shishkin, D. K. Kuznetsov, A. G. Shur, M. A. Dolbilov, and K. Gallo, “Field induced evolution of regular and random 2D domain structures and shape of isolated domains in LiNbO3 and LiTaO3,” Ferroelectrics 341(1), 109–116 (2006), http://www.informaworld.com/smpp/content~db=all~content=a769409747~tab=content .
[CrossRef]

W. Yan, L. Shi, Y. Kong, Y. Wang, H. Liu, J. Xu, S. Chen, L. Zhang, Z. Huang, S. Liu, and G. Zhang, “The electrostatic depinning mechanism of domain wall for near-stoichiometric lithium niobate crystals,” J. Phys. D Appl. Phys. 39(19), 4245–4249 (2006), http://www.iop.org/EJ/abstract/0022-3727/39/19/018 .
[CrossRef]

2005

C. L. Sones, M. C. Wengler, C. E. Valdivia, S. Mailis, R. W. Eason, and K. Buse, “Light-induced order-of-magnitude decrease in the electric field for domain nucleation in MgO-doped lithium niobate crystals,” Appl. Phys. Lett. 86(21), 212901 (2005), http://link.aip.org/link/?APL/86/212901/1 .
[CrossRef]

O. Beyer, D. Maxein, K. Buse, B. Sturman, H. T. Hsieh, and D. Psaltis, “Femtosecond time-resolved absorption processes in lithium niobate crystals,” Opt. Lett. 30(11), 1366–1368 (2005), http://ol.osa.org/abstract.cfm?URI=ol-30-11-1366 .
[CrossRef] [PubMed]

2004

K. Mizuuchi, A. Morikawa, T. Sugita, and K. Yamamoto, “Polarisation-switching-induced resistance change in ferroelectric Mg-doped LiNbO3 single crystals,” Electron. Lett. 40(13), 819–820 (2004), http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1309740 .
[CrossRef]

V. Dierolf and C. Sandmann, “Direct-write method for domain inversion patterns in LiNbO3,” Appl. Phys. Lett. 84(20), 3987–3989 (2004), http://link.aip.org/link/?APL/84/3987/1 .
[CrossRef]

M. C. Wengler, B. Fassbender, E. Soergel, and K. Buse, “Impact of ultraviolet light on coercive field, poling dynamics and poling quality of various lithium niobate crystals from different sources,” J. Appl. Phys. 96(5), 2816–2820 (2004), http://link.aip.org/link/?JAP/96/2816/1 .
[CrossRef]

2003

M. Fujimura, T. Sohmura, and T. Suhara, “Fabrication of domain-inverted gratings in MgO:LiNbO3 by applying voltage under ultraviolet irradiation through photomask at room temperature,” Electron. Lett. 39(9), 719–721 (2003), http://ieeexplore.ieee.org/xpls/abs_all.jsp?isnumber=27015&arnumber=1199952&count=36&index=12 .
[CrossRef]

2001

A. J. Boyland, S. Mailis, J. M. Hendricks, P. G. R. Smith, and R. W. Eason, “Electro-optically controlled beam switching via total internal reflection at a domain-engineered interface in LiNbO3,” Opt. Commun. 197(1-3), 193–200 (2001), http://dx.doi.org/10.1016/S0030-4018(01)01428-6 .
[CrossRef]

R. W. Eason, A. J. Boyland, S. Mailis, and P. G. R. Smith, “Electro-optically controlled beam deflection for grazing incidence geometry on a domain-engineered interface in LiNbO3,” Opt. Commun. 197(1-3), 201–207 (2001), http://dx.doi.org/10.1016/S0030-4018(01)01429-8 .
[CrossRef]

2000

J. H. Ro and M. Cha, “Subsecond relaxation of internal field after polarization reversal in congruent LiNbO3 and LiTaO3 crystals,” Appl. Phys. Lett. 77(15), 2391–2393 (2000), http://link.aip.org/link/?APL/77/2391/1 .
[CrossRef]

D. Berben, K. Buse, S. Wevering, P. Herth, M. Imlau, and T. Woike, “Lifetime of small polarons in iron-doped lithium–niobate crystals,” J. Appl. Phys. 87(3), 1034–1041 (2000), http://link.aip.org/link/?JAP/87/1034/1 .
[CrossRef]

I. Nee, M. Müller, K. Buse, and E. Krätzig, “Role of iron in lithium-niobate crystals for the dark-storage time of holograms,” J. Appl. Phys. 88(7), 4282–4286 (2000), http://link.aip.org/link/?JAP/88/4282/1 .
[CrossRef]

1998

I. E. Barry, G. W. Ross, P. G. R. Smith, R. W. Eason, and G. Cook, “Microstructuring of lithium niobate using differential etch-rate between inverted and non-inverted ferroelectric domains,” Mater. Lett. 37(4-5), 246–254 (1998), http://dx.doi.org/10.1016/S0167-577X(98)00100-1 .
[CrossRef]

M. Yamada and M. Saitoh, “Fabrication of a periodically poled laminar domain structure with a pitch of a few micrometers by applying an external electric field,” J. Appl. Phys. 84(4), 2199–2206 (1998), http://link.aip.org/link/?JAP/84/2199/1 .
[CrossRef]

1997

Y. S. Bai and R. Kachru, “Nonvolatile holographic storage with two-step recording in lithium niobate using cw lasers,” Phys. Rev. Lett. 78(15), 2944–2947 (1997), http://prola.aps.org/abstract/PRL/v78/i15/p2944_1 .
[CrossRef]

1995

1994

L. Arizmendi and F. Agulló-López, “LiNbO3: A paradigm for photorefractive materials,” MRS Bull. 19, 32–38 (1994).

1993

M. Yamada, N. Nada, M. Saitoh, and K. Watanabe, “First-order quasi-phase matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second-harmonic generation,” Appl. Phys. Lett. 62(5), 435–436 (1993), http://link.aip.org/link/?APL/62/435/1 .
[CrossRef]

F. H. Mok, “Angle-multiplexed storage of 5000 holograms in lithium niobate,” Opt. Lett. 18(11), 915–917 (1993), http://www.opticsinfobase.org/abstract.cfm?URI=ol-18-11-915 .
[CrossRef] [PubMed]

1985

A. Mansingh and A. Dhar, “The AC conductivity and dielectric constant of lithium niobate single crystals,” J. Phys. D Appl. Phys. 18(10), 2059–2071 (1985), http://www.iop.org/EJ/abstract/0022-3727/18/10/016 .
[CrossRef]

1971

R. T. Smith and F. S. Welsh, “Temperature dependence of the elastic, piezoelectric, and dielectric constants of lithium tantalate and lithium niobate,” J. Appl. Phys. 42(6), 2219–2230 (1971), http://link.aip.org/link/?JAPIAU/42/2219/1 .
[CrossRef]

Agulló-López, F.

