Abstract

We reportthat the Tm:Ho-doped fiber can be utilized to improve the frequency stabilization of the Er-doped fiber comb. This rare-earth doped fiber provides photon absorption at 1.2 μm and 1.7 μm wavelengths together with emission at wavelengths between 1.8 μm to 2.1 μm. This unique combination of the absorption and emission regions constructively redistributes the spectral power of the supercontinuum generated by a highly nonlinear fiber to detect the carrier-envelope-offset frequency (fceo) via a self-referencing f-2f interferometer. As a result, the signal to noise (S/N) ratio of the detected fceo signal increases by 10 dB, thereby increasing the potential of enhancing the long-term frequency stability of the fiber frequency comb.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Th. Udem, J. Reichert, R. Holzwarth, and T. W. Hänsch, “Absolute optical frequency measurement of the cesium D1 line with a mode-locked laser,” Phys. Rev. Lett. 82(18), 3568–3571 (1999).
    [CrossRef]
  2. D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288(5466), 635–639 (2000).
    [CrossRef] [PubMed]
  3. B. R. Washburn, S. A. Diddams, N. R. Newbury, J. W. Nicholson, M. F. Yan, and C. G. Jørgensen, “Phase-locked, erbium-fiber-laser-based frequency comb in the near infrared,” Opt. Lett. 29(3), 250–252 (2004), http://www.opticsinfobase.org/abstract.cfm?URI=ol-29-3-250 .
    [CrossRef] [PubMed]
  4. F. Adler, K. Moutzouris, A. Leitenstorfer, H. Schnatz, B. Lipphardt, G. Grosche, and F. Tauser, “Phase-locked two-branch erbium-doped fiber laser system for long-term precision measurements of optical frequencies,” Opt. Express 12(24), 5872–5880 (2004), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-12-24-5872 .
    [CrossRef] [PubMed]
  5. T. R. Schibli, K. Minoshima, F.-L. Hong, H. Inaba, A. Onae, H. Matsumoto, I. Hartl, and M. E. Fermann, “Frequency metrology with a turnkey all-fiber system,” Opt. Lett. 29(21), 2467–2469 (2004), http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-29-21-2467 .
    [CrossRef] [PubMed]
  6. K. Kim, S. A. Diddams, P. S. Westbrook, J. W. Nicholson, and K. S. Feder, “Improved stabilization of a 1.3 microm femtosecond optical frequency comb by use of a spectrally tailored continuum from a nonlinear fiber grating,” Opt. Lett. 31(2), 277–279 (2006), http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-31-2-277 .
    [CrossRef] [PubMed]
  7. Y. Kim, S. Kim, Y.-J. Kim, H. Hussein, and S.-W. Kim, “Er-doped fiber frequency comb with mHz relative linewidth,” Opt. Express 17(14), 11972–11977 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-14-11972 .
    [CrossRef] [PubMed]
  8. T. Hori, J. Takayanagi, N. Nishizawa, and T. Goto, “Flatly broadened, wideband and low noise supercontinuum generation in highly nonlinear hybrid fiber,” Opt. Express 12(2), 317–324 (2004), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-12-2-317 .
    [CrossRef] [PubMed]
  9. J. M. Dudley, X. Gu, L. Xu, M. Kimmel, E. Zeek, P. O’Shea, R. Trebino, S. Coen, and R. S. Windeler, “Cross-correlation frequency resolved optical gating analysis of broadband continuum generation in photonic crystal fiber: simulations and experiments,” Opt. Express 10(21), 1215–1221 (2002), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-10-21-1215 .
    [PubMed]
  10. H. Inaba, Y. Daimon, F.-L. Hong, A. Onae, K. Minoshima, T. R. Schibli, H. Matsumoto, M. Hirano, T. Okuno, M. Onishi, and M. Nakazawa, “Long-term measurement of optical frequencies using a simple, robust and low-noise fiber based frequency comb,” Opt. Express 14(12), 5223–5231 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-12-5223 .
    [CrossRef] [PubMed]
  11. S. Y. Chen, T. L. Yeo, J. Leighton, T. Sun, K. T. V. Grattan, R. Lade, B. Powell, G. Foster-Turner, and M. Osborne, “Infra-red laser source using Tm: Ho optical fibre for potential sensor applications,” J. Phys.: Conference Series 76, 012042 (2007).
    [CrossRef]

2009 (1)

2007 (1)

S. Y. Chen, T. L. Yeo, J. Leighton, T. Sun, K. T. V. Grattan, R. Lade, B. Powell, G. Foster-Turner, and M. Osborne, “Infra-red laser source using Tm: Ho optical fibre for potential sensor applications,” J. Phys.: Conference Series 76, 012042 (2007).
[CrossRef]

2006 (2)

2004 (4)

2002 (1)

2000 (1)

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288(5466), 635–639 (2000).
[CrossRef] [PubMed]

1999 (1)

Th. Udem, J. Reichert, R. Holzwarth, and T. W. Hänsch, “Absolute optical frequency measurement of the cesium D1 line with a mode-locked laser,” Phys. Rev. Lett. 82(18), 3568–3571 (1999).
[CrossRef]

Adler, F.

Chen, S. Y.

S. Y. Chen, T. L. Yeo, J. Leighton, T. Sun, K. T. V. Grattan, R. Lade, B. Powell, G. Foster-Turner, and M. Osborne, “Infra-red laser source using Tm: Ho optical fibre for potential sensor applications,” J. Phys.: Conference Series 76, 012042 (2007).
[CrossRef]

Coen, S.

Cundiff, S. T.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288(5466), 635–639 (2000).
[CrossRef] [PubMed]

Daimon, Y.

Diddams, S. A.

Dudley, J. M.

Feder, K. S.

Fermann, M. E.

Foster-Turner, G.

S. Y. Chen, T. L. Yeo, J. Leighton, T. Sun, K. T. V. Grattan, R. Lade, B. Powell, G. Foster-Turner, and M. Osborne, “Infra-red laser source using Tm: Ho optical fibre for potential sensor applications,” J. Phys.: Conference Series 76, 012042 (2007).
[CrossRef]

Goto, T.

Grattan, K. T. V.

S. Y. Chen, T. L. Yeo, J. Leighton, T. Sun, K. T. V. Grattan, R. Lade, B. Powell, G. Foster-Turner, and M. Osborne, “Infra-red laser source using Tm: Ho optical fibre for potential sensor applications,” J. Phys.: Conference Series 76, 012042 (2007).
[CrossRef]

Grosche, G.

Gu, X.

Hall, J. L.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288(5466), 635–639 (2000).
[CrossRef] [PubMed]

Hänsch, T. W.

Th. Udem, J. Reichert, R. Holzwarth, and T. W. Hänsch, “Absolute optical frequency measurement of the cesium D1 line with a mode-locked laser,” Phys. Rev. Lett. 82(18), 3568–3571 (1999).
[CrossRef]

Hartl, I.

Hirano, M.

Holzwarth, R.

Th. Udem, J. Reichert, R. Holzwarth, and T. W. Hänsch, “Absolute optical frequency measurement of the cesium D1 line with a mode-locked laser,” Phys. Rev. Lett. 82(18), 3568–3571 (1999).
[CrossRef]

Hong, F.-L.

Hori, T.

Hussein, H.

Inaba, H.

Jones, D. J.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288(5466), 635–639 (2000).
[CrossRef] [PubMed]

Jørgensen, C. G.

Kim, K.

Kim, S.

Kim, S.-W.

Kim, Y.

Kim, Y.-J.

Kimmel, M.

Lade, R.

S. Y. Chen, T. L. Yeo, J. Leighton, T. Sun, K. T. V. Grattan, R. Lade, B. Powell, G. Foster-Turner, and M. Osborne, “Infra-red laser source using Tm: Ho optical fibre for potential sensor applications,” J. Phys.: Conference Series 76, 012042 (2007).
[CrossRef]

Leighton, J.

S. Y. Chen, T. L. Yeo, J. Leighton, T. Sun, K. T. V. Grattan, R. Lade, B. Powell, G. Foster-Turner, and M. Osborne, “Infra-red laser source using Tm: Ho optical fibre for potential sensor applications,” J. Phys.: Conference Series 76, 012042 (2007).
[CrossRef]

Leitenstorfer, A.

Lipphardt, B.

Matsumoto, H.

Minoshima, K.

Moutzouris, K.

Nakazawa, M.

Newbury, N. R.

Nicholson, J. W.

Nishizawa, N.

O’Shea, P.

Okuno, T.

Onae, A.

Onishi, M.

Osborne, M.

S. Y. Chen, T. L. Yeo, J. Leighton, T. Sun, K. T. V. Grattan, R. Lade, B. Powell, G. Foster-Turner, and M. Osborne, “Infra-red laser source using Tm: Ho optical fibre for potential sensor applications,” J. Phys.: Conference Series 76, 012042 (2007).
[CrossRef]

Powell, B.

S. Y. Chen, T. L. Yeo, J. Leighton, T. Sun, K. T. V. Grattan, R. Lade, B. Powell, G. Foster-Turner, and M. Osborne, “Infra-red laser source using Tm: Ho optical fibre for potential sensor applications,” J. Phys.: Conference Series 76, 012042 (2007).
[CrossRef]

Ranka, J. K.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288(5466), 635–639 (2000).
[CrossRef] [PubMed]

Reichert, J.

Th. Udem, J. Reichert, R. Holzwarth, and T. W. Hänsch, “Absolute optical frequency measurement of the cesium D1 line with a mode-locked laser,” Phys. Rev. Lett. 82(18), 3568–3571 (1999).
[CrossRef]

Schibli, T. R.

Schnatz, H.

Stentz, A.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288(5466), 635–639 (2000).
[CrossRef] [PubMed]

Sun, T.

S. Y. Chen, T. L. Yeo, J. Leighton, T. Sun, K. T. V. Grattan, R. Lade, B. Powell, G. Foster-Turner, and M. Osborne, “Infra-red laser source using Tm: Ho optical fibre for potential sensor applications,” J. Phys.: Conference Series 76, 012042 (2007).
[CrossRef]

Takayanagi, J.

Tauser, F.

Trebino, R.

Udem, Th.

Th. Udem, J. Reichert, R. Holzwarth, and T. W. Hänsch, “Absolute optical frequency measurement of the cesium D1 line with a mode-locked laser,” Phys. Rev. Lett. 82(18), 3568–3571 (1999).
[CrossRef]

Washburn, B. R.

Westbrook, P. S.

Windeler, R. S.

Xu, L.

Yan, M. F.

Yeo, T. L.

S. Y. Chen, T. L. Yeo, J. Leighton, T. Sun, K. T. V. Grattan, R. Lade, B. Powell, G. Foster-Turner, and M. Osborne, “Infra-red laser source using Tm: Ho optical fibre for potential sensor applications,” J. Phys.: Conference Series 76, 012042 (2007).
[CrossRef]

Zeek, E.

J. Phys.: Conference Series (1)

S. Y. Chen, T. L. Yeo, J. Leighton, T. Sun, K. T. V. Grattan, R. Lade, B. Powell, G. Foster-Turner, and M. Osborne, “Infra-red laser source using Tm: Ho optical fibre for potential sensor applications,” J. Phys.: Conference Series 76, 012042 (2007).
[CrossRef]

Opt. Express (5)

J. M. Dudley, X. Gu, L. