Abstract

We present results from the first on-sky demonstration of a prototype astronomical integrated photonic spectrograph (IPS) using the Anglo-Australian Telescope near-infrared imaging spectrometer (IRIS2) at Siding Spring Observatory to observe atmospheric molecular OH emission lines. We have succeeded in detecting upwards of 27 lines, and demonstrated the practicality of the IPS device for astronomy. Furthermore, we present a laboratory characterization of the device, which is a modified version of a commercial arrayed-waveguide grating multiplexer. We measure the spectral resolution full-width-half-maximum to be 0.75 ± 0.05nm (giving R = λ/δλ = 2100 ± 150 at 1500nm). We find the free spectral range to be 57.4 ± 0.6nm and the peak total efficiency to be ~65%. Finally, we briefly discuss the future steps required to realize an astronomical instrument based on this technology concept.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Bland-Hawthorn and A. Horton, “Instruments without optics: an integrated photonic spectrograph,” Proc. SPIE 6269, 21 (2006).
  2. J. Bland-Hawthorn and P. Kern, “Astrophotonics: a new era for astronomical instruments,” Opt. Express 17(3), 1880–1884 (2009).
    [CrossRef] [PubMed]
  3. S. C. Ellis and J. Bland-Hawthorn, “The case for OH suppression at near-infrared wavelengths,” Mon. Not. R. Astron. Soc. 386(1), 47–64 (2008).
    [CrossRef]
  4. J.-B. LeBouquin, P. Labeye, F. Malbet, L. Jocou, F. Zabihian, K. Rousselet-Perraut, J.-P. Berger, A. Delboulbé, P. Kern, A. Glindemann, and M. Schöeller, “Integrated optics for astronomical interferometry. VI. Coupling the light of the VLTI in K band,” Astron. Astrophys. 450(3), 1259–1264 (2006).
    [CrossRef]
  5. R. R. Thomson, A. K. Kar, and J. Allington-Smith, “Ultrafast laser inscription: an enabling technology for astrophotonics,” Opt. Express 17(3), 1963–1969 (2009).
    [CrossRef] [PubMed]
  6. M. K. Smit, “New focusing and dispersive planarcomponent based on an optical phased-array,” Electron. Lett. 24(7), 385–386 (1988).
    [CrossRef]
  7. H. Takahashi, S. Suzuki, K. Kato, and I. Nishi, “Arrayed-waveguide grating for wavelength division multi/demultiplexer with nanometer resolution,” Electron. Lett. 26(2), 87–88 (1990).
    [CrossRef]
  8. K. Takada, M. Abe, M. Shibata, M. Ishii, and K. Okamoto, “Low-crosstalk 10-GHz-spaced 512-channel arrayed-waveguide grating multi/demultiplexer fabricated on a 4-in wafer,” IEEE Photon. Technol. Lett. 13(11), 1182–1184 (2001).
    [CrossRef]
  9. H. Yamada, K. Takada, and S. Mitachi, “Crosstalk Reduction in a 10-GHz Spacing Arrayed-Waveguide Grating by Phase-Error Compensation,” J. Lightwave Technol. 16(3), 364–371 (1998).
    [CrossRef]
  10. P. Munoz, D. Pastor, and J. Capmany, “Analysis and design of arrayed waveguide gratings with MMI couplers,” Opt. Express 9(7), 328–338 (2001).
    [CrossRef] [PubMed]
  11. A. M. Yehia and D. Khalil, “Cascaded multimode interference phased array structures for dense wavelength division multiplexing applications,” Opt. Eng. 43(5), 1060–1065 (2004).
    [CrossRef]
  12. D. Wang, W. Zeng, Y. Li, and W. Tsay, “Novel arrayed waveguide grating designs for optical monitoring,” Opt. Fiber Commun. Conf. 1, 32–33 (2003).
  13. S. Lu, W. H. Wong, E. Y. B. Pun, Y. Yan, and D. Wang, “D. Yi G. Jin, “Design of flat-field arrayed waveguide grating with three stigmatic points,” Opt. Quantum Electron. 35(8), 783–790 (2003).
    [CrossRef]
  14. C. G. Tinney, S. D. Ryder, S. C. Ellis, V. Churilov, J. Dawson, G. Smith, L. Waller, J. Whittard, R. Haynes, A. Lankshear, J. R. Barton, C. J. Evans, K. Shortridge, T. Farrell, and J. Bailey, “IRIS2: a working infrared multi-object spectrograph and camera,” Proc. SPIE 5492, 998 (2004).
    [CrossRef]
  15. S. Grabarnik, R. Wolffenbuttel, A. Emadi, M. Loktev, E. Sokolova, and G. Vdovin, “Planar double-grating microspectrometer,” Opt. Express 15(6), 3581–3588 (2007).
    [CrossRef] [PubMed]
  16. G. Finger, R. J. Dorn, S. Eschbaumer, D. N. B. Hall, L. Mehrgan, M. Meyer, and J. Stegmeier, “Performance evaluation, readout modes, and calibration techniques of HgCdTe Hawaii-2RG mosaic arrays,” Proc. SPIE 7021, 70210P (2008).
    [CrossRef]

2009 (2)

2008 (2)

G. Finger, R. J. Dorn, S. Eschbaumer, D. N. B. Hall, L. Mehrgan, M. Meyer, and J. Stegmeier, “Performance evaluation, readout modes, and calibration techniques of HgCdTe Hawaii-2RG mosaic arrays,” Proc. SPIE 7021, 70210P (2008).
[CrossRef]

S. C. Ellis and J. Bland-Hawthorn, “The case for OH suppression at near-infrared wavelengths,” Mon. Not. R. Astron. Soc. 386(1), 47–64 (2008).
[CrossRef]

2007 (1)

2006 (2)

J.-B. LeBouquin, P. Labeye, F. Malbet, L. Jocou, F. Zabihian, K. Rousselet-Perraut, J.-P. Berger, A. Delboulbé, P. Kern, A. Glindemann, and M. Schöeller, “Integrated optics for astronomical interferometry. VI. Coupling the light of the VLTI in K band,” Astron. Astrophys. 450(3), 1259–1264 (2006).
[CrossRef]

J. Bland-Hawthorn and A. Horton, “Instruments without optics: an integrated photonic spectrograph,” Proc. SPIE 6269, 21 (2006).

2004 (2)

A. M. Yehia and D. Khalil, “Cascaded multimode interference phased array structures for dense wavelength division multiplexing applications,” Opt. Eng. 43(5), 1060–1065 (2004).
[CrossRef]

C. G. Tinney, S. D. Ryder, S. C. Ellis, V. Churilov, J. Dawson, G. Smith, L. Waller, J. Whittard, R. Haynes, A. Lankshear, J. R. Barton, C. J. Evans, K. Shortridge, T. Farrell, and J. Bailey, “IRIS2: a working infrared multi-object spectrograph and camera,” Proc. SPIE 5492, 998 (2004).
[CrossRef]

2003 (2)

D. Wang, W. Zeng, Y. Li, and W. Tsay, “Novel arrayed waveguide grating designs for optical monitoring,” Opt. Fiber Commun. Conf. 1, 32–33 (2003).

S. Lu, W. H. Wong, E. Y. B. Pun, Y. Yan, and D. Wang, “D. Yi G. Jin, “Design of flat-field arrayed waveguide grating with three stigmatic points,” Opt. Quantum Electron. 35(8), 783–790 (2003).
[CrossRef]

2001 (2)

K. Takada, M. Abe, M. Shibata, M. Ishii, and K. Okamoto, “Low-crosstalk 10-GHz-spaced 512-channel arrayed-waveguide grating multi/demultiplexer fabricated on a 4-in wafer,” IEEE Photon. Technol. Lett. 13(11), 1182–1184 (2001).
[CrossRef]

P. Munoz, D. Pastor, and J. Capmany, “Analysis and design of arrayed waveguide gratings with MMI couplers,” Opt. Express 9(7), 328–338 (2001).
[CrossRef] [PubMed]

1998 (1)

1990 (1)

H. Takahashi, S. Suzuki, K. Kato, and I. Nishi, “Arrayed-waveguide grating for wavelength division multi/demultiplexer with nanometer resolution,” Electron. Lett. 26(2), 87–88 (1990).
[CrossRef]

1988 (1)

M. K. Smit, “New focusing and dispersive planarcomponent based on an optical phased-array,” Electron. Lett. 24(7), 385–386 (1988).
[CrossRef]

Abe, M.

K. Takada, M. Abe, M. Shibata, M. Ishii, and K. Okamoto, “Low-crosstalk 10-GHz-spaced 512-channel arrayed-waveguide grating multi/demultiplexer fabricated on a 4-in wafer,” IEEE Photon. Technol. Lett. 13(11), 1182–1184 (2001).
[CrossRef]

Allington-Smith, J.

Bailey, J.

C. G. Tinney, S. D. Ryder, S. C. Ellis, V. Churilov, J. Dawson, G. Smith, L. Waller, J. Whittard, R. Haynes, A. Lankshear, J. R. Barton, C. J. Evans, K. Shortridge, T. Farrell, and J. Bailey, “IRIS2: a working infrared multi-object spectrograph and camera,” Proc. SPIE 5492, 998 (2004).
[CrossRef]

Barton, J. R.

C. G. Tinney, S. D. Ryder, S. C. Ellis, V. Churilov, J. Dawson, G. Smith, L. Waller, J. Whittard, R. Haynes, A. Lankshear, J. R. Barton, C. J. Evans, K. Shortridge, T. Farrell, and J. Bailey, “IRIS2: a working infrared multi-object spectrograph and camera,” Proc. SPIE 5492, 998 (2004).
[CrossRef]

Berger, J.-P.

J.-B. LeBouquin, P. Labeye, F. Malbet, L. Jocou, F. Zabihian, K. Rousselet-Perraut, J.-P. Berger, A. Delboulbé, P. Kern, A. Glindemann, and M. Schöeller, “Integrated optics for astronomical interferometry. VI. Coupling the light of the VLTI in K band,” Astron. Astrophys. 450(3), 1259–1264 (2006).
[CrossRef]

Bland-Hawthorn, J.

J. Bland-Hawthorn and P. Kern, “Astrophotonics: a new era for astronomical instruments,” Opt. Express 17(3), 1880–1884 (2009).
[CrossRef] [PubMed]

S. C. Ellis and J. Bland-Hawthorn, “The case for OH suppression at near-infrared wavelengths,” Mon. Not. R. Astron. Soc. 386(1), 47–64 (2008).
[CrossRef]

J. Bland-Hawthorn and A. Horton, “Instruments without optics: an integrated photonic spectrograph,” Proc. SPIE 6269, 21 (2006).

Capmany, J.

Churilov, V.

C. G. Tinney, S. D. Ryder, S. C. Ellis, V. Churilov, J. Dawson, G. Smith, L. Waller, J. Whittard, R. Haynes, A. Lankshear, J. R. Barton, C. J. Evans, K. Shortridge, T. Farrell, and J. Bailey, “IRIS2: a working infrared multi-object spectrograph and camera,” Proc. SPIE 5492, 998 (2004).
[CrossRef]

Dawson, J.

C. G. Tinney, S. D. Ryder, S. C. Ellis, V. Churilov, J. Dawson, G. Smith, L. Waller, J. Whittard, R. Haynes, A. Lankshear, J. R. Barton, C. J. Evans, K. Shortridge, T. Farrell, and J. Bailey, “IRIS2: a working infrared multi-object spectrograph and camera,” Proc. SPIE 5492, 998 (2004).
[CrossRef]

Delboulbé, A.

J.-B. LeBouquin, P. Labeye, F. Malbet, L. Jocou, F. Zabihian, K. Rousselet-Perraut, J.-P. Berger, A. Delboulbé, P. Kern, A. Glindemann, and M. Schöeller, “Integrated optics for astronomical interferometry. VI. Coupling the light of the VLTI in K band,” Astron. Astrophys. 450(3), 1259–1264 (2006).
[CrossRef]

Dorn, R. J.

G. Finger, R. J. Dorn, S. Eschbaumer, D. N. B. Hall, L. Mehrgan, M. Meyer, and J. Stegmeier, “Performance evaluation, readout modes, and calibration techniques of HgCdTe Hawaii-2RG mosaic arrays,” Proc. SPIE 7021, 70210P (2008).
[CrossRef]

Ellis, S. C.

S. C. Ellis and J. Bland-Hawthorn, “The case for OH suppression at near-infrared wavelengths,” Mon. Not. R. Astron. Soc. 386(1), 47–64 (2008).
[CrossRef]

C. G. Tinney, S. D. Ryder, S. C. Ellis, V. Churilov, J. Dawson, G. Smith, L. Waller, J. Whittard, R. Haynes, A. Lankshear, J. R. Barton, C. J. Evans, K. Shortridge, T. Farrell, and J. Bailey, “IRIS2: a working infrared multi-object spectrograph and camera,” Proc. SPIE 5492, 998 (2004).
[CrossRef]

Emadi, A.

Eschbaumer, S.

G. Finger, R. J. Dorn, S. Eschbaumer, D. N. B. Hall, L. Mehrgan, M. Meyer, and J. Stegmeier, “Performance evaluation, readout modes, and calibration techniques of HgCdTe Hawaii-2RG mosaic arrays,” Proc. SPIE 7021, 70210P (2008).
[CrossRef]

Evans, C. J.

C. G. Tinney, S. D. Ryder, S. C. Ellis, V. Churilov, J. Dawson, G. Smith, L. Waller, J. Whittard, R. Haynes, A. Lankshear, J. R. Barton, C. J. Evans, K. Shortridge, T. Farrell, and J. Bailey, “IRIS2: a working infrared multi-object spectrograph and camera,” Proc. SPIE 5492, 998 (2004).
[CrossRef]

Farrell, T.

C. G. Tinney, S. D. Ryder, S. C. Ellis, V. Churilov, J. Dawson, G. Smith, L. Waller, J. Whittard, R. Haynes, A. Lankshear, J. R. Barton, C. J. Evans, K. Shortridge, T. Farrell, and J. Bailey, “IRIS2: a working infrared multi-object spectrograph and camera,” Proc. SPIE 5492, 998 (2004).
[CrossRef]

Finger, G.

G. Finger, R. J. Dorn, S. Eschbaumer, D. N. B. Hall, L. Mehrgan, M. Meyer, and J. Stegmeier, “Performance evaluation, readout modes, and calibration techniques of HgCdTe Hawaii-2RG mosaic arrays,” Proc. SPIE 7021, 70210P (2008).
[CrossRef]

Glindemann, A.

J.-B. LeBouquin, P. Labeye, F. Malbet, L. Jocou, F. Zabihian, K. Rousselet-Perraut, J.-P. Berger, A. Delboulbé, P. Kern, A. Glindemann, and M. Schöeller, “Integrated optics for astronomical interferometry. VI. Coupling the light of the VLTI in K band,” Astron. Astrophys. 450(3), 1259–1264 (2006).
[CrossRef]

Grabarnik, S.

Hall, D. N. B.

G. Finger, R. J. Dorn, S. Eschbaumer, D. N. B. Hall, L. Mehrgan, M. Meyer, and J. Stegmeier, “Performance evaluation, readout modes, and calibration techniques of HgCdTe Hawaii-2RG mosaic arrays,” Proc. SPIE 7021, 70210P (2008).
[CrossRef]

Haynes, R.

C. G. Tinney, S. D. Ryder, S. C. Ellis, V. Churilov, J. Dawson, G. Smith, L. Waller, J. Whittard, R. Haynes, A. Lankshear, J. R. Barton, C. J. Evans, K. Shortridge, T. Farrell, and J. Bailey, “IRIS2: a working infrared multi-object spectrograph and camera,” Proc. SPIE 5492, 998 (2004).
[CrossRef]

Horton, A.

J. Bland-Hawthorn and A. Horton, “Instruments without optics: an integrated photonic spectrograph,” Proc. SPIE 6269, 21 (2006).

Ishii, M.

K. Takada, M. Abe, M. Shibata, M. Ishii, and K. Okamoto, “Low-crosstalk 10-GHz-spaced 512-channel arrayed-waveguide grating multi/demultiplexer fabricated on a 4-in wafer,” IEEE Photon. Technol. Lett. 13(11), 1182–1184 (2001).
[CrossRef]

Jocou, L.

J.-B. LeBouquin, P. Labeye, F. Malbet, L. Jocou, F. Zabihian, K. Rousselet-Perraut, J.-P. Berger, A. Delboulbé, P. Kern, A. Glindemann, and M. Schöeller, “Integrated optics for astronomical interferometry. VI. Coupling the light of the VLTI in K band,” Astron. Astrophys. 450(3), 1259–1264 (2006).
[CrossRef]

Kar, A. K.

Kato, K.

H. Takahashi, S. Suzuki, K. Kato, and I. Nishi, “Arrayed-waveguide grating for wavelength division multi/demultiplexer with nanometer resolution,” Electron. Lett. 26(2), 87–88 (1990).
[CrossRef]

Kern, P.

J. Bland-Hawthorn and P. Kern, “Astrophotonics: a new era for astronomical instruments,” Opt. Express 17(3), 1880–1884 (2009).
[CrossRef] [PubMed]

J.-B. LeBouquin, P. Labeye, F. Malbet, L. Jocou, F. Zabihian, K. Rousselet-Perraut, J.-P. Berger, A. Delboulbé, P. Kern, A. Glindemann, and M. Schöeller, “Integrated optics for astronomical interferometry. VI. Coupling the light of the VLTI in K band,” Astron. Astrophys. 450(3), 1259–1264 (2006).
[CrossRef]

Khalil, D.

A. M. Yehia and D. Khalil, “Cascaded multimode interference phased array structures for dense wavelength division multiplexing applications,” Opt. Eng. 43(5), 1060–1065 (2004).
[CrossRef]

Labeye, P.

J.-B. LeBouquin, P. Labeye, F. Malbet, L. Jocou, F. Zabihian, K. Rousselet-Perraut, J.-P. Berger, A. Delboulbé, P. Kern, A. Glindemann, and M. Schöeller, “Integrated optics for astronomical interferometry. VI. Coupling the light of the VLTI in K band,” Astron. Astrophys. 450(3), 1259–1264 (2006).
[CrossRef]

Lankshear, A.

C. G. Tinney, S. D. Ryder, S. C. Ellis, V. Churilov, J. Dawson, G. Smith, L. Waller, J. Whittard, R. Haynes, A. Lankshear, J. R. Barton, C. J. Evans, K. Shortridge, T. Farrell, and J. Bailey, “IRIS2: a working infrared multi-object spectrograph and camera,” Proc. SPIE 5492, 998 (2004).
[CrossRef]

LeBouquin, J.-B.

J.-B. LeBouquin, P. Labeye, F. Malbet, L. Jocou, F. Zabihian, K. Rousselet-Perraut, J.-P. Berger, A. Delboulbé, P. Kern, A. Glindemann, and M. Schöeller, “Integrated optics for astronomical interferometry. VI. Coupling the light of the VLTI in K band,” Astron. Astrophys. 450(3), 1259–1264 (2006).
[CrossRef]

Li, Y.

D. Wang, W. Zeng, Y. Li, and W. Tsay, “Novel arrayed waveguide grating designs for optical monitoring,” Opt. Fiber Commun. Conf. 1, 32–33 (2003).

Loktev, M.

Lu, S.

S. Lu, W. H. Wong, E. Y. B. Pun, Y. Yan, and D. Wang, “D. Yi G. Jin, “Design of flat-field arrayed waveguide grating with three stigmatic points,” Opt. Quantum Electron. 35(8), 783–790 (2003).
[CrossRef]

Malbet, F.

J.-B. LeBouquin, P. Labeye, F. Malbet, L. Jocou, F. Zabihian, K. Rousselet-Perraut, J.-P. Berger, A. Delboulbé, P. Kern, A. Glindemann, and M. Schöeller, “Integrated optics for astronomical interferometry. VI. Coupling the light of the VLTI in K band,” Astron. Astrophys. 450(3), 1259–1264 (2006).
[CrossRef]

Mehrgan, L.

G. Finger, R. J. Dorn, S. Eschbaumer, D. N. B. Hall, L. Mehrgan, M. Meyer, and J. Stegmeier, “Performance evaluation, readout modes, and calibration techniques of HgCdTe Hawaii-2RG mosaic arrays,” Proc. SPIE 7021, 70210P (2008).
[CrossRef]

Meyer, M.

G. Finger, R. J. Dorn, S. Eschbaumer, D. N. B. Hall, L. Mehrgan, M. Meyer, and J. Stegmeier, “Performance evaluation, readout modes, and calibration techniques of HgCdTe Hawaii-2RG mosaic arrays,” Proc. SPIE 7021, 70210P (2008).
[CrossRef]

Mitachi, S.

Munoz, P.

Nishi, I.

H. Takahashi, S. Suzuki, K. Kato, and I. Nishi, “Arrayed-waveguide grating for wavelength division multi/demultiplexer with nanometer resolution,” Electron. Lett. 26(2), 87–88 (1990).
[CrossRef]

Okamoto, K.

K. Takada, M. Abe, M. Shibata, M. Ishii, and K. Okamoto, “Low-crosstalk 10-GHz-spaced 512-channel arrayed-waveguide grating multi/demultiplexer fabricated on a 4-in wafer,” IEEE Photon. Technol. Lett. 13(11), 1182–1184 (2001).
[CrossRef]

Pastor, D.

Pun, E. Y. B.

S. Lu, W. H. Wong, E. Y. B. Pun, Y. Yan, and D. Wang, “D. Yi G. Jin, “Design of flat-field arrayed waveguide grating with three stigmatic points,” Opt. Quantum Electron. 35(8), 783–790 (2003).
[CrossRef]

Rousselet-Perraut, K.

J.-B. LeBouquin, P. Labeye, F. Malbet, L. Jocou, F. Zabihian, K. Rousselet-Perraut, J.-P. Berger, A. Delboulbé, P. Kern, A. Glindemann, and M. Schöeller, “Integrated optics for astronomical interferometry. VI. Coupling the light of the VLTI in K band,” Astron. Astrophys. 450(3), 1259–1264 (2006).
[CrossRef]

Ryder, S. D.

C. G. Tinney, S. D. Ryder, S. C. Ellis, V. Churilov, J. Dawson, G. Smith, L. Waller, J. Whittard, R. Haynes, A. Lankshear, J. R. Barton, C. J. Evans, K. Shortridge, T. Farrell, and J. Bailey, “IRIS2: a working infrared multi-object spectrograph and camera,” Proc. SPIE 5492, 998 (2004).
[CrossRef]

Schöeller, M.

J.-B. LeBouquin, P. Labeye, F. Malbet, L. Jocou, F. Zabihian, K. Rousselet-Perraut, J.-P. Berger, A. Delboulbé, P. Kern, A. Glindemann, and M. Schöeller, “Integrated optics for astronomical interferometry. VI. Coupling the light of the VLTI in K band,” Astron. Astrophys. 450(3), 1259–1264 (2006).
[CrossRef]

Shibata, M.

K. Takada, M. Abe, M. Shibata, M. Ishii, and K. Okamoto, “Low-crosstalk 10-GHz-spaced 512-channel arrayed-waveguide grating multi/demultiplexer fabricated on a 4-in wafer,” IEEE Photon. Technol. Lett. 13(11), 1182–1184 (2001).
[CrossRef]

Shortridge, K.

C. G. Tinney, S. D. Ryder, S. C. Ellis, V. Churilov, J. Dawson, G. Smith, L. Waller, J. Whittard, R. Haynes, A. Lankshear, J. R. Barton, C. J. Evans, K. Shortridge, T. Farrell, and J. Bailey, “IRIS2: a working infrared multi-object spectrograph and camera,” Proc. SPIE 5492, 998 (2004).
[CrossRef]

Smit, M. K.

M. K. Smit, “New focusing and dispersive planarcomponent based on an optical phased-array,” Electron. Lett. 24(7), 385–386 (1988).
[CrossRef]

Smith, G.

C. G. Tinney, S. D. Ryder, S. C. Ellis, V. Churilov, J. Dawson, G. Smith, L. Waller, J. Whittard, R. Haynes, A. Lankshear, J. R. Barton, C. J. Evans, K. Shortridge, T. Farrell, and J. Bailey, “IRIS2: a working infrared multi-object spectrograph and camera,” Proc. SPIE 5492, 998 (2004).
[CrossRef]

Sokolova, E.

Stegmeier, J.

G. Finger, R. J. Dorn, S. Eschbaumer, D. N. B. Hall, L. Mehrgan, M. Meyer, and J. Stegmeier, “Performance evaluation, readout modes, and calibration techniques of HgCdTe Hawaii-2RG mosaic arrays,” Proc. SPIE 7021, 70210P (2008).
[CrossRef]

Suzuki, S.

H. Takahashi, S. Suzuki, K. Kato, and I. Nishi, “Arrayed-waveguide grating for wavelength division multi/demultiplexer with nanometer resolution,” Electron. Lett. 26(2), 87–88 (1990).
[CrossRef]

Takada, K.

K. Takada, M. Abe, M. Shibata, M. Ishii, and K. Okamoto, “Low-crosstalk 10-GHz-spaced 512-channel arrayed-waveguide grating multi/demultiplexer fabricated on a 4-in wafer,” IEEE Photon. Technol. Lett. 13(11), 1182–1184 (2001).
[CrossRef]

H. Yamada, K. Takada, and S. Mitachi, “Crosstalk Reduction in a 10-GHz Spacing Arrayed-Waveguide Grating by Phase-Error Compensation,” J. Lightwave Technol. 16(3), 364–371 (1998).
[CrossRef]

Takahashi, H.

H. Takahashi, S. Suzuki, K. Kato, and I. Nishi, “Arrayed-waveguide grating for wavelength division multi/demultiplexer with nanometer resolution,” Electron. Lett. 26(2), 87–88 (1990).
[CrossRef]

Thomson, R. R.

Tinney, C. G.

C. G. Tinney, S. D. Ryder, S. C. Ellis, V. Churilov, J. Dawson, G. Smith, L. Waller, J. Whittard, R. Haynes, A. Lankshear, J. R. Barton, C. J. Evans, K. Shortridge, T. Farrell, and J. Bailey, “IRIS2: a working infrared multi-object spectrograph and camera,” Proc. SPIE 5492, 998 (2004).
[CrossRef]

Tsay, W.

D. Wang, W. Zeng, Y. Li, and W. Tsay, “Novel arrayed waveguide grating designs for optical monitoring,” Opt. Fiber Commun. Conf. 1, 32–33 (2003).

Vdovin, G.

Waller, L.

C. G. Tinney, S. D. Ryder, S. C. Ellis, V. Churilov, J. Dawson, G. Smith, L. Waller, J. Whittard, R. Haynes, A. Lankshear, J. R. Barton, C. J. Evans, K. Shortridge, T. Farrell, and J. Bailey, “IRIS2: a working infrared multi-object spectrograph and camera,” Proc. SPIE 5492, 998 (2004).
[CrossRef]

Wang, D.

S. Lu, W. H. Wong, E. Y. B. Pun, Y. Yan, and D. Wang, “D. Yi G. Jin, “Design of flat-field arrayed waveguide grating with three stigmatic points,” Opt. Quantum Electron. 35(8), 783–790 (2003).
[CrossRef]

D. Wang, W. Zeng, Y. Li, and W. Tsay, “Novel arrayed waveguide grating designs for optical monitoring,” Opt. Fiber Commun. Conf. 1, 32–33 (2003).

Whittard, J.

C. G. Tinney, S. D. Ryder, S. C. Ellis, V. Churilov, J. Dawson, G. Smith, L. Waller, J. Whittard, R. Haynes, A. Lankshear, J. R. Barton, C. J. Evans, K. Shortridge, T. Farrell, and J. Bailey, “IRIS2: a working infrared multi-object spectrograph and camera,” Proc. SPIE 5492, 998 (2004).
[CrossRef]

Wolffenbuttel, R.

Wong, W. H.

S. Lu, W. H. Wong, E. Y. B. Pun, Y. Yan, and D. Wang, “D. Yi G. Jin, “Design of flat-field arrayed waveguide grating with three stigmatic points,” Opt. Quantum Electron. 35(8), 783–790 (2003).
[CrossRef]

Yamada, H.

Yan, Y.

S. Lu, W. H. Wong, E. Y. B. Pun, Y. Yan, and D. Wang, “D. Yi G. Jin, “Design of flat-field arrayed waveguide grating with three stigmatic points,” Opt. Quantum Electron. 35(8), 783–790 (2003).
[CrossRef]

Yehia, A. M.

A. M. Yehia and D. Khalil, “Cascaded multimode interference phased array structures for dense wavelength division multiplexing applications,” Opt. Eng. 43(5), 1060–1065 (2004).
[CrossRef]

Zabihian, F.

J.-B. LeBouquin, P. Labeye, F. Malbet, L. Jocou, F. Zabihian, K. Rousselet-Perraut, J.-P. Berger, A. Delboulbé, P. Kern, A. Glindemann, and M. Schöeller, “Integrated optics for astronomical interferometry. VI. Coupling the light of the VLTI in K band,” Astron. Astrophys. 450(3), 1259–1264 (2006).
[CrossRef]

Zeng, W.

D. Wang, W. Zeng, Y. Li, and W. Tsay, “Novel arrayed waveguide grating designs for optical monitoring,” Opt. Fiber Commun. Conf. 1, 32–33 (2003).