B. Sturman, M. Carrascosa, and F. Agulló-López, “Light-induced charge transport in LiNbO3 crystals,” Phys. Rev. B 78(24), 245114 (2008), http://link.aps.org/doi/10.1103/PhysRevB.78.245114 .
[CrossRef]

L. Arizmendi and F. Agulló-López, “LiNbO3: A paradigm for photorefractive materials,” MRS Bull. 19, 32–38 (1994).

Arizmendi, L.

L. Arizmendi and F. Agulló-López, “LiNbO3: A paradigm for photorefractive materials,” MRS Bull. 19, 32–38 (1994).

Bai, Y. S.

Y. S. Bai and R. Kachru, “Nonvolatile holographic storage with two-step recording in lithium niobate using cw lasers,” Phys. Rev. Lett. 78(15), 2944–2947 (1997), http://prola.aps.org/abstract/PRL/v78/i15/p2944_1 .
[CrossRef]

Barry, I. E.

I. E. Barry, G. W. Ross, P. G. R. Smith, R. W. Eason, and G. Cook, “Microstructuring of lithium niobate using differential etch-rate between inverted and non-inverted ferroelectric domains,” Mater. Lett. 37(4-5), 246–254 (1998), http://dx.doi.org/10.1016/S0167-577X(98)00100-1 .
[CrossRef]

Baturin, I. S.

A. I. Lobov, V. Y. Shur, I. S. Baturin, E. I. Shishkin, D. K. Kuznetsov, A. G. Shur, M. A. Dolbilov, and K. Gallo, “Field induced evolution of regular and random 2D domain structures and shape of isolated domains in LiNbO3 and LiTaO3,” Ferroelectrics 341(1), 109–116 (2006), http://www.informaworld.com/smpp/content~db=all~content=a769409747~tab=content .
[CrossRef]

Berben, D.

D. Berben, K. Buse, S. Wevering, P. Herth, M. Imlau, and T. Woike, “Lifetime of small polarons in iron-doped lithium–niobate crystals,” J. Appl. Phys. 87(3), 1034–1041 (2000), http://link.aip.org/link/?JAP/87/1034/1 .
[CrossRef]

Beyer, O.

Boyland, A. J.

A. J. Boyland, S. Mailis, J. M. Hendricks, P. G. R. Smith, and R. W. Eason, “Electro-optically controlled beam switching via total internal reflection at a domain-engineered interface in LiNbO3,” Opt. Commun. 197(1-3), 193–200 (2001), http://dx.doi.org/10.1016/S0030-4018(01)01428-6 .
[CrossRef]

R. W. Eason, A. J. Boyland, S. Mailis, and P. G. R. Smith, “Electro-optically controlled beam deflection for grazing incidence geometry on a domain-engineered interface in LiNbO3,” Opt. Commun. 197(1-3), 201–207 (2001), http://dx.doi.org/10.1016/S0030-4018(01)01429-8 .
[CrossRef]

Buse, K.

H. Steigerwald, F. Luedtke, and K. Buse, “Ultraviolet light assisted periodic poling of near-stoichiometric, magnesium-doped lithium niobate crystals,” Appl. Phys. Lett. 94(3), 032906 (2009), http://link.aip.org/link/?APL/94/032906/1 .
[CrossRef]

C. L. Sones, M. C. Wengler, C. E. Valdivia, S. Mailis, R. W. Eason, and K. Buse, “Light-induced order-of-magnitude decrease in the electric field for domain nucleation in MgO-doped lithium niobate crystals,” Appl. Phys. Lett. 86(21), 212901 (2005), http://link.aip.org/link/?APL/86/212901/1 .
[CrossRef]

O. Beyer, D. Maxein, K. Buse, B. Sturman, H. T. Hsieh, and D. Psaltis, “Femtosecond time-resolved absorption processes in lithium niobate crystals,” Opt. Lett. 30(11), 1366–1368 (2005), http://ol.osa.org/abstract.cfm?URI=ol-30-11-1366 .
[CrossRef] [PubMed]

M. C. Wengler, B. Fassbender, E. Soergel, and K. Buse, “Impact of ultraviolet light on coercive field, poling dynamics and poling quality of various lithium niobate crystals from different sources,” J. Appl. Phys. 96(5), 2816–2820 (2004), http://link.aip.org/link/?JAP/96/2816/1 .
[CrossRef]

I. Nee, M. Müller, K. Buse, and E. Krätzig, “Role of iron in lithium-niobate crystals for the dark-storage time of holograms,” J. Appl. Phys. 88(7), 4282–4286 (2000), http://link.aip.org/link/?JAP/88/4282/1 .
[CrossRef]

D. Berben, K. Buse, S. Wevering, P. Herth, M. Imlau, and T. Woike, “Lifetime of small polarons in iron-doped lithium–niobate crystals,” J. Appl. Phys. 87(3), 1034–1041 (2000), http://link.aip.org/link/?JAP/87/1034/1 .
[CrossRef]

Carrascosa, M.

B. Sturman, M. Carrascosa, and F. Agulló-López, “Light-induced charge transport in LiNbO3 crystals,” Phys. Rev. B 78(24), 245114 (2008), http://link.aps.org/doi/10.1103/PhysRevB.78.245114 .
[CrossRef]

Cha, M.

J. H. Ro and M. Cha, “Subsecond relaxation of internal field after polarization reversal in congruent LiNbO3 and LiTaO3 crystals,” Appl. Phys. Lett. 77(15), 2391–2393 (2000), http://link.aip.org/link/?APL/77/2391/1 .
[CrossRef]

Chen, S.

W. Wang, Y. Kong, H. Liu, Q. Hu, S. Liu, S. Chen, and J. Xu, “Light-induced domain reversal in doped lithium niobate crystals,” J. Appl. Phys. 105(4), 043105 (2009), http://dx.doi.org/10.1063/1.3079478 .
[CrossRef]

W. Yan, L. Shi, Y. Kong, Y. Wang, H. Liu, J. Xu, S. Chen, L. Zhang, Z. Huang, S. Liu, and G. Zhang, “The electrostatic depinning mechanism of domain wall for near-stoichiometric lithium niobate crystals,” J. Phys. D Appl. Phys. 39(19), 4245–4249 (2006), http://www.iop.org/EJ/abstract/0022-3727/39/19/018 .
[CrossRef]

Cook, G.

I. E. Barry, G. W. Ross, P. G. R. Smith, R. W. Eason, and G. Cook, “Microstructuring of lithium niobate using differential etch-rate between inverted and non-inverted ferroelectric domains,” Mater. Lett. 37(4-5), 246–254 (1998), http://dx.doi.org/10.1016/S0167-577X(98)00100-1 .
[CrossRef]

Dhar, A.

A. Mansingh and A. Dhar, “The AC conductivity and dielectric constant of lithium niobate single crystals,” J. Phys. D Appl. Phys. 18(10), 2059–2071 (1985), http://www.iop.org/EJ/abstract/0022-3727/18/10/016 .
[CrossRef]

Dierolf, V.

V. Dierolf and C. Sandmann, “Direct-write method for domain inversion patterns in LiNbO3,” Appl. Phys. Lett. 84(20), 3987–3989 (2004), http://link.aip.org/link/?APL/84/3987/1 .
[CrossRef]

Dolbilov, M. A.

A. I. Lobov, V. Y. Shur, I. S. Baturin, E. I. Shishkin, D. K. Kuznetsov, A. G. Shur, M. A. Dolbilov, and K. Gallo, “Field induced evolution of regular and random 2D domain structures and shape of isolated domains in LiNbO3 and LiTaO3,” Ferroelectrics 341(1), 109–116 (2006), http://www.informaworld.com/smpp/content~db=all~content=a769409747~tab=content .
[CrossRef]

Eason, R. W.

C. E. Valdivia, C. L. Sones, S. Mailis, J. D. Mills, and R. W. Eason, “Ultrashort-pulse optically-assisted domain engineering in lithium niobate,” Ferroelectrics 340(1), 75–82 (2006), http://www.informaworld.com/10.1080/00150190600888983 .
[CrossRef]

C. L. Sones, M. C. Wengler, C. E. Valdivia, S. Mailis, R. W. Eason, and K. Buse, “Light-induced order-of-magnitude decrease in the electric field for domain nucleation in MgO-doped lithium niobate crystals,” Appl. Phys. Lett. 86(21), 212901 (2005), http://link.aip.org/link/?APL/86/212901/1 .
[CrossRef]

A. J. Boyland, S. Mailis, J. M. Hendricks, P. G. R. Smith, and R. W. Eason, “Electro-optically controlled beam switching via total internal reflection at a domain-engineered interface in LiNbO3,” Opt. Commun. 197(1-3), 193–200 (2001), http://dx.doi.org/10.1016/S0030-4018(01)01428-6 .
[CrossRef]

R. W. Eason, A. J. Boyland, S. Mailis, and P. G. R. Smith, “Electro-optically controlled beam deflection for grazing incidence geometry on a domain-engineered interface in LiNbO3,” Opt. Commun. 197(1-3), 201–207 (2001), http://dx.doi.org/10.1016/S0030-4018(01)01429-8 .
[CrossRef]

I. E. Barry, G. W. Ross, P. G. R. Smith, R. W. Eason, and G. Cook, “Microstructuring of lithium niobate using differential etch-rate between inverted and non-inverted ferroelectric domains,” Mater. Lett. 37(4-5), 246–254 (1998), http://dx.doi.org/10.1016/S0167-577X(98)00100-1 .
[CrossRef]

Fassbender, B.

M. C. Wengler, B. Fassbender, E. Soergel, and K. Buse, “Impact of ultraviolet light on coercive field, poling dynamics and poling quality of various lithium niobate crystals from different sources,” J. Appl. Phys. 96(5), 2816–2820 (2004), http://link.aip.org/link/?JAP/96/2816/1 .
[CrossRef]

Fujimura, M.

M. Fujimura, T. Sohmura, and T. Suhara, “Fabrication of domain-inverted gratings in MgO:LiNbO3 by applying voltage under ultraviolet irradiation through photomask at room temperature,” Electron. Lett. 39(9), 719–721 (2003), http://ieeexplore.ieee.org/xpls/abs_all.jsp?isnumber=27015&arnumber=1199952&count=36&index=12 .
[CrossRef]

Gallo, K.

A. I. Lobov, V. Y. Shur, I. S. Baturin, E. I. Shishkin, D. K. Kuznetsov, A. G. Shur, M. A. Dolbilov, and K. Gallo, “Field induced evolution of regular and random 2D domain structures and shape of isolated domains in LiNbO3 and LiTaO3,” Ferroelectrics 341(1), 109–116 (2006), http://www.informaworld.com/smpp/content~db=all~content=a769409747~tab=content .
[CrossRef]

Hendricks, J. M.

A. J. Boyland, S. Mailis, J. M. Hendricks, P. G. R. Smith, and R. W. Eason, “Electro-optically controlled beam switching via total internal reflection at a domain-engineered interface in LiNbO3,” Opt. Commun. 197(1-3), 193–200 (2001), http://dx.doi.org/10.1016/S0030-4018(01)01428-6 .
[CrossRef]

Herth, P.

D. Berben, K. Buse, S. Wevering, P. Herth, M. Imlau, and T. Woike, “Lifetime of small polarons in iron-doped lithium–niobate crystals,” J. Appl. Phys. 87(3), 1034–1041 (2000), http://link.aip.org/link/?JAP/87/1034/1 .
[CrossRef]

Hsieh, H. T.

Hu, Q.

W. Wang, Y. Kong, H. Liu, Q. Hu, S. Liu, S. Chen, and J. Xu, “Light-induced domain reversal in doped lithium niobate crystals,” J. Appl. Phys. 105(4), 043105 (2009), http://dx.doi.org/10.1063/1.3079478 .
[CrossRef]

Huang, Z.

W. Yan, L. Shi, Y. Kong, Y. Wang, H. Liu, J. Xu, S. Chen, L. Zhang, Z. Huang, S. Liu, and G. Zhang, “The electrostatic depinning mechanism of domain wall for near-stoichiometric lithium niobate crystals,” J. Phys. D Appl. Phys. 39(19), 4245–4249 (2006), http://www.iop.org/EJ/abstract/0022-3727/39/19/018 .
[CrossRef]

Imlau, M.

D. Berben, K. Buse, S. Wevering, P. Herth, M. Imlau, and T. Woike, “Lifetime of small polarons in iron-doped lithium–niobate crystals,” J. Appl. Phys. 87(3), 1034–1041 (2000), http://link.aip.org/link/?JAP/87/1034/1 .
[CrossRef]

Jermann, F.

Kachru, R.

Y. S. Bai and R. Kachru, “Nonvolatile holographic storage with two-step recording in lithium niobate using cw lasers,” Phys. Rev. Lett. 78(15), 2944–2947 (1997), http://prola.aps.org/abstract/PRL/v78/i15/p2944_1 .
[CrossRef]

Kong, Y.

W. Wang, Y. Kong, H. Liu, Q. Hu, S. Liu, S. Chen, and J. Xu, “Light-induced domain reversal in doped lithium niobate crystals,” J. Appl. Phys. 105(4), 043105 (2009), http://dx.doi.org/10.1063/1.3079478 .
[CrossRef]

W. Yan, L. Shi, Y. Kong, Y. Wang, H. Liu, J. Xu, S. Chen, L. Zhang, Z. Huang, S. Liu, and G. Zhang, “The electrostatic depinning mechanism of domain wall for near-stoichiometric lithium niobate crystals,” J. Phys. D Appl. Phys. 39(19), 4245–4249 (2006), http://www.iop.org/EJ/abstract/0022-3727/39/19/018 .
[CrossRef]

Krätzig, E.

I. Nee, M. Müller, K. Buse, and E. Krätzig, “Role of iron in lithium-niobate crystals for the dark-storage time of holograms,” J. Appl. Phys. 88(7), 4282–4286 (2000), http://link.aip.org/link/?JAP/88/4282/1 .
[CrossRef]

F. Jermann, M. Simon, and E. Krätzig, “Photorefractive properties of congruent and stoichiometric lithium niobate at high light intensities,” J. Opt. Soc. Am. B 12(11), 2066–2070 (1995), http://josab.osa.org/abstract.cfm?URI=josab-12-11-2066 .
[CrossRef]

Kuznetsov, D. K.

A. I. Lobov, V. Y. Shur, I. S. Baturin, E. I. Shishkin, D. K. Kuznetsov, A. G. Shur, M. A. Dolbilov, and K. Gallo, “Field induced evolution of regular and random 2D domain structures and shape of isolated domains in LiNbO3 and LiTaO3,” Ferroelectrics 341(1), 109–116 (2006), http://www.informaworld.com/smpp/content~db=all~content=a769409747~tab=content .
[CrossRef]

Liu, H.

W. Wang, Y. Kong, H. Liu, Q. Hu, S. Liu, S. Chen, and J. Xu, “Light-induced domain reversal in doped lithium niobate crystals,” J. Appl. Phys. 105(4), 043105 (2009), http://dx.doi.org/10.1063/1.3079478 .
[CrossRef]

W. Yan, L. Shi, Y. Kong, Y. Wang, H. Liu, J. Xu, S. Chen, L. Zhang, Z. Huang, S. Liu, and G. Zhang, “The electrostatic depinning mechanism of domain wall for near-stoichiometric lithium niobate crystals,” J. Phys. D Appl. Phys. 39(19), 4245–4249 (2006), http://www.iop.org/EJ/abstract/0022-3727/39/19/018 .
[CrossRef]

Liu, S.

W. Wang, Y. Kong, H. Liu, Q. Hu, S. Liu, S. Chen, and J. Xu, “Light-induced domain reversal in doped lithium niobate crystals,” J. Appl. Phys. 105(4), 043105 (2009), http://dx.doi.org/10.1063/1.3079478 .
[CrossRef]

W. Yan, L. Shi, Y. Kong, Y. Wang, H. Liu, J. Xu, S. Chen, L. Zhang, Z. Huang, S. Liu, and G. Zhang, “The electrostatic depinning mechanism of domain wall for near-stoichiometric lithium niobate crystals,” J. Phys. D Appl. Phys. 39(19), 4245–4249 (2006), http://www.iop.org/EJ/abstract/0022-3727/39/19/018 .
[CrossRef]

Lobov, A. I.

A. I. Lobov, V. Y. Shur, I. S. Baturin, E. I. Shishkin, D. K. Kuznetsov, A. G. Shur, M. A. Dolbilov, and K. Gallo, “Field induced evolution of regular and random 2D domain structures and shape of isolated domains in LiNbO3 and LiTaO3,” Ferroelectrics 341(1), 109–116 (2006), http://www.informaworld.com/smpp/content~db=all~content=a769409747~tab=content .
[CrossRef]

Luedtke, F.

H. Steigerwald, F. Luedtke, and K. Buse, “Ultraviolet light assisted periodic poling of near-stoichiometric, magnesium-doped lithium niobate crystals,” Appl. Phys. Lett. 94(3), 032906 (2009), http://link.aip.org/link/?APL/94/032906/1 .
[CrossRef]

Mailis, S.

C. E. Valdivia, C. L. Sones, S. Mailis, J. D. Mills, and R. W. Eason, “Ultrashort-pulse optically-assisted domain engineering in lithium niobate,” Ferroelectrics 340(1), 75–82 (2006), http://www.informaworld.com/10.1080/00150190600888983 .
[CrossRef]

C. L. Sones, M. C. Wengler, C. E. Valdivia, S. Mailis, R. W. Eason, and K. Buse, “Light-induced order-of-magnitude decrease in the electric field for domain nucleation in MgO-doped lithium niobate crystals,” Appl. Phys. Lett. 86(21), 212901 (2005), http://link.aip.org/link/?APL/86/212901/1 .
[CrossRef]

A. J. Boyland, S. Mailis, J. M. Hendricks, P. G. R. Smith, and R. W. Eason, “Electro-optically controlled beam switching via total internal reflection at a domain-engineered interface in LiNbO3,” Opt. Commun. 197(1-3), 193–200 (2001), http://dx.doi.org/10.1016/S0030-4018(01)01428-6 .
[CrossRef]

R. W. Eason, A. J. Boyland, S. Mailis, and P. G. R. Smith, “Electro-optically controlled beam deflection for grazing incidence geometry on a domain-engineered interface in LiNbO3,” Opt. Commun. 197(1-3), 201–207 (2001), http://dx.doi.org/10.1016/S0030-4018(01)01429-8 .
[CrossRef]

Mansingh, A.

A. Mansingh and A. Dhar, “The AC conductivity and dielectric constant of lithium niobate single crystals,” J. Phys. D Appl. Phys. 18(10), 2059–2071 (1985), http://www.iop.org/EJ/abstract/0022-3727/18/10/016 .
[CrossRef]

Maxein, D.

Mills, J. D.

C. E. Valdivia, C. L. Sones, S. Mailis, J. D. Mills, and R. W. Eason, “Ultrashort-pulse optically-assisted domain engineering in lithium niobate,” Ferroelectrics 340(1), 75–82 (2006), http://www.informaworld.com/10.1080/00150190600888983 .
[CrossRef]

Mizuuchi, K.

K. Mizuuchi, A. Morikawa, T. Sugita, and K. Yamamoto, “Polarisation-switching-induced resistance change in ferroelectric Mg-doped LiNbO3 single crystals,” Electron. Lett. 40(13), 819–820 (2004), http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1309740 .
[CrossRef]

Mok, F. H.

Morikawa, A.

K. Mizuuchi, A. Morikawa, T. Sugita, and K. Yamamoto, “Polarisation-switching-induced resistance change in ferroelectric Mg-doped LiNbO3 single crystals,” Electron. Lett. 40(13), 819–820 (2004), http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1309740 .
[CrossRef]

Müller, M.

I. Nee, M. Müller, K. Buse, and E. Krätzig, “Role of iron in lithium-niobate crystals for the dark-storage time of holograms,” J. Appl. Phys. 88(7), 4282–4286 (2000), http://link.aip.org/link/?JAP/88/4282/1 .
[CrossRef]

Nada, N.

M. Yamada, N. Nada, M. Saitoh, and K. Watanabe, “First-order quasi-phase matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second-harmonic generation,” Appl. Phys. Lett. 62(5), 435–436 (1993), http://link.aip.org/link/?APL/62/435/1 .
[CrossRef]

Nee, I.

I. Nee, M. Müller, K. Buse, and E. Krätzig, “Role of iron in lithium-niobate crystals for the dark-storage time of holograms,” J. Appl. Phys. 88(7), 4282–4286 (2000), http://link.aip.org/link/?JAP/88/4282/1 .
[CrossRef]

Psaltis, D.

Ro, J. H.

J. H. Ro and M. Cha, “Subsecond relaxation of internal field after polarization reversal in congruent LiNbO3 and LiTaO3 crystals,” Appl. Phys. Lett. 77(15), 2391–2393 (2000), http://link.aip.org/link/?APL/77/2391/1 .
[CrossRef]

Ross, G. W.

I. E. Barry, G. W. Ross, P. G. R. Smith, R. W. Eason, and G. Cook, “Microstructuring of lithium niobate using differential etch-rate between inverted and non-inverted ferroelectric domains,” Mater. Lett. 37(4-5), 246–254 (1998), http://dx.doi.org/10.1016/S0167-577X(98)00100-1 .
[CrossRef]

Saitoh, M.

M. Yamada and M. Saitoh, “Fabrication of a periodically poled laminar domain structure with a pitch of a few micrometers by applying an external electric field,” J. Appl. Phys. 84(4), 2199–2206 (1998), http://link.aip.org/link/?JAP/84/2199/1 .
[CrossRef]

M. Yamada, N. Nada, M. Saitoh, and K. Watanabe, “First-order quasi-phase matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second-harmonic generation,” Appl. Phys. Lett. 62(5), 435–436 (1993), http://link.aip.org/link/?APL/62/435/1 .
[CrossRef]

Sandmann, C.

V. Dierolf and C. Sandmann, “Direct-write method for domain inversion patterns in LiNbO3,” Appl. Phys. Lett. 84(20), 3987–3989 (2004), http://link.aip.org/link/?APL/84/3987/1 .
[CrossRef]

Shi, L.

W. Yan, L. Shi, Y. Kong, Y. Wang, H. Liu, J. Xu, S. Chen, L. Zhang, Z. Huang, S. Liu, and G. Zhang, “The electrostatic depinning mechanism of domain wall for near-stoichiometric lithium niobate crystals,” J. Phys. D Appl. Phys. 39(19), 4245–4249 (2006), http://www.iop.org/EJ/abstract/0022-3727/39/19/018 .
[CrossRef]

Shishkin, E. I.

A. I. Lobov, V. Y. Shur, I. S. Baturin, E. I. Shishkin, D. K. Kuznetsov, A. G. Shur, M. A. Dolbilov, and K. Gallo, “Field induced evolution of regular and random 2D domain structures and shape of isolated domains in LiNbO3 and LiTaO3,” Ferroelectrics 341(1), 109–116 (2006), http://www.informaworld.com/smpp/content~db=all~content=a769409747~tab=content .
[CrossRef]

Shur, A. G.

A. I. Lobov, V. Y. Shur, I. S. Baturin, E. I. Shishkin, D. K. Kuznetsov, A. G. Shur, M. A. Dolbilov, and K. Gallo, “Field induced evolution of regular and random 2D domain structures and shape of isolated domains in LiNbO3 and LiTaO3,” Ferroelectrics 341(1), 109–116 (2006), http://www.informaworld.com/smpp/content~db=all~content=a769409747~tab=content .
[CrossRef]

Shur, V. Y.

A. I. Lobov, V. Y. Shur, I. S. Baturin, E. I. Shishkin, D. K. Kuznetsov, A. G. Shur, M. A. Dolbilov, and K. Gallo, “Field induced evolution of regular and random 2D domain structures and shape of isolated domains in LiNbO3 and LiTaO3,” Ferroelectrics 341(1), 109–116 (2006), http://www.informaworld.com/smpp/content~db=all~content=a769409747~tab=content .
[CrossRef]

Simon, M.

Smith, P. G. R.

R. W. Eason, A. J. Boyland, S. Mailis, and P. G. R. Smith, “Electro-optically controlled beam deflection for grazing incidence geometry on a domain-engineered interface in LiNbO3,” Opt. Commun. 197(1-3), 201–207 (2001), http://dx.doi.org/10.1016/S0030-4018(01)01429-8 .
[CrossRef]

A. J. Boyland, S. Mailis, J. M. Hendricks, P. G. R. Smith, and R. W. Eason, “Electro-optically controlled beam switching via total internal reflection at a domain-engineered interface in LiNbO3,” Opt. Commun. 197(1-3), 193–200 (2001), http://dx.doi.org/10.1016/S0030-4018(01)01428-6 .
[CrossRef]

I. E. Barry, G. W. Ross, P. G. R. Smith, R. W. Eason, and G. Cook, “Microstructuring of lithium niobate using differential etch-rate between inverted and non-inverted ferroelectric domains,” Mater. Lett. 37(4-5), 246–254 (1998), http://dx.doi.org/10.1016/S0167-577X(98)00100-1 .
[CrossRef]

Smith, R. T.

R. T. Smith and F. S. Welsh, “Temperature dependence of the elastic, piezoelectric, and dielectric constants of lithium tantalate and lithium niobate,” J. Appl. Phys. 42(6), 2219–2230 (1971), http://link.aip.org/link/?JAPIAU/42/2219/1 .
[CrossRef]

Soergel, E.

M. C. Wengler, B. Fassbender, E. Soergel, and K. Buse, “Impact of ultraviolet light on coercive field, poling dynamics and poling quality of various lithium niobate crystals from different sources,” J. Appl. Phys. 96(5), 2816–2820 (2004), http://link.aip.org/link/?JAP/96/2816/1 .
[CrossRef]

Sohmura, T.

M. Fujimura, T. Sohmura, and T. Suhara, “Fabrication of domain-inverted gratings in MgO:LiNbO3 by applying voltage under ultraviolet irradiation through photomask at room temperature,” Electron. Lett. 39(9), 719–721 (2003), http://ieeexplore.ieee.org/xpls/abs_all.jsp?isnumber=27015&arnumber=1199952&count=36&index=12 .
[CrossRef]

Sones, C. L.

C. E. Valdivia, C. L. Sones, S. Mailis, J. D. Mills, and R. W. Eason, “Ultrashort-pulse optically-assisted domain engineering in lithium niobate,” Ferroelectrics 340(1), 75–82 (2006), http://www.informaworld.com/10.1080/00150190600888983 .
[CrossRef]

C. L. Sones, M. C. Wengler, C. E. Valdivia, S. Mailis, R. W. Eason, and K. Buse, “Light-induced order-of-magnitude decrease in the electric field for domain nucleation in MgO-doped lithium niobate crystals,” Appl. Phys. Lett. 86(21), 212901 (2005), http://link.aip.org/link/?APL/86/212901/1 .
[CrossRef]

Steigerwald, H.

H. Steigerwald, F. Luedtke, and K. Buse, “Ultraviolet light assisted periodic poling of near-stoichiometric, magnesium-doped lithium niobate crystals,” Appl. Phys. Lett. 94(3), 032906 (2009), http://link.aip.org/link/?APL/94/032906/1 .
[CrossRef]

Sturman, B.

B. Sturman, M. Carrascosa, and F. Agulló-López, “Light-induced charge transport in LiNbO3 crystals,” Phys. Rev. B 78(24), 245114 (2008), http://link.aps.org/doi/10.1103/PhysRevB.78.245114 .
[CrossRef]

O. Beyer, D. Maxein, K. Buse, B. Sturman, H. T. Hsieh, and D. Psaltis, “Femtosecond time-resolved absorption processes in lithium niobate crystals,” Opt. Lett. 30(11), 1366–1368 (2005), http://ol.osa.org/abstract.cfm?URI=ol-30-11-1366 .
[CrossRef] [PubMed]

Sugita, T.

K. Mizuuchi, A. Morikawa, T. Sugita, and K. Yamamoto, “Polarisation-switching-induced resistance change in ferroelectric Mg-doped LiNbO3 single crystals,” Electron. Lett. 40(13), 819–820 (2004), http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1309740 .
[CrossRef]

Suhara, T.

M. Fujimura, T. Sohmura, and T. Suhara, “Fabrication of domain-inverted gratings in MgO:LiNbO3 by applying voltage under ultraviolet irradiation through photomask at room temperature,” Electron. Lett. 39(9), 719–721 (2003), http://ieeexplore.ieee.org/xpls/abs_all.jsp?isnumber=27015&arnumber=1199952&count=36&index=12 .
[CrossRef]

Valdivia, C. E.

C. E. Valdivia, C. L. Sones, S. Mailis, J. D. Mills, and R. W. Eason, “Ultrashort-pulse optically-assisted domain engineering in lithium niobate,” Ferroelectrics 340(1), 75–82 (2006), http://www.informaworld.com/10.1080/00150190600888983 .
[CrossRef]

C. L. Sones, M. C. Wengler, C. E. Valdivia, S. Mailis, R. W. Eason, and K. Buse, “Light-induced order-of-magnitude decrease in the electric field for domain nucleation in MgO-doped lithium niobate crystals,” Appl. Phys. Lett. 86(21), 212901 (2005), http://link.aip.org/link/?APL/86/212901/1 .
[CrossRef]

Wang, W.

W. Wang, Y. Kong, H. Liu, Q. Hu, S. Liu, S. Chen, and J. Xu, “Light-induced domain reversal in doped lithium niobate crystals,” J. Appl. Phys. 105(4), 043105 (2009), http://dx.doi.org/10.1063/1.3079478 .
[CrossRef]

Wang, Y.

W. Yan, L. Shi, Y. Kong, Y. Wang, H. Liu, J. Xu, S. Chen, L. Zhang, Z. Huang, S. Liu, and G. Zhang, “The electrostatic depinning mechanism of domain wall for near-stoichiometric lithium niobate crystals,” J. Phys. D Appl. Phys. 39(19), 4245–4249 (2006), http://www.iop.org/EJ/abstract/0022-3727/39/19/018 .
[CrossRef]

Watanabe, K.

M. Yamada, N. Nada, M. Saitoh, and K. Watanabe, “First-order quasi-phase matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second-harmonic generation,” Appl. Phys. Lett. 62(5), 435–436 (1993), http://link.aip.org/link/?APL/62/435/1 .
[CrossRef]

Welsh, F. S.

R. T. Smith and F. S. Welsh, “Temperature dependence of the elastic, piezoelectric, and dielectric constants of lithium tantalate and lithium niobate,” J. Appl. Phys. 42(6), 2219–2230 (1971), http://link.aip.org/link/?JAPIAU/42/2219/1 .
[CrossRef]

Wengler, M. C.

C. L. Sones, M. C. Wengler, C. E. Valdivia, S. Mailis, R. W. Eason, and K. Buse, “Light-induced order-of-magnitude decrease in the electric field for domain nucleation in MgO-doped lithium niobate crystals,” Appl. Phys. Lett. 86(21), 212901 (2005), http://link.aip.org/link/?APL/86/212901/1 .
[CrossRef]

M. C. Wengler, B. Fassbender, E. Soergel, and K. Buse, “Impact of ultraviolet light on coercive field, poling dynamics and poling quality of various lithium niobate crystals from different sources,” J. Appl. Phys. 96(5), 2816–2820 (2004), http://link.aip.org/link/?JAP/96/2816/1 .
[CrossRef]

Wevering, S.

D. Berben, K. Buse, S. Wevering, P. Herth, M. Imlau, and T. Woike, “Lifetime of small polarons in iron-doped lithium–niobate crystals,” J. Appl. Phys. 87(3), 1034–1041 (2000), http://link.aip.org/link/?JAP/87/1034/1 .
[CrossRef]

Woike, T.

D. Berben, K. Buse, S. Wevering, P. Herth, M. Imlau, and T. Woike, “Lifetime of small polarons in iron-doped lithium–niobate crystals,” J. Appl. Phys. 87(3), 1034–1041 (2000), http://link.aip.org/link/?JAP/87/1034/1 .
[CrossRef]

Xu, J.

W. Wang, Y. Kong, H. Liu, Q. Hu, S. Liu, S. Chen, and J. Xu, “Light-induced domain reversal in doped lithium niobate crystals,” J. Appl. Phys. 105(4), 043105 (2009), http://dx.doi.org/10.1063/1.3079478 .
[CrossRef]

W. Yan, L. Shi, Y. Kong, Y. Wang, H. Liu, J. Xu, S. Chen, L. Zhang, Z. Huang, S. Liu, and G. Zhang, “The electrostatic depinning mechanism of domain wall for near-stoichiometric lithium niobate crystals,” J. Phys. D Appl. Phys. 39(19), 4245–4249 (2006), http://www.iop.org/EJ/abstract/0022-3727/39/19/018 .
[CrossRef]

Yamada, M.

M. Yamada and M. Saitoh, “Fabrication of a periodically poled laminar domain structure with a pitch of a few micrometers by applying an external electric field,” J. Appl. Phys. 84(4), 2199–2206 (1998), http://link.aip.org/link/?JAP/84/2199/1 .
[CrossRef]

M. Yamada, N. Nada, M. Saitoh, and K. Watanabe, “First-order quasi-phase matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second-harmonic generation,” Appl. Phys. Lett. 62(5), 435–436 (1993), http://link.aip.org/link/?APL/62/435/1 .
[CrossRef]

Yamamoto, K.

K. Mizuuchi, A. Morikawa, T. Sugita, and K. Yamamoto, “Polarisation-switching-induced resistance change in ferroelectric Mg-doped LiNbO3 single crystals,” Electron. Lett. 40(13), 819–820 (2004), http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1309740 .
[CrossRef]

Yan, W.

W. Yan, L. Shi, Y. Kong, Y. Wang, H. Liu, J. Xu, S. Chen, L. Zhang, Z. Huang, S. Liu, and G. Zhang, “The electrostatic depinning mechanism of domain wall for near-stoichiometric lithium niobate crystals,” J. Phys. D Appl. Phys. 39(19), 4245–4249 (2006), http://www.iop.org/EJ/abstract/0022-3727/39/19/018 .
[CrossRef]

Zhang, G.

W. Yan, L. Shi, Y. Kong, Y. Wang, H. Liu, J. Xu, S. Chen, L. Zhang, Z. Huang, S. Liu, and G. Zhang, “The electrostatic depinning mechanism of domain wall for near-stoichiometric lithium niobate crystals,” J. Phys. D Appl. Phys. 39(19), 4245–4249 (2006), http://www.iop.org/EJ/abstract/0022-3727/39/19/018 .
[CrossRef]

Zhang, L.

W. Yan, L. Shi, Y. Kong, Y. Wang, H. Liu, J. Xu, S. Chen, L. Zhang, Z. Huang, S. Liu, and G. Zhang, “The electrostatic depinning mechanism of domain wall for near-stoichiometric lithium niobate crystals,” J. Phys. D Appl. Phys. 39(19), 4245–4249 (2006), http://www.iop.org/EJ/abstract/0022-3727/39/19/018 .
[CrossRef]

Appl. Phys. Lett.

M. Yamada, N. Nada, M. Saitoh, and K. Watanabe, “First-order quasi-phase matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second-harmonic generation,” Appl. Phys. Lett. 62(5), 435–436 (1993), http://link.aip.org/link/?APL/62/435/1 .
[CrossRef]

H. Steigerwald, F. Luedtke, and K. Buse, “Ultraviolet light assisted periodic poling of near-stoichiometric, magnesium-doped lithium niobate crystals,” Appl. Phys. Lett. 94(3), 032906 (2009), http://link.aip.org/link/?APL/94/032906/1 .
[CrossRef]

C. L. Sones, M. C. Wengler, C. E. Valdivia, S. Mailis, R. W. Eason, and K. Buse, “Light-induced order-of-magnitude decrease in the electric field for domain nucleation in MgO-doped lithium niobate crystals,” Appl. Phys. Lett. 86(21), 212901 (2005), http://link.aip.org/link/?APL/86/212901/1 .
[CrossRef]

V. Dierolf and C. Sandmann, “Direct-write method for domain inversion patterns in LiNbO3,” Appl. Phys. Lett. 84(20), 3987–3989 (2004), http://link.aip.org/link/?APL/84/3987/1 .
[CrossRef]

J. H. Ro and M. Cha, “Subsecond relaxation of internal field after polarization reversal in congruent LiNbO3 and LiTaO3 crystals,” Appl. Phys. Lett. 77(15), 2391–2393 (2000), http://link.aip.org/link/?APL/77/2391/1 .
[CrossRef]

Electron. Lett.

M. Fujimura, T. Sohmura, and T. Suhara, “Fabrication of domain-inverted gratings in MgO:LiNbO3 by applying voltage under ultraviolet irradiation through photomask at room temperature,” Electron. Lett. 39(9), 719–721 (2003), http://ieeexplore.ieee.org/xpls/abs_all.jsp?isnumber=27015&arnumber=1199952&count=36&index=12 .
[CrossRef]

K. Mizuuchi, A. Morikawa, T. Sugita, and K. Yamamoto, “Polarisation-switching-induced resistance change in ferroelectric Mg-doped LiNbO3 single crystals,” Electron. Lett. 40(13), 819–820 (2004), http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1309740 .
[CrossRef]

Ferroelectrics

A. I. Lobov, V. Y. Shur, I. S. Baturin, E. I. Shishkin, D. K. Kuznetsov, A. G. Shur, M. A. Dolbilov, and K. Gallo, “Field induced evolution of regular and random 2D domain structures and shape of isolated domains in LiNbO3 and LiTaO3,” Ferroelectrics 341(1), 109–116 (2006), http://www.informaworld.com/smpp/content~db=all~content=a769409747~tab=content .
[CrossRef]

C. E. Valdivia, C. L. Sones, S. Mailis, J. D. Mills, and R. W. Eason, “Ultrashort-pulse optically-assisted domain engineering in lithium niobate,” Ferroelectrics 340(1), 75–82 (2006), http://www.informaworld.com/10.1080/00150190600888983 .
[CrossRef]

J. Appl. Phys.

M. C. Wengler, B. Fassbender, E. Soergel, and K. Buse, “Impact of ultraviolet light on coercive field, poling dynamics and poling quality of various lithium niobate crystals from different sources,” J. Appl. Phys. 96(5), 2816–2820 (2004), http://link.aip.org/link/?JAP/96/2816/1 .
[CrossRef]

M. Yamada and M. Saitoh, “Fabrication of a periodically poled laminar domain structure with a pitch of a few micrometers by applying an external electric field,” J. Appl. Phys. 84(4), 2199–2206 (1998), http://link.aip.org/link/?JAP/84/2199/1 .
[CrossRef]

W. Wang, Y. Kong, H. Liu, Q. Hu, S. Liu, S. Chen, and J. Xu, “Light-induced domain reversal in doped lithium niobate crystals,” J. Appl. Phys. 105(4), 043105 (2009), http://dx.doi.org/10.1063/1.3079478 .
[CrossRef]

I. Nee, M. Müller, K. Buse, and E. Krätzig, “Role of iron in lithium-niobate crystals for the dark-storage time of holograms,” J. Appl. Phys. 88(7), 4282–4286 (2000), http://link.aip.org/link/?JAP/88/4282/1 .
[CrossRef]

R. T. Smith and F. S. Welsh, “Temperature dependence of the elastic, piezoelectric, and dielectric constants of lithium tantalate and lithium niobate,” J. Appl. Phys. 42(6), 2219–2230 (1971), http://link.aip.org/link/?JAPIAU/42/2219/1 .
[CrossRef]

D. Berben, K. Buse, S. Wevering, P. Herth, M. Imlau, and T. Woike, “Lifetime of small polarons in iron-doped lithium–niobate crystals,” J. Appl. Phys. 87(3), 1034–1041 (2000), http://link.aip.org/link/?JAP/87/1034/1 .
[CrossRef]

J. Opt. Soc. Am. B

J. Phys. D Appl. Phys.

A. Mansingh and A. Dhar, “The AC conductivity and dielectric constant of lithium niobate single crystals,” J. Phys. D Appl. Phys. 18(10), 2059–2071 (1985), http://www.iop.org/EJ/abstract/0022-3727/18/10/016 .
[CrossRef]

W. Yan, L. Shi, Y. Kong, Y. Wang, H. Liu, J. Xu, S. Chen, L. Zhang, Z. Huang, S. Liu, and G. Zhang, “The electrostatic depinning mechanism of domain wall for near-stoichiometric lithium niobate crystals,” J. Phys. D Appl. Phys. 39(19), 4245–4249 (2006), http://www.iop.org/EJ/abstract/0022-3727/39/19/018 .
[CrossRef]

Mater. Lett.

I. E. Barry, G. W. Ross, P. G. R. Smith, R. W. Eason, and G. Cook, “Microstructuring of lithium niobate using differential etch-rate between inverted and non-inverted ferroelectric domains,” Mater. Lett. 37(4-5), 246–254 (1998), http://dx.doi.org/10.1016/S0167-577X(98)00100-1 .
[CrossRef]

MRS Bull.

L. Arizmendi and F. Agulló-López, “LiNbO3: A paradigm for photorefractive materials,” MRS Bull. 19, 32–38 (1994).

Opt. Commun.

A. J. Boyland, S. Mailis, J. M. Hendricks, P. G. R. Smith, and R. W. Eason, “Electro-optically controlled beam switching via total internal reflection at a domain-engineered interface in LiNbO3,” Opt. Commun. 197(1-3), 193–200 (2001), http://dx.doi.org/10.1016/S0030-4018(01)01428-6 .
[CrossRef]

R. W. Eason, A. J. Boyland, S. Mailis, and P. G. R. Smith, “Electro-optically controlled beam deflection for grazing incidence geometry on a domain-engineered interface in LiNbO3,” Opt. Commun. 197(1-3), 201–207 (2001), http://dx.doi.org/10.1016/S0030-4018(01)01429-8 .
[CrossRef]

Opt. Lett.

Phys. Rev. B

B. Sturman, M. Carrascosa, and F. Agulló-López, “Light-induced charge transport in LiNbO3 crystals,” Phys. Rev. B 78(24), 245114 (2008), http://link.aps.org/doi/10.1103/PhysRevB.78.245114 .
[CrossRef]

Phys. Rev. Lett.

Y. S. Bai and R. Kachru, “Nonvolatile holographic storage with two-step recording in lithium niobate using cw lasers,” Phys. Rev. Lett. 78(15), 2944–2947 (1997), http://prola.aps.org/abstract/PRL/v78/i15/p2944_1 .
[CrossRef]

Other

L. Arizmendi, “Photonic applications of lithium niobate crystals,” Phys. Status Solidi A 201, 253–283 (2004). http://dx.doi.org/10.1002/pssa.200303911

Ya. Vladimir, Shur, “Correlated Nucleation and Self-Organized Kinetics of Ferroelectric Domains,” in Nucleation Theory and Applications, W. P. S. Dr. Jürn, ed. (2005), pp. 178–214. http://dx.doi.org/10.1002/3527604790.ch6

C. E. Valdivia, “Light-induced ferroelectric domain engineering in lithium niobate & lithium tantalate,” (PhD thesis, University of Southampton, Southampton, 2007). http://www.orc.soton.ac.uk/viewpublication.html?pid=3846

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Preferentially inverted ferroelectric LLAP domains, revealed as unetched + z face after HF etching, are induced by I = 9 GW/cm2 of 400 nm fs-laser irradiation, followed by applied E-fields of (a) 14 kV/mm and (b) 8 kV/mm after a voltage delay time of 570 s in undoped CLN. LLAP domain walls run parallel to both y- and x-axes, particularly for the higher E-field in (a).

Fig. 2
Fig. 2

Log-linear plots of the square root of the inverted LLAP domain areas, A 1/2, as a function of voltage delay time, measured from SEM images of HF-etched samples with conditions: (a) I = 9 GW/cm2 and variable E-field amplitude; and (b) E = 8 kV/mm and variable laser intensity. The solid red lines represent single exponential decay function fits.

Fig. 3
Fig. 3

Plot of the square root of the inverted LLAP domain area, A 1/2, versus the product of the applied external E-field and the intensity, E × I, for a specific E-field (8 kV/mm) and a specific intensity (9 GW/cm2). The solid red lines represent linear fits.

Fig. 4
Fig. 4

Log plot of the square root of the inverted LLAP domain area, A 1/2, as a function of the voltage delay time for different laser intensities and E-fields. The solid red lines serve as a guide to the eyes.

Fig. 5
Fig. 5

Interferometric setup for recording and monitoring photorefractive gratings in LN using 150 fs ultrafast (UF) laser pulses at λr = 400 nm. The diffracted light (DL) of a c.w. HeNe laser at λp = 633 nm incident at the Bragg angle was used to monitor the grating recording/decay. M: mirror, BS: beam splitter, PM: optical power-meter. The period of the grating was ~1 μm. Spot diameters of the ultrafast and HeNe lasers are 1 and 0.8 mm respectively. The polarizations of both lasers were in the plane of the page (horizontal). The arrowed dash line indicates the variable arm of the interferometer.

Fig. 6
Fig. 6

Decays of the square root of the normalized PR grating diffraction efficiency, η 1/2, in (a) undoped CLN and (b) MgO:CLN for different probe laser intensities, Ip . The solid red curves correspond to stretched exponential decay fits.

Fig. 7
Fig. 7

Decay rate (τ −1) as a function of the probe HeNe laser intensity for undoped CLN (squares) and MgO:CLN (triangles). The solid red curves are guides to the eyes.

Fig. 8
Fig. 8

Relative reduction of the square root of the normalized diffraction efficiency of the PR grating from 60 s to 720 s, ∆η 1/2, as a function of HeNe laser intensity for undoped CLN. The solid red curve is a guide to the eyes. The range of the relative reduction of the square root of the inverted LLAP domain areas in Table 1, ∆A 1/2, is indicated by the horizontal lines while the vertical lines indicate the corresponding range of HeNe laser intensities.

Tables (2)

Tables Icon

Table 1 Summary of constants L 0, time constants τL , decay rates τL −1 and the relative reductions ∆A 1/2 from 60 s to 720 s of the linear dimension of the LLAP inverted domains in undoped CLN for different experimental conditions.

Tables Icon

Table 2 Summary of the decay time constants τ, stretch factors β, decay rates τ −1, and the relative reduction of the normalized PR grating diffraction efficiency ∆η 1/2 from 60 s to 720 s, recorded in undoped CLN and MgO:CLN for different HeNe laser intensities Ip .

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

σd=εε0τI01

Metrics