Abstract

In this work, sensitivity to strain and temperature of a sensor relying on modal interferometry in hollow-core photonic crystal fibers is studied. The sensing structure is simply a piece of hollow-core fiber connected in both ends to standard single mode fiber. An interference pattern that is associated to the interference of light that propagates in the hollow core fundamental mode with light that propagates in other modes is observed. The phase of this interference pattern changes with the measurand interaction, which is the basis for considering this structure for sensing. The phase recovery is performed using a white light interferometric technique. Resolutions of ± 1.4µε and ± 0.2°C were achieved for strain and temperature, respectively. It was also found that the fiber structure is not sensitive to curvature.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Thapa, K. Knabe, K. L. Corwin, and B. R. Washburn, “Arc fusion splicing of hollow-core photonic bandgap fibers for gas-filled fiber cells,” Opt. Express 14(21), 9576–9583 (2006).
    [CrossRef] [PubMed]
  2. W. N. MacPherson, M. J. Gander, R. McBride, J. D. C. Jones, P. M. Blanchard, J. G. Burnett, A. H. Greenaway, B. Mangan, T. A. Birks, J. C. Knight, and P. St. J. Russell, “Remotely addressed optical fibre curvature sensor using multicore photonic crystal fibre,” Opt. Commun. 193(1-6), 97–104 (2001).
    [CrossRef]
  3. C.-L. Zhao, L. Xiao, J. Ju, M. S. Demokan, and W. Jin, “Strain and temperature characteristics of a long-period grating written in a photonic crystal fibre and its application as a temperature-insensitive strain sensor,” J. Lightwave Technol. 26(2), 220–227 (2008).
    [CrossRef]
  4. W. N. MacPherson, E. J. Rigg, J. D. C. Jones, V. V. Ravi, K. Kumar, J. C. Knight, and P. St. J. Russell, “Finite-element analysis and experimental results for a microstructured fibre with enhanced hydrostatic pressure sensitivity,” J. Lightwave Technol. 23(3), 1227–1231 (2005).
    [CrossRef]
  5. C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Müller, J. A. West, N. F. Borrelli, D. C. Allan, and K. W. Koch, “Low-loss hollow-core silica/air photonic bandgap fibre,” Nature 424(6949), 657–659 (2003).
    [CrossRef] [PubMed]
  6. R. Amezcua-Correa, F. Gèrôme, S. G. Leon-Saval, N. G. R. Broderick, T. A. Birks, and J. C. Knight, “Control of surface modes in low loss hollow-core photonic bandgap fibers,” Opt. Express 16(2), 1142–1149 (2008).
    [CrossRef] [PubMed]
  7. D. Ethonlagi and M. Zavrsnik, “Fiber-optic microbend sensor structure,” Opt. Lett. 22(11), 837–839 (1997).
    [CrossRef] [PubMed]
  8. E Li, “Sensitivity-enhanced fiber-optic strain sensor based on interference of higher order modes in circular fibers,” IEEE Photon. Technol. Lett. 19(16), 1266–1268 (2007).
    [CrossRef]
  9. S. M. Tripathi, A. Kumar, R. K. Varshney, Y. B. P. Kumar, E. Marin, and J. P. Meunier, “Strain and Temperature Sensing Characteristics of Single-Mode-Multimode-Single-Mode Structures,” J. Lightwave Technol. 27(13), 2348–2356 (2009), http://apps.isiknowledge.com/full_record.do?product=UA&colname=WOS&search_mode=CitingArticles&qid=3&SID=P1o7dcma8l7khK142BM&page=1&doc=1 .
    [CrossRef]
  10. E. Li, X. Wang, and C. Zhang, “Fiber-optic temperature sensor based on interference of selective higher-order modes,” Appl. Phys. Lett. 89(9), 091119 (2006).
    [CrossRef]
  11. Q. Li, C.-H. Lin, P.-Y. Tseng, and H. P. Lee, “Demonstration of high extinction ratio modal interference in a two-mode fiber and its applications for all-fiber comb filter and high-temperature sensor,” Opt. Commun. 250(4-6), 280–285 (2005).
    [CrossRef]
  12. J. L. Villatoro, V. P. Minkovich, and D. Monzón-Hernández, “Compact modal interferometer built with tapered microstructured optical fiber,” IEEE Photon. Technol. Lett. 18(11), 1258–1260 (2006).
    [CrossRef]
  13. J. Villatoro, V. P. Minkovich, V. Pruneri, and G. Badenes, “Simple all-microstructured-optical-fiber interferometer built via fusion splicing,” Opt. Express 15(4), 1491–1496 (2007).
    [CrossRef] [PubMed]
  14. H. Y. Choi, M. J. Kim, and B. H. Lee, “All-fiber Mach-Zehnder type interferometers formed in photonic crystal fiber,” Opt. Express 15(9), 5711–5720 (2007).
    [CrossRef] [PubMed]
  15. Y. Jung, H. Y. Choi, M. J. Kim, B. H. Lee, and K. Oh, “Ultra-compact Mach-Zehnder interferometer using hollow optical fiber for high temperature sensing,” in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, OSA Technical Digest (CD) (Optical Society of America, 2008), paper JThA10.
  16. T. P. Hansen, J. Broeng, C. Jakobsen, G. Vienne, H. R. Simonsen, M. D. Nielsen, P. M. W. Skovgaard, J. R. Folkenberg, and A. Bjarklev, “Air-guiding photonic bandgap fibers: Spectral properties, macrobending loss, and practical handling,” J. Lightwave Technol. 22(1), 11–15 (2004).
    [CrossRef]
  17. F. Benabid, F. Couny, J. C. Knight, T. A. Birks, and P. S. J. Russell, “Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibres,” Nature 434(7032), 488–491 (2005).
    [CrossRef] [PubMed]
  18. L. M. Xiao, M. S. Demokan, W. Jin, Y. P. Wang, and C. L. Zhao, “Fusion splicing photonic crystal fibers and conventional single-mode fibers: microhole collapse effect,” J. Lightwave Technol. 25(11), 3563–3574 (2007).
    [CrossRef]
  19. Y. J. Rao and D. A. Jackson, “Review article: Recent progress in fibre-optic low-coherence interferometry,” Meas. Sci. Technol. 7(7), 981–999 (1996).
    [CrossRef]
  20. P. Caldas, P. A. S. Jorge, F. M. Araujo, L. A. Ferreira, M. B. Marques, G. Rego, and J. L. Santos, “Fibre modal Michelson interferometers with coherence addressing and heterodyne interrogation,” Opt. Eng. 47(4), 044401 (2008).
    [CrossRef]

2009 (1)

2008 (3)

2007 (4)

2006 (3)

J. L. Villatoro, V. P. Minkovich, and D. Monzón-Hernández, “Compact modal interferometer built with tapered microstructured optical fiber,” IEEE Photon. Technol. Lett. 18(11), 1258–1260 (2006).
[CrossRef]

R. Thapa, K. Knabe, K. L. Corwin, and B. R. Washburn, “Arc fusion splicing of hollow-core photonic bandgap fibers for gas-filled fiber cells,” Opt. Express 14(21), 9576–9583 (2006).
[CrossRef] [PubMed]

E. Li, X. Wang, and C. Zhang, “Fiber-optic temperature sensor based on interference of selective higher-order modes,” Appl. Phys. Lett. 89(9), 091119 (2006).
[CrossRef]

2005 (3)

Q. Li, C.-H. Lin, P.-Y. Tseng, and H. P. Lee, “Demonstration of high extinction ratio modal interference in a two-mode fiber and its applications for all-fiber comb filter and high-temperature sensor,” Opt. Commun. 250(4-6), 280–285 (2005).
[CrossRef]

W. N. MacPherson, E. J. Rigg, J. D. C. Jones, V. V. Ravi, K. Kumar, J. C. Knight, and P. St. J. Russell, “Finite-element analysis and experimental results for a microstructured fibre with enhanced hydrostatic pressure sensitivity,” J. Lightwave Technol. 23(3), 1227–1231 (2005).
[CrossRef]

F. Benabid, F. Couny, J. C. Knight, T. A. Birks, and P. S. J. Russell, “Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibres,” Nature 434(7032), 488–491 (2005).
[CrossRef] [PubMed]

2004 (1)

2003 (1)

C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Müller, J. A. West, N. F. Borrelli, D. C. Allan, and K. W. Koch, “Low-loss hollow-core silica/air photonic bandgap fibre,” Nature 424(6949), 657–659 (2003).
[CrossRef] [PubMed]

2001 (1)

W. N. MacPherson, M. J. Gander, R. McBride, J. D. C. Jones, P. M. Blanchard, J. G. Burnett, A. H. Greenaway, B. Mangan, T. A. Birks, J. C. Knight, and P. St. J. Russell, “Remotely addressed optical fibre curvature sensor using multicore photonic crystal fibre,” Opt. Commun. 193(1-6), 97–104 (2001).
[CrossRef]

1997 (1)

1996 (1)

Y. J. Rao and D. A. Jackson, “Review article: Recent progress in fibre-optic low-coherence interferometry,” Meas. Sci. Technol. 7(7), 981–999 (1996).
[CrossRef]

Allan, D. C.

C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Müller, J. A. West, N. F. Borrelli, D. C. Allan, and K. W. Koch, “Low-loss hollow-core silica/air photonic bandgap fibre,” Nature 424(6949), 657–659 (2003).
[CrossRef] [PubMed]

Amezcua-Correa, R.

Araujo, F. M.

P. Caldas, P. A. S. Jorge, F. M. Araujo, L. A. Ferreira, M. B. Marques, G. Rego, and J. L. Santos, “Fibre modal Michelson interferometers with coherence addressing and heterodyne interrogation,” Opt. Eng. 47(4), 044401 (2008).
[CrossRef]

Badenes, G.

Benabid, F.

F. Benabid, F. Couny, J. C. Knight, T. A. Birks, and P. S. J. Russell, “Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibres,” Nature 434(7032), 488–491 (2005).
[CrossRef] [PubMed]

Birks, T. A.

R. Amezcua-Correa, F. Gèrôme, S. G. Leon-Saval, N. G. R. Broderick, T. A. Birks, and J. C. Knight, “Control of surface modes in low loss hollow-core photonic bandgap fibers,” Opt. Express 16(2), 1142–1149 (2008).
[CrossRef] [PubMed]

F. Benabid, F. Couny, J. C. Knight, T. A. Birks, and P. S. J. Russell, “Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibres,” Nature 434(7032), 488–491 (2005).
[CrossRef] [PubMed]

W. N. MacPherson, M. J. Gander, R. McBride, J. D. C. Jones, P. M. Blanchard, J. G. Burnett, A. H. Greenaway, B. Mangan, T. A. Birks, J. C. Knight, and P. St. J. Russell, “Remotely addressed optical fibre curvature sensor using multicore photonic crystal fibre,” Opt. Commun. 193(1-6), 97–104 (2001).
[CrossRef]

Bjarklev, A.

Blanchard, P. M.

W. N. MacPherson, M. J. Gander, R. McBride, J. D. C. Jones, P. M. Blanchard, J. G. Burnett, A. H. Greenaway, B. Mangan, T. A. Birks, J. C. Knight, and P. St. J. Russell, “Remotely addressed optical fibre curvature sensor using multicore photonic crystal fibre,” Opt. Commun. 193(1-6), 97–104 (2001).
[CrossRef]

Borrelli, N. F.

C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Müller, J. A. West, N. F. Borrelli, D. C. Allan, and K. W. Koch, “Low-loss hollow-core silica/air photonic bandgap fibre,” Nature 424(6949), 657–659 (2003).
[CrossRef] [PubMed]

Broderick, N. G. R.

Broeng, J.

Burnett, J. G.

W. N. MacPherson, M. J. Gander, R. McBride, J. D. C. Jones, P. M. Blanchard, J. G. Burnett, A. H. Greenaway, B. Mangan, T. A. Birks, J. C. Knight, and P. St. J. Russell, “Remotely addressed optical fibre curvature sensor using multicore photonic crystal fibre,” Opt. Commun. 193(1-6), 97–104 (2001).
[CrossRef]

Caldas, P.

P. Caldas, P. A. S. Jorge, F. M. Araujo, L. A. Ferreira, M. B. Marques, G. Rego, and J. L. Santos, “Fibre modal Michelson interferometers with coherence addressing and heterodyne interrogation,” Opt. Eng. 47(4), 044401 (2008).
[CrossRef]

Choi, H. Y.

Corwin, K. L.

Couny, F.

F. Benabid, F. Couny, J. C. Knight, T. A. Birks, and P. S. J. Russell, “Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibres,” Nature 434(7032), 488–491 (2005).
[CrossRef] [PubMed]

Demokan, M. S.

Ethonlagi, D.

Ferreira, L. A.

P. Caldas, P. A. S. Jorge, F. M. Araujo, L. A. Ferreira, M. B. Marques, G. Rego, and J. L. Santos, “Fibre modal Michelson interferometers with coherence addressing and heterodyne interrogation,” Opt. Eng. 47(4), 044401 (2008).
[CrossRef]

Folkenberg, J. R.

Gallagher, M. T.

C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Müller, J. A. West, N. F. Borrelli, D. C. Allan, and K. W. Koch, “Low-loss hollow-core silica/air photonic bandgap fibre,” Nature 424(6949), 657–659 (2003).
[CrossRef] [PubMed]

Gander, M. J.

W. N. MacPherson, M. J. Gander, R. McBride, J. D. C. Jones, P. M. Blanchard, J. G. Burnett, A. H. Greenaway, B. Mangan, T. A. Birks, J. C. Knight, and P. St. J. Russell, “Remotely addressed optical fibre curvature sensor using multicore photonic crystal fibre,” Opt. Commun. 193(1-6), 97–104 (2001).
[CrossRef]

Gèrôme, F.

Greenaway, A. H.

W. N. MacPherson, M. J. Gander, R. McBride, J. D. C. Jones, P. M. Blanchard, J. G. Burnett, A. H. Greenaway, B. Mangan, T. A. Birks, J. C. Knight, and P. St. J. Russell, “Remotely addressed optical fibre curvature sensor using multicore photonic crystal fibre,” Opt. Commun. 193(1-6), 97–104 (2001).
[CrossRef]

Hansen, T. P.

Jackson, D. A.

Y. J. Rao and D. A. Jackson, “Review article: Recent progress in fibre-optic low-coherence interferometry,” Meas. Sci. Technol. 7(7), 981–999 (1996).
[CrossRef]

Jakobsen, C.

Jin, W.

Jones, J. D. C.

W. N. MacPherson, E. J. Rigg, J. D. C. Jones, V. V. Ravi, K. Kumar, J. C. Knight, and P. St. J. Russell, “Finite-element analysis and experimental results for a microstructured fibre with enhanced hydrostatic pressure sensitivity,” J. Lightwave Technol. 23(3), 1227–1231 (2005).
[CrossRef]

W. N. MacPherson, M. J. Gander, R. McBride, J. D. C. Jones, P. M. Blanchard, J. G. Burnett, A. H. Greenaway, B. Mangan, T. A. Birks, J. C. Knight, and P. St. J. Russell, “Remotely addressed optical fibre curvature sensor using multicore photonic crystal fibre,” Opt. Commun. 193(1-6), 97–104 (2001).
[CrossRef]

Jorge, P. A. S.

P. Caldas, P. A. S. Jorge, F. M. Araujo, L. A. Ferreira, M. B. Marques, G. Rego, and J. L. Santos, “Fibre modal Michelson interferometers with coherence addressing and heterodyne interrogation,” Opt. Eng. 47(4), 044401 (2008).
[CrossRef]

Ju, J.

Kim, M. J.

Knabe, K.

Knight, J. C.

R. Amezcua-Correa, F. Gèrôme, S. G. Leon-Saval, N. G. R. Broderick, T. A. Birks, and J. C. Knight, “Control of surface modes in low loss hollow-core photonic bandgap fibers,” Opt. Express 16(2), 1142–1149 (2008).
[CrossRef] [PubMed]

W. N. MacPherson, E. J. Rigg, J. D. C. Jones, V. V. Ravi, K. Kumar, J. C. Knight, and P. St. J. Russell, “Finite-element analysis and experimental results for a microstructured fibre with enhanced hydrostatic pressure sensitivity,” J. Lightwave Technol. 23(3), 1227–1231 (2005).
[CrossRef]

F. Benabid, F. Couny, J. C. Knight, T. A. Birks, and P. S. J. Russell, “Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibres,” Nature 434(7032), 488–491 (2005).
[CrossRef] [PubMed]

W. N. MacPherson, M. J. Gander, R. McBride, J. D. C. Jones, P. M. Blanchard, J. G. Burnett, A. H. Greenaway, B. Mangan, T. A. Birks, J. C. Knight, and P. St. J. Russell, “Remotely addressed optical fibre curvature sensor using multicore photonic crystal fibre,” Opt. Commun. 193(1-6), 97–104 (2001).
[CrossRef]

Koch, K. W.

C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Müller, J. A. West, N. F. Borrelli, D. C. Allan, and K. W. Koch, “Low-loss hollow-core silica/air photonic bandgap fibre,” Nature 424(6949), 657–659 (2003).
[CrossRef] [PubMed]

Kumar, A.

Kumar, K.

Kumar, Y. B. P.

Lee, B. H.

Lee, H. P.

Q. Li, C.-H. Lin, P.-Y. Tseng, and H. P. Lee, “Demonstration of high extinction ratio modal interference in a two-mode fiber and its applications for all-fiber comb filter and high-temperature sensor,” Opt. Commun. 250(4-6), 280–285 (2005).
[CrossRef]

Leon-Saval, S. G.

Li, E.

E. Li, X. Wang, and C. Zhang, “Fiber-optic temperature sensor based on interference of selective higher-order modes,” Appl. Phys. Lett. 89(9), 091119 (2006).
[CrossRef]

Li, Q.

Q. Li, C.-H. Lin, P.-Y. Tseng, and H. P. Lee, “Demonstration of high extinction ratio modal interference in a two-mode fiber and its applications for all-fiber comb filter and high-temperature sensor,” Opt. Commun. 250(4-6), 280–285 (2005).
[CrossRef]

Li,, E

E Li, “Sensitivity-enhanced fiber-optic strain sensor based on interference of higher order modes in circular fibers,” IEEE Photon. Technol. Lett. 19(16), 1266–1268 (2007).
[CrossRef]

Lin, C.-H.

Q. Li, C.-H. Lin, P.-Y. Tseng, and H. P. Lee, “Demonstration of high extinction ratio modal interference in a two-mode fiber and its applications for all-fiber comb filter and high-temperature sensor,” Opt. Commun. 250(4-6), 280–285 (2005).
[CrossRef]

MacPherson, W. N.

W. N. MacPherson, E. J. Rigg, J. D. C. Jones, V. V. Ravi, K. Kumar, J. C. Knight, and P. St. J. Russell, “Finite-element analysis and experimental results for a microstructured fibre with enhanced hydrostatic pressure sensitivity,” J. Lightwave Technol. 23(3), 1227–1231 (2005).
[CrossRef]

W. N. MacPherson, M. J. Gander, R. McBride, J. D. C. Jones, P. M. Blanchard, J. G. Burnett, A. H. Greenaway, B. Mangan, T. A. Birks, J. C. Knight, and P. St. J. Russell, “Remotely addressed optical fibre curvature sensor using multicore photonic crystal fibre,” Opt. Commun. 193(1-6), 97–104 (2001).
[CrossRef]

Mangan, B.

W. N. MacPherson, M. J. Gander, R. McBride, J. D. C. Jones, P. M. Blanchard, J. G. Burnett, A. H. Greenaway, B. Mangan, T. A. Birks, J. C. Knight, and P. St. J. Russell, “Remotely addressed optical fibre curvature sensor using multicore photonic crystal fibre,” Opt. Commun. 193(1-6), 97–104 (2001).
[CrossRef]

Marin, E.

Marques, M. B.

P. Caldas, P. A. S. Jorge, F. M. Araujo, L. A. Ferreira, M. B. Marques, G. Rego, and J. L. Santos, “Fibre modal Michelson interferometers with coherence addressing and heterodyne interrogation,” Opt. Eng. 47(4), 044401 (2008).
[CrossRef]

McBride, R.

W. N. MacPherson, M. J. Gander, R. McBride, J. D. C. Jones, P. M. Blanchard, J. G. Burnett, A. H. Greenaway, B. Mangan, T. A. Birks, J. C. Knight, and P. St. J. Russell, “Remotely addressed optical fibre curvature sensor using multicore photonic crystal fibre,” Opt. Commun. 193(1-6), 97–104 (2001).
[CrossRef]

Meunier, J. P.

Minkovich, V. P.

J. Villatoro, V. P. Minkovich, V. Pruneri, and G. Badenes, “Simple all-microstructured-optical-fiber interferometer built via fusion splicing,” Opt. Express 15(4), 1491–1496 (2007).
[CrossRef] [PubMed]

J. L. Villatoro, V. P. Minkovich, and D. Monzón-Hernández, “Compact modal interferometer built with tapered microstructured optical fiber,” IEEE Photon. Technol. Lett. 18(11), 1258–1260 (2006).
[CrossRef]

Monzón-Hernández, D.

J. L. Villatoro, V. P. Minkovich, and D. Monzón-Hernández, “Compact modal interferometer built with tapered microstructured optical fiber,” IEEE Photon. Technol. Lett. 18(11), 1258–1260 (2006).
[CrossRef]

Müller, D.

C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Müller, J. A. West, N. F. Borrelli, D. C. Allan, and K. W. Koch, “Low-loss hollow-core silica/air photonic bandgap fibre,” Nature 424(6949), 657–659 (2003).
[CrossRef] [PubMed]

Nielsen, M. D.

Pruneri, V.

Rao, Y. J.

Y. J. Rao and D. A. Jackson, “Review article: Recent progress in fibre-optic low-coherence interferometry,” Meas. Sci. Technol. 7(7), 981–999 (1996).
[CrossRef]

Ravi, V. V.

Rego, G.

P. Caldas, P. A. S. Jorge, F. M. Araujo, L. A. Ferreira, M. B. Marques, G. Rego, and J. L. Santos, “Fibre modal Michelson interferometers with coherence addressing and heterodyne interrogation,” Opt. Eng. 47(4), 044401 (2008).
[CrossRef]

Rigg, E. J.

Russell, P. S. J.

F. Benabid, F. Couny, J. C. Knight, T. A. Birks, and P. S. J. Russell, “Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibres,” Nature 434(7032), 488–491 (2005).
[CrossRef] [PubMed]

Russell, P. St. J.

W. N. MacPherson, E. J. Rigg, J. D. C. Jones, V. V. Ravi, K. Kumar, J. C. Knight, and P. St. J. Russell, “Finite-element analysis and experimental results for a microstructured fibre with enhanced hydrostatic pressure sensitivity,” J. Lightwave Technol. 23(3), 1227–1231 (2005).
[CrossRef]

W. N. MacPherson, M. J. Gander, R. McBride, J. D. C. Jones, P. M. Blanchard, J. G. Burnett, A. H. Greenaway, B. Mangan, T. A. Birks, J. C. Knight, and P. St. J. Russell, “Remotely addressed optical fibre curvature sensor using multicore photonic crystal fibre,” Opt. Commun. 193(1-6), 97–104 (2001).
[CrossRef]

Santos, J. L.

P. Caldas, P. A. S. Jorge, F. M. Araujo, L. A. Ferreira, M. B. Marques, G. Rego, and J. L. Santos, “Fibre modal Michelson interferometers with coherence addressing and heterodyne interrogation,” Opt. Eng. 47(4), 044401 (2008).
[CrossRef]

Simonsen, H. R.

Skovgaard, P. M. W.

Smith, C. M.

C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Müller, J. A. West, N. F. Borrelli, D. C. Allan, and K. W. Koch, “Low-loss hollow-core silica/air photonic bandgap fibre,” Nature 424(6949), 657–659 (2003).
[CrossRef] [PubMed]

Thapa, R.

Tripathi, S. M.

Tseng, P.-Y.

Q. Li, C.-H. Lin, P.-Y. Tseng, and H. P. Lee, “Demonstration of high extinction ratio modal interference in a two-mode fiber and its applications for all-fiber comb filter and high-temperature sensor,” Opt. Commun. 250(4-6), 280–285 (2005).
[CrossRef]

Varshney, R. K.

Venkataraman, N.

C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Müller, J. A. West, N. F. Borrelli, D. C. Allan, and K. W. Koch, “Low-loss hollow-core silica/air photonic bandgap fibre,” Nature 424(6949), 657–659 (2003).
[CrossRef] [PubMed]

Vienne, G.

Villatoro, J.

Villatoro, J. L.

J. L. Villatoro, V. P. Minkovich, and D. Monzón-Hernández, “Compact modal interferometer built with tapered microstructured optical fiber,” IEEE Photon. Technol. Lett. 18(11), 1258–1260 (2006).
[CrossRef]

Wang, X.

E. Li, X. Wang, and C. Zhang, “Fiber-optic temperature sensor based on interference of selective higher-order modes,” Appl. Phys. Lett. 89(9), 091119 (2006).
[CrossRef]

Wang, Y. P.

Washburn, B. R.

West, J. A.

C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Müller, J. A. West, N. F. Borrelli, D. C. Allan, and K. W. Koch, “Low-loss hollow-core silica/air photonic bandgap fibre,” Nature 424(6949), 657–659 (2003).
[CrossRef] [PubMed]

Xiao, L.

Xiao, L. M.

Zavrsnik, M.

Zhang, C.

E. Li, X. Wang, and C. Zhang, “Fiber-optic temperature sensor based on interference of selective higher-order modes,” Appl. Phys. Lett. 89(9), 091119 (2006).
[CrossRef]

Zhao, C. L.

Zhao, C.-L.

Appl. Phys. Lett. (1)

E. Li, X. Wang, and C. Zhang, “Fiber-optic temperature sensor based on interference of selective higher-order modes,” Appl. Phys. Lett. 89(9), 091119 (2006).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

J. L. Villatoro, V. P. Minkovich, and D. Monzón-Hernández, “Compact modal interferometer built with tapered microstructured optical fiber,” IEEE Photon. Technol. Lett. 18(11), 1258–1260 (2006).
[CrossRef]

E Li, “Sensitivity-enhanced fiber-optic strain sensor based on interference of higher order modes in circular fibers,” IEEE Photon. Technol. Lett. 19(16), 1266–1268 (2007).
[CrossRef]

J. Lightwave Technol. (5)

S. M. Tripathi, A. Kumar, R. K. Varshney, Y. B. P. Kumar, E. Marin, and J. P. Meunier, “Strain and Temperature Sensing Characteristics of Single-Mode-Multimode-Single-Mode Structures,” J. Lightwave Technol. 27(13), 2348–2356 (2009), http://apps.isiknowledge.com/full_record.do?product=UA&colname=WOS&search_mode=CitingArticles&qid=3&SID=P1o7dcma8l7khK142BM&page=1&doc=1 .
[CrossRef]

C.-L. Zhao, L. Xiao, J. Ju, M. S. Demokan, and W. Jin, “Strain and temperature characteristics of a long-period grating written in a photonic crystal fibre and its application as a temperature-insensitive strain sensor,” J. Lightwave Technol. 26(2), 220–227 (2008).
[CrossRef]

W. N. MacPherson, E. J. Rigg, J. D. C. Jones, V. V. Ravi, K. Kumar, J. C. Knight, and P. St. J. Russell, “Finite-element analysis and experimental results for a microstructured fibre with enhanced hydrostatic pressure sensitivity,” J. Lightwave Technol. 23(3), 1227–1231 (2005).
[CrossRef]

T. P. Hansen, J. Broeng, C. Jakobsen, G. Vienne, H. R. Simonsen, M. D. Nielsen, P. M. W. Skovgaard, J. R. Folkenberg, and A. Bjarklev, “Air-guiding photonic bandgap fibers: Spectral properties, macrobending loss, and practical handling,” J. Lightwave Technol. 22(1), 11–15 (2004).
[CrossRef]

L. M. Xiao, M. S. Demokan, W. Jin, Y. P. Wang, and C. L. Zhao, “Fusion splicing photonic crystal fibers and conventional single-mode fibers: microhole collapse effect,” J. Lightwave Technol. 25(11), 3563–3574 (2007).
[CrossRef]

Meas. Sci. Technol. (1)

Y. J. Rao and D. A. Jackson, “Review article: Recent progress in fibre-optic low-coherence interferometry,” Meas. Sci. Technol. 7(7), 981–999 (1996).
[CrossRef]

Nature (2)

F. Benabid, F. Couny, J. C. Knight, T. A. Birks, and P. S. J. Russell, “Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibres,” Nature 434(7032), 488–491 (2005).
[CrossRef] [PubMed]

C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Müller, J. A. West, N. F. Borrelli, D. C. Allan, and K. W. Koch, “Low-loss hollow-core silica/air photonic bandgap fibre,” Nature 424(6949), 657–659 (2003).
[CrossRef] [PubMed]

Opt. Commun. (2)

W. N. MacPherson, M. J. Gander, R. McBride, J. D. C. Jones, P. M. Blanchard, J. G. Burnett, A. H. Greenaway, B. Mangan, T. A. Birks, J. C. Knight, and P. St. J. Russell, “Remotely addressed optical fibre curvature sensor using multicore photonic crystal fibre,” Opt. Commun. 193(1-6), 97–104 (2001).
[CrossRef]

Q. Li, C.-H. Lin, P.-Y. Tseng, and H. P. Lee, “Demonstration of high extinction ratio modal interference in a two-mode fiber and its applications for all-fiber comb filter and high-temperature sensor,” Opt. Commun. 250(4-6), 280–285 (2005).
[CrossRef]

Opt. Eng. (1)

P. Caldas, P. A. S. Jorge, F. M. Araujo, L. A. Ferreira, M. B. Marques, G. Rego, and J. L. Santos, “Fibre modal Michelson interferometers with coherence addressing and heterodyne interrogation,” Opt. Eng. 47(4), 044401 (2008).
[CrossRef]

Opt. Express (4)

Opt. Lett. (1)

Other (1)

Y. Jung, H. Y. Choi, M. J. Kim, B. H. Lee, and K. Oh, “Ultra-compact Mach-Zehnder interferometer using hollow optical fiber for high temperature sensing,” in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, OSA Technical Digest (CD) (Optical Society of America, 2008), paper JThA10.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Cross section photograph of a 7 cell HC-PCF (left) and normalized spectral transmission of ~1 m of this fiber spliced to a SMF28 illuminating fiber (right; the oscillations at lower wavelengths are artifacts due to the normalization).

Fig. 2
Fig. 2

Left: Channeled spectrum of the interferometric sensing head; Right: Visualization of the SMF-28/HC-PCF splice in the Fujikura’s SM-40 screen.

Fig. 3
Fig. 3

Experimental setup for initial characterization of the modal interferometer.

Fig. 4
Fig. 4

Wavelength responses of the sensing head for variations of applied strain and temperature.

Fig. 5
Fig. 5

Scheme of the experimental setup for phase reading with white light interferometry.

Fig. 6
Fig. 6

Phase changes induced by strain and temperature variations applied to the sensing head.

Fig. 7
Fig. 7

Phase response of the sensing head implemented with HC-PCF fiber for a step change in (a) strain and (b) temperature.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

neffFMneffOtherModes=λ1λ2L(λ1λ2)

Metrics