Astron. Astrophys. (1)

J.-B. LeBouquin, P. Labeye, F. Malbet, L. Jocou, F. Zabihian, K. Rousselet-Perraut, J.-P. Berger, A. Delboulbé, P. Kern, A. Glindemann, and M. Schöeller, “Integrated optics for astronomical interferometry. VI. Coupling the light of the VLTI in K band,” Astron. Astrophys. 450(3), 1259–1264 (2006).
[CrossRef]

Electron. Lett. (2)

M. K. Smit, “New focusing and dispersive planarcomponent based on an optical phased-array,” Electron. Lett. 24(7), 385–386 (1988).
[CrossRef]

H. Takahashi, S. Suzuki, K. Kato, and I. Nishi, “Arrayed-waveguide grating for wavelength division multi/demultiplexer with nanometer resolution,” Electron. Lett. 26(2), 87–88 (1990).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

K. Takada, M. Abe, M. Shibata, M. Ishii, and K. Okamoto, “Low-crosstalk 10-GHz-spaced 512-channel arrayed-waveguide grating multi/demultiplexer fabricated on a 4-in wafer,” IEEE Photon. Technol. Lett. 13(11), 1182–1184 (2001).
[CrossRef]

J. Lightwave Technol. (1)

Mon. Not. R. Astron. Soc. (1)

S. C. Ellis and J. Bland-Hawthorn, “The case for OH suppression at near-infrared wavelengths,” Mon. Not. R. Astron. Soc. 386(1), 47–64 (2008).
[CrossRef]

Opt. Eng. (1)

A. M. Yehia and D. Khalil, “Cascaded multimode interference phased array structures for dense wavelength division multiplexing applications,” Opt. Eng. 43(5), 1060–1065 (2004).
[CrossRef]

Opt. Express (4)

Opt. Fiber Commun. Conf. (1)

D. Wang, W. Zeng, Y. Li, and W. Tsay, “Novel arrayed waveguide grating designs for optical monitoring,” Opt. Fiber Commun. Conf. 1, 32–33 (2003).

Opt. Quantum Electron. (1)

S. Lu, W. H. Wong, E. Y. B. Pun, Y. Yan, and D. Wang, “D. Yi G. Jin, “Design of flat-field arrayed waveguide grating with three stigmatic points,” Opt. Quantum Electron. 35(8), 783–790 (2003).
[CrossRef]

Proc. SPIE (3)

C. G. Tinney, S. D. Ryder, S. C. Ellis, V. Churilov, J. Dawson, G. Smith, L. Waller, J. Whittard, R. Haynes, A. Lankshear, J. R. Barton, C. J. Evans, K. Shortridge, T. Farrell, and J. Bailey, “IRIS2: a working infrared multi-object spectrograph and camera,” Proc. SPIE 5492, 998 (2004).
[CrossRef]

G. Finger, R. J. Dorn, S. Eschbaumer, D. N. B. Hall, L. Mehrgan, M. Meyer, and J. Stegmeier, “Performance evaluation, readout modes, and calibration techniques of HgCdTe Hawaii-2RG mosaic arrays,” Proc. SPIE 7021, 70210P (2008).
[CrossRef]

J. Bland-Hawthorn and A. Horton, “Instruments without optics: an integrated photonic spectrograph,” Proc. SPIE 6269, 21 (2006).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Top: schematic of the AWG chip. Bottom: photograph of the IPS prototype. In this prototype device, the output array waveguides (standard in commercial devices) have been removed, the output facet has been polished back to the focal surface, and the chip packaged. The fiber input is at the rear of the image, and the polished flat output facet at the front. The open face of the chip is ~38mm in length. The active area is ~3mm across, and is situated at the centre of the polished face.

Fig. 2
Fig. 2

Left: schematic showing the setup for the IPS laboratory characterization experiments. Right: schematic of the on-sky experiments using the IRIS2 infrared imaging spectrometer.

Fig. 3
Fig. 3

(a) Total IPS efficiency across the full laser wavelength tuning range (this corresponds to ~90% of the device active area). Each peak corresponds to a series of focal plane measurements at a fixed input laser wavelength. (b) High-resolution de-convolved measurement of the output IPS spectral point spread function obtained by tuning the central laser wavelength by 0.05nm increments at a fixed fiber position in the focal plane.

Fig. 4
Fig. 4

Power output across the full IPS focal plane (measured by translating a fiber) with the input laser locked to 1580nm. The two peaks are adjacent orders of the same laser wavelength. Insert: Normalized spectral measurement (using the OSA) with the fiber fixed in the IPS focal plane position indicated by the arrow, demonstrating the transmission of higher diffraction orders from the wings of the laser gain profile.

Fig. 5
Fig. 5

The night sky OH spectrum (solid black lines) using the IRIS2 instrument as a cross-disperser for the IPS, superimposed with the theoretical [3] positions and strengths of the OH lines (red), and the diffraction efficiency envelop of the IPS for each order (dashed lines). The 23rd order is top left, which progresses to 27th order in the bottom right of the graph.

Metrics