P. Caldas, P. A. S. Jorge, F. M. Araujo, L. A. Ferreira, M. B. Marques, G. Rego, and J. L. Santos, “Fibre modal Michelson interferometers with coherence addressing and heterodyne interrogation,” Opt. Eng. 47(4), 044401 (2008).
[Crossref]
R. Amezcua-Correa, F. Gèrôme, S. G. Leon-Saval, N. G. R. Broderick, T. A. Birks, and J. C. Knight, “Control of surface modes in low loss hollow-core photonic bandgap fibers,” Opt. Express 16(2), 1142–1149 (2008).
[Crossref]
[PubMed]
C.-L. Zhao, L. Xiao, J. Ju, M. S. Demokan, and W. Jin, “Strain and temperature characteristics of a long-period grating written in a photonic crystal fibre and its application as a temperature-insensitive strain sensor,” J. Lightwave Technol. 26(2), 220–227 (2008).
[Crossref]
L. M. Xiao, M. S. Demokan, W. Jin, Y. P. Wang, and C. L. Zhao, “Fusion splicing photonic crystal fibers and conventional single-mode fibers: microhole collapse effect,” J. Lightwave Technol. 25(11), 3563–3574 (2007).
[Crossref]
J. Villatoro, V. P. Minkovich, V. Pruneri, and G. Badenes, “Simple all-microstructured-optical-fiber interferometer built via fusion splicing,” Opt. Express 15(4), 1491–1496 (2007).
[Crossref]
[PubMed]
H. Y. Choi, M. J. Kim, and B. H. Lee, “All-fiber Mach-Zehnder type interferometers formed in photonic crystal fiber,” Opt. Express 15(9), 5711–5720 (2007).
[Crossref]
[PubMed]
E Li, “Sensitivity-enhanced fiber-optic strain sensor based on interference of higher order modes in circular fibers,” IEEE Photon. Technol. Lett. 19(16), 1266–1268 (2007).
[Crossref]
E. Li, X. Wang, and C. Zhang, “Fiber-optic temperature sensor based on interference of selective higher-order modes,” Appl. Phys. Lett. 89(9), 091119 (2006).
[Crossref]
J. L. Villatoro, V. P. Minkovich, and D. Monzón-Hernández, “Compact modal interferometer built with tapered microstructured optical fiber,” IEEE Photon. Technol. Lett. 18(11), 1258–1260 (2006).
[Crossref]
R. Thapa, K. Knabe, K. L. Corwin, and B. R. Washburn, “Arc fusion splicing of hollow-core photonic bandgap fibers for gas-filled fiber cells,” Opt. Express 14(21), 9576–9583 (2006).
[Crossref]
[PubMed]
W. N. MacPherson, E. J. Rigg, J. D. C. Jones, V. V. Ravi, K. Kumar, J. C. Knight, and P. St. J. Russell, “Finite-element analysis and experimental results for a microstructured fibre with enhanced hydrostatic pressure sensitivity,” J. Lightwave Technol. 23(3), 1227–1231 (2005).
[Crossref]
F. Benabid, F. Couny, J. C. Knight, T. A. Birks, and P. S. J. Russell, “Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibres,” Nature 434(7032), 488–491 (2005).
[Crossref]
[PubMed]
Q. Li, C.-H. Lin, P.-Y. Tseng, and H. P. Lee, “Demonstration of high extinction ratio modal interference in a two-mode fiber and its applications for all-fiber comb filter and high-temperature sensor,” Opt. Commun. 250(4-6), 280–285 (2005).
[Crossref]
T. P. Hansen, J. Broeng, C. Jakobsen, G. Vienne, H. R. Simonsen, M. D. Nielsen, P. M. W. Skovgaard, J. R. Folkenberg, and A. Bjarklev, “Air-guiding photonic bandgap fibers: Spectral properties, macrobending loss, and practical handling,” J. Lightwave Technol. 22(1), 11–15 (2004).
[Crossref]
C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Müller, J. A. West, N. F. Borrelli, D. C. Allan, and K. W. Koch, “Low-loss hollow-core silica/air photonic bandgap fibre,” Nature 424(6949), 657–659 (2003).
[Crossref]
[PubMed]
W. N. MacPherson, M. J. Gander, R. McBride, J. D. C. Jones, P. M. Blanchard, J. G. Burnett, A. H. Greenaway, B. Mangan, T. A. Birks, J. C. Knight, and P. St. J. Russell, “Remotely addressed optical fibre curvature sensor using multicore photonic crystal fibre,” Opt. Commun. 193(1-6), 97–104 (2001).
[Crossref]
Y. J. Rao and D. A. Jackson, “Review article: Recent progress in fibre-optic low-coherence interferometry,” Meas. Sci. Technol. 7(7), 981–999 (1996).
[Crossref]
C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Müller, J. A. West, N. F. Borrelli, D. C. Allan, and K. W. Koch, “Low-loss hollow-core silica/air photonic bandgap fibre,” Nature 424(6949), 657–659 (2003).
[Crossref]
[PubMed]
P. Caldas, P. A. S. Jorge, F. M. Araujo, L. A. Ferreira, M. B. Marques, G. Rego, and J. L. Santos, “Fibre modal Michelson interferometers with coherence addressing and heterodyne interrogation,” Opt. Eng. 47(4), 044401 (2008).
[Crossref]
F. Benabid, F. Couny, J. C. Knight, T. A. Birks, and P. S. J. Russell, “Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibres,” Nature 434(7032), 488–491 (2005).
[Crossref]
[PubMed]
R. Amezcua-Correa, F. Gèrôme, S. G. Leon-Saval, N. G. R. Broderick, T. A. Birks, and J. C. Knight, “Control of surface modes in low loss hollow-core photonic bandgap fibers,” Opt. Express 16(2), 1142–1149 (2008).
[Crossref]
[PubMed]
F. Benabid, F. Couny, J. C. Knight, T. A. Birks, and P. S. J. Russell, “Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibres,” Nature 434(7032), 488–491 (2005).
[Crossref]
[PubMed]
W. N. MacPherson, M. J. Gander, R. McBride, J. D. C. Jones, P. M. Blanchard, J. G. Burnett, A. H. Greenaway, B. Mangan, T. A. Birks, J. C. Knight, and P. St. J. Russell, “Remotely addressed optical fibre curvature sensor using multicore photonic crystal fibre,” Opt. Commun. 193(1-6), 97–104 (2001).
[Crossref]
T. P. Hansen, J. Broeng, C. Jakobsen, G. Vienne, H. R. Simonsen, M. D. Nielsen, P. M. W. Skovgaard, J. R. Folkenberg, and A. Bjarklev, “Air-guiding photonic bandgap fibers: Spectral properties, macrobending loss, and practical handling,” J. Lightwave Technol. 22(1), 11–15 (2004).
[Crossref]
W. N. MacPherson, M. J. Gander, R. McBride, J. D. C. Jones, P. M. Blanchard, J. G. Burnett, A. H. Greenaway, B. Mangan, T. A. Birks, J. C. Knight, and P. St. J. Russell, “Remotely addressed optical fibre curvature sensor using multicore photonic crystal fibre,” Opt. Commun. 193(1-6), 97–104 (2001).
[Crossref]
C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Müller, J. A. West, N. F. Borrelli, D. C. Allan, and K. W. Koch, “Low-loss hollow-core silica/air photonic bandgap fibre,” Nature 424(6949), 657–659 (2003).
[Crossref]
[PubMed]
T. P. Hansen, J. Broeng, C. Jakobsen, G. Vienne, H. R. Simonsen, M. D. Nielsen, P. M. W. Skovgaard, J. R. Folkenberg, and A. Bjarklev, “Air-guiding photonic bandgap fibers: Spectral properties, macrobending loss, and practical handling,” J. Lightwave Technol. 22(1), 11–15 (2004).
[Crossref]
W. N. MacPherson, M. J. Gander, R. McBride, J. D. C. Jones, P. M. Blanchard, J. G. Burnett, A. H. Greenaway, B. Mangan, T. A. Birks, J. C. Knight, and P. St. J. Russell, “Remotely addressed optical fibre curvature sensor using multicore photonic crystal fibre,” Opt. Commun. 193(1-6), 97–104 (2001).
[Crossref]
P. Caldas, P. A. S. Jorge, F. M. Araujo, L. A. Ferreira, M. B. Marques, G. Rego, and J. L. Santos, “Fibre modal Michelson interferometers with coherence addressing and heterodyne interrogation,” Opt. Eng. 47(4), 044401 (2008).
[Crossref]
F. Benabid, F. Couny, J. C. Knight, T. A. Birks, and P. S. J. Russell, “Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibres,” Nature 434(7032), 488–491 (2005).
[Crossref]
[PubMed]
C.-L. Zhao, L. Xiao, J. Ju, M. S. Demokan, and W. Jin, “Strain and temperature characteristics of a long-period grating written in a photonic crystal fibre and its application as a temperature-insensitive strain sensor,” J. Lightwave Technol. 26(2), 220–227 (2008).
[Crossref]
L. M. Xiao, M. S. Demokan, W. Jin, Y. P. Wang, and C. L. Zhao, “Fusion splicing photonic crystal fibers and conventional single-mode fibers: microhole collapse effect,” J. Lightwave Technol. 25(11), 3563–3574 (2007).
[Crossref]
P. Caldas, P. A. S. Jorge, F. M. Araujo, L. A. Ferreira, M. B. Marques, G. Rego, and J. L. Santos, “Fibre modal Michelson interferometers with coherence addressing and heterodyne interrogation,” Opt. Eng. 47(4), 044401 (2008).
[Crossref]
T. P. Hansen, J. Broeng, C. Jakobsen, G. Vienne, H. R. Simonsen, M. D. Nielsen, P. M. W. Skovgaard, J. R. Folkenberg, and A. Bjarklev, “Air-guiding photonic bandgap fibers: Spectral properties, macrobending loss, and practical handling,” J. Lightwave Technol. 22(1), 11–15 (2004).
[Crossref]
C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Müller, J. A. West, N. F. Borrelli, D. C. Allan, and K. W. Koch, “Low-loss hollow-core silica/air photonic bandgap fibre,” Nature 424(6949), 657–659 (2003).
[Crossref]
[PubMed]
W. N. MacPherson, M. J. Gander, R. McBride, J. D. C. Jones, P. M. Blanchard, J. G. Burnett, A. H. Greenaway, B. Mangan, T. A. Birks, J. C. Knight, and P. St. J. Russell, “Remotely addressed optical fibre curvature sensor using multicore photonic crystal fibre,” Opt. Commun. 193(1-6), 97–104 (2001).
[Crossref]
W. N. MacPherson, M. J. Gander, R. McBride, J. D. C. Jones, P. M. Blanchard, J. G. Burnett, A. H. Greenaway, B. Mangan, T. A. Birks, J. C. Knight, and P. St. J. Russell, “Remotely addressed optical fibre curvature sensor using multicore photonic crystal fibre,” Opt. Commun. 193(1-6), 97–104 (2001).
[Crossref]
T. P. Hansen, J. Broeng, C. Jakobsen, G. Vienne, H. R. Simonsen, M. D. Nielsen, P. M. W. Skovgaard, J. R. Folkenberg, and A. Bjarklev, “Air-guiding photonic bandgap fibers: Spectral properties, macrobending loss, and practical handling,” J. Lightwave Technol. 22(1), 11–15 (2004).
[Crossref]
Y. J. Rao and D. A. Jackson, “Review article: Recent progress in fibre-optic low-coherence interferometry,” Meas. Sci. Technol. 7(7), 981–999 (1996).
[Crossref]
T. P. Hansen, J. Broeng, C. Jakobsen, G. Vienne, H. R. Simonsen, M. D. Nielsen, P. M. W. Skovgaard, J. R. Folkenberg, and A. Bjarklev, “Air-guiding photonic bandgap fibers: Spectral properties, macrobending loss, and practical handling,” J. Lightwave Technol. 22(1), 11–15 (2004).
[Crossref]
C.-L. Zhao, L. Xiao, J. Ju, M. S. Demokan, and W. Jin, “Strain and temperature characteristics of a long-period grating written in a photonic crystal fibre and its application as a temperature-insensitive strain sensor,” J. Lightwave Technol. 26(2), 220–227 (2008).
[Crossref]
L. M. Xiao, M. S. Demokan, W. Jin, Y. P. Wang, and C. L. Zhao, “Fusion splicing photonic crystal fibers and conventional single-mode fibers: microhole collapse effect,” J. Lightwave Technol. 25(11), 3563–3574 (2007).
[Crossref]
W. N. MacPherson, E. J. Rigg, J. D. C. Jones, V. V. Ravi, K. Kumar, J. C. Knight, and P. St. J. Russell, “Finite-element analysis and experimental results for a microstructured fibre with enhanced hydrostatic pressure sensitivity,” J. Lightwave Technol. 23(3), 1227–1231 (2005).
[Crossref]
W. N. MacPherson, M. J. Gander, R. McBride, J. D. C. Jones, P. M. Blanchard, J. G. Burnett, A. H. Greenaway, B. Mangan, T. A. Birks, J. C. Knight, and P. St. J. Russell, “Remotely addressed optical fibre curvature sensor using multicore photonic crystal fibre,” Opt. Commun. 193(1-6), 97–104 (2001).
[Crossref]
P. Caldas, P. A. S. Jorge, F. M. Araujo, L. A. Ferreira, M. B. Marques, G. Rego, and J. L. Santos, “Fibre modal Michelson interferometers with coherence addressing and heterodyne interrogation,” Opt. Eng. 47(4), 044401 (2008).
[Crossref]
R. Amezcua-Correa, F. Gèrôme, S. G. Leon-Saval, N. G. R. Broderick, T. A. Birks, and J. C. Knight, “Control of surface modes in low loss hollow-core photonic bandgap fibers,” Opt. Express 16(2), 1142–1149 (2008).
[Crossref]
[PubMed]
F. Benabid, F. Couny, J. C. Knight, T. A. Birks, and P. S. J. Russell, “Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibres,” Nature 434(7032), 488–491 (2005).
[Crossref]
[PubMed]
W. N. MacPherson, E. J. Rigg, J. D. C. Jones, V. V. Ravi, K. Kumar, J. C. Knight, and P. St. J. Russell, “Finite-element analysis and experimental results for a microstructured fibre with enhanced hydrostatic pressure sensitivity,” J. Lightwave Technol. 23(3), 1227–1231 (2005).
[Crossref]
W. N. MacPherson, M. J. Gander, R. McBride, J. D. C. Jones, P. M. Blanchard, J. G. Burnett, A. H. Greenaway, B. Mangan, T. A. Birks, J. C. Knight, and P. St. J. Russell, “Remotely addressed optical fibre curvature sensor using multicore photonic crystal fibre,” Opt. Commun. 193(1-6), 97–104 (2001).
[Crossref]
C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Müller, J. A. West, N. F. Borrelli, D. C. Allan, and K. W. Koch, “Low-loss hollow-core silica/air photonic bandgap fibre,” Nature 424(6949), 657–659 (2003).
[Crossref]
[PubMed]
Q. Li, C.-H. Lin, P.-Y. Tseng, and H. P. Lee, “Demonstration of high extinction ratio modal interference in a two-mode fiber and its applications for all-fiber comb filter and high-temperature sensor,” Opt. Commun. 250(4-6), 280–285 (2005).
[Crossref]
E. Li, X. Wang, and C. Zhang, “Fiber-optic temperature sensor based on interference of selective higher-order modes,” Appl. Phys. Lett. 89(9), 091119 (2006).
[Crossref]
Q. Li, C.-H. Lin, P.-Y. Tseng, and H. P. Lee, “Demonstration of high extinction ratio modal interference in a two-mode fiber and its applications for all-fiber comb filter and high-temperature sensor,” Opt. Commun. 250(4-6), 280–285 (2005).
[Crossref]
E Li, “Sensitivity-enhanced fiber-optic strain sensor based on interference of higher order modes in circular fibers,” IEEE Photon. Technol. Lett. 19(16), 1266–1268 (2007).
[Crossref]
Q. Li, C.-H. Lin, P.-Y. Tseng, and H. P. Lee, “Demonstration of high extinction ratio modal interference in a two-mode fiber and its applications for all-fiber comb filter and high-temperature sensor,” Opt. Commun. 250(4-6), 280–285 (2005).
[Crossref]
W. N. MacPherson, E. J. Rigg, J. D. C. Jones, V. V. Ravi, K. Kumar, J. C. Knight, and P. St. J. Russell, “Finite-element analysis and experimental results for a microstructured fibre with enhanced hydrostatic pressure sensitivity,” J. Lightwave Technol. 23(3), 1227–1231 (2005).
[Crossref]
W. N. MacPherson, M. J. Gander, R. McBride, J. D. C. Jones, P. M. Blanchard, J. G. Burnett, A. H. Greenaway, B. Mangan, T. A. Birks, J. C. Knight, and P. St. J. Russell, “Remotely addressed optical fibre curvature sensor using multicore photonic crystal fibre,” Opt. Commun. 193(1-6), 97–104 (2001).
[Crossref]
W. N. MacPherson, M. J. Gander, R. McBride, J. D. C. Jones, P. M. Blanchard, J. G. Burnett, A. H. Greenaway, B. Mangan, T. A. Birks, J. C. Knight, and P. St. J. Russell, “Remotely addressed optical fibre curvature sensor using multicore photonic crystal fibre,” Opt. Commun. 193(1-6), 97–104 (2001).
[Crossref]
P. Caldas, P. A. S. Jorge, F. M. Araujo, L. A. Ferreira, M. B. Marques, G. Rego, and J. L. Santos, “Fibre modal Michelson interferometers with coherence addressing and heterodyne interrogation,” Opt. Eng. 47(4), 044401 (2008).
[Crossref]
W. N. MacPherson, M. J. Gander, R. McBride, J. D. C. Jones, P. M. Blanchard, J. G. Burnett, A. H. Greenaway, B. Mangan, T. A. Birks, J. C. Knight, and P. St. J. Russell, “Remotely addressed optical fibre curvature sensor using multicore photonic crystal fibre,” Opt. Commun. 193(1-6), 97–104 (2001).
[Crossref]
J. Villatoro, V. P. Minkovich, V. Pruneri, and G. Badenes, “Simple all-microstructured-optical-fiber interferometer built via fusion splicing,” Opt. Express 15(4), 1491–1496 (2007).
[Crossref]
[PubMed]
J. L. Villatoro, V. P. Minkovich, and D. Monzón-Hernández, “Compact modal interferometer built with tapered microstructured optical fiber,” IEEE Photon. Technol. Lett. 18(11), 1258–1260 (2006).
[Crossref]
J. L. Villatoro, V. P. Minkovich, and D. Monzón-Hernández, “Compact modal interferometer built with tapered microstructured optical fiber,” IEEE Photon. Technol. Lett. 18(11), 1258–1260 (2006).
[Crossref]
C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Müller, J. A. West, N. F. Borrelli, D. C. Allan, and K. W. Koch, “Low-loss hollow-core silica/air photonic bandgap fibre,” Nature 424(6949), 657–659 (2003).
[Crossref]
[PubMed]
T. P. Hansen, J. Broeng, C. Jakobsen, G. Vienne, H. R. Simonsen, M. D. Nielsen, P. M. W. Skovgaard, J. R. Folkenberg, and A. Bjarklev, “Air-guiding photonic bandgap fibers: Spectral properties, macrobending loss, and practical handling,” J. Lightwave Technol. 22(1), 11–15 (2004).
[Crossref]
Y. J. Rao and D. A. Jackson, “Review article: Recent progress in fibre-optic low-coherence interferometry,” Meas. Sci. Technol. 7(7), 981–999 (1996).
[Crossref]
P. Caldas, P. A. S. Jorge, F. M. Araujo, L. A. Ferreira, M. B. Marques, G. Rego, and J. L. Santos, “Fibre modal Michelson interferometers with coherence addressing and heterodyne interrogation,” Opt. Eng. 47(4), 044401 (2008).
[Crossref]
F. Benabid, F. Couny, J. C. Knight, T. A. Birks, and P. S. J. Russell, “Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibres,” Nature 434(7032), 488–491 (2005).
[Crossref]
[PubMed]
W. N. MacPherson, E. J. Rigg, J. D. C. Jones, V. V. Ravi, K. Kumar, J. C. Knight, and P. St. J. Russell, “Finite-element analysis and experimental results for a microstructured fibre with enhanced hydrostatic pressure sensitivity,” J. Lightwave Technol. 23(3), 1227–1231 (2005).
[Crossref]
W. N. MacPherson, M. J. Gander, R. McBride, J. D. C. Jones, P. M. Blanchard, J. G. Burnett, A. H. Greenaway, B. Mangan, T. A. Birks, J. C. Knight, and P. St. J. Russell, “Remotely addressed optical fibre curvature sensor using multicore photonic crystal fibre,” Opt. Commun. 193(1-6), 97–104 (2001).
[Crossref]
P. Caldas, P. A. S. Jorge, F. M. Araujo, L. A. Ferreira, M. B. Marques, G. Rego, and J. L. Santos, “Fibre modal Michelson interferometers with coherence addressing and heterodyne interrogation,” Opt. Eng. 47(4), 044401 (2008).
[Crossref]
T. P. Hansen, J. Broeng, C. Jakobsen, G. Vienne, H. R. Simonsen, M. D. Nielsen, P. M. W. Skovgaard, J. R. Folkenberg, and A. Bjarklev, “Air-guiding photonic bandgap fibers: Spectral properties, macrobending loss, and practical handling,” J. Lightwave Technol. 22(1), 11–15 (2004).
[Crossref]
T. P. Hansen, J. Broeng, C. Jakobsen, G. Vienne, H. R. Simonsen, M. D. Nielsen, P. M. W. Skovgaard, J. R. Folkenberg, and A. Bjarklev, “Air-guiding photonic bandgap fibers: Spectral properties, macrobending loss, and practical handling,” J. Lightwave Technol. 22(1), 11–15 (2004).
[Crossref]
C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Müller, J. A. West, N. F. Borrelli, D. C. Allan, and K. W. Koch, “Low-loss hollow-core silica/air photonic bandgap fibre,” Nature 424(6949), 657–659 (2003).
[Crossref]
[PubMed]
Q. Li, C.-H. Lin, P.-Y. Tseng, and H. P. Lee, “Demonstration of high extinction ratio modal interference in a two-mode fiber and its applications for all-fiber comb filter and high-temperature sensor,” Opt. Commun. 250(4-6), 280–285 (2005).
[Crossref]
C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Müller, J. A. West, N. F. Borrelli, D. C. Allan, and K. W. Koch, “Low-loss hollow-core silica/air photonic bandgap fibre,” Nature 424(6949), 657–659 (2003).
[Crossref]
[PubMed]
T. P. Hansen, J. Broeng, C. Jakobsen, G. Vienne, H. R. Simonsen, M. D. Nielsen, P. M. W. Skovgaard, J. R. Folkenberg, and A. Bjarklev, “Air-guiding photonic bandgap fibers: Spectral properties, macrobending loss, and practical handling,” J. Lightwave Technol. 22(1), 11–15 (2004).
[Crossref]
J. L. Villatoro, V. P. Minkovich, and D. Monzón-Hernández, “Compact modal interferometer built with tapered microstructured optical fiber,” IEEE Photon. Technol. Lett. 18(11), 1258–1260 (2006).
[Crossref]
E. Li, X. Wang, and C. Zhang, “Fiber-optic temperature sensor based on interference of selective higher-order modes,” Appl. Phys. Lett. 89(9), 091119 (2006).
[Crossref]
C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Müller, J. A. West, N. F. Borrelli, D. C. Allan, and K. W. Koch, “Low-loss hollow-core silica/air photonic bandgap fibre,” Nature 424(6949), 657–659 (2003).
[Crossref]
[PubMed]
E. Li, X. Wang, and C. Zhang, “Fiber-optic temperature sensor based on interference of selective higher-order modes,” Appl. Phys. Lett. 89(9), 091119 (2006).
[Crossref]
E. Li, X. Wang, and C. Zhang, “Fiber-optic temperature sensor based on interference of selective higher-order modes,” Appl. Phys. Lett. 89(9), 091119 (2006).
[Crossref]
J. L. Villatoro, V. P. Minkovich, and D. Monzón-Hernández, “Compact modal interferometer built with tapered microstructured optical fiber,” IEEE Photon. Technol. Lett. 18(11), 1258–1260 (2006).
[Crossref]
E Li, “Sensitivity-enhanced fiber-optic strain sensor based on interference of higher order modes in circular fibers,” IEEE Photon. Technol. Lett. 19(16), 1266–1268 (2007).
[Crossref]
T. P. Hansen, J. Broeng, C. Jakobsen, G. Vienne, H. R. Simonsen, M. D. Nielsen, P. M. W. Skovgaard, J. R. Folkenberg, and A. Bjarklev, “Air-guiding photonic bandgap fibers: Spectral properties, macrobending loss, and practical handling,” J. Lightwave Technol. 22(1), 11–15 (2004).
[Crossref]
W. N. MacPherson, E. J. Rigg, J. D. C. Jones, V. V. Ravi, K. Kumar, J. C. Knight, and P. St. J. Russell, “Finite-element analysis and experimental results for a microstructured fibre with enhanced hydrostatic pressure sensitivity,” J. Lightwave Technol. 23(3), 1227–1231 (2005).
[Crossref]
L. M. Xiao, M. S. Demokan, W. Jin, Y. P. Wang, and C. L. Zhao, “Fusion splicing photonic crystal fibers and conventional single-mode fibers: microhole collapse effect,” J. Lightwave Technol. 25(11), 3563–3574 (2007).
[Crossref]
C.-L. Zhao, L. Xiao, J. Ju, M. S. Demokan, and W. Jin, “Strain and temperature characteristics of a long-period grating written in a photonic crystal fibre and its application as a temperature-insensitive strain sensor,” J. Lightwave Technol. 26(2), 220–227 (2008).
[Crossref]
S. M. Tripathi, A. Kumar, R. K. Varshney, Y. B. P. Kumar, E. Marin, and J. P. Meunier, “Strain and Temperature Sensing Characteristics of Single-Mode-Multimode-Single-Mode Structures,” J. Lightwave Technol. 27(13), 2348–2356 (2009), http://apps.isiknowledge.com/full_record.do?product=UA&colname=WOS&search_mode=CitingArticles&qid=3&SID=P1o7dcma8l7khK142BM&page=1&doc=1 .
[Crossref]
Y. J. Rao and D. A. Jackson, “Review article: Recent progress in fibre-optic low-coherence interferometry,” Meas. Sci. Technol. 7(7), 981–999 (1996).
[Crossref]
F. Benabid, F. Couny, J. C. Knight, T. A. Birks, and P. S. J. Russell, “Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibres,” Nature 434(7032), 488–491 (2005).
[Crossref]
[PubMed]
C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Müller, J. A. West, N. F. Borrelli, D. C. Allan, and K. W. Koch, “Low-loss hollow-core silica/air photonic bandgap fibre,” Nature 424(6949), 657–659 (2003).
[Crossref]
[PubMed]
W. N. MacPherson, M. J. Gander, R. McBride, J. D. C. Jones, P. M. Blanchard, J. G. Burnett, A. H. Greenaway, B. Mangan, T. A. Birks, J. C. Knight, and P. St. J. Russell, “Remotely addressed optical fibre curvature sensor using multicore photonic crystal fibre,” Opt. Commun. 193(1-6), 97–104 (2001).
[Crossref]
Q. Li, C.-H. Lin, P.-Y. Tseng, and H. P. Lee, “Demonstration of high extinction ratio modal interference in a two-mode fiber and its applications for all-fiber comb filter and high-temperature sensor,” Opt. Commun. 250(4-6), 280–285 (2005).
[Crossref]
P. Caldas, P. A. S. Jorge, F. M. Araujo, L. A. Ferreira, M. B. Marques, G. Rego, and J. L. Santos, “Fibre modal Michelson interferometers with coherence addressing and heterodyne interrogation,” Opt. Eng. 47(4), 044401 (2008).
[Crossref]
R. Thapa, K. Knabe, K. L. Corwin, and B. R. Washburn, “Arc fusion splicing of hollow-core photonic bandgap fibers for gas-filled fiber cells,” Opt. Express 14(21), 9576–9583 (2006).
[Crossref]
[PubMed]
J. Villatoro, V. P. Minkovich, V. Pruneri, and G. Badenes, “Simple all-microstructured-optical-fiber interferometer built via fusion splicing,” Opt. Express 15(4), 1491–1496 (2007).
[Crossref]
[PubMed]
H. Y. Choi, M. J. Kim, and B. H. Lee, “All-fiber Mach-Zehnder type interferometers formed in photonic crystal fiber,” Opt. Express 15(9), 5711–5720 (2007).
[Crossref]
[PubMed]
R. Amezcua-Correa, F. Gèrôme, S. G. Leon-Saval, N. G. R. Broderick, T. A. Birks, and J. C. Knight, “Control of surface modes in low loss hollow-core photonic bandgap fibers,” Opt. Express 16(2), 1142–1149 (2008).
[Crossref]
[PubMed]
Y. Jung, H. Y. Choi, M. J. Kim, B. H. Lee, and K. Oh, “Ultra-compact Mach-Zehnder interferometer using hollow optical fiber for high temperature sensing,” in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, OSA Technical Digest (CD) (Optical Society of America, 2008), paper JThA10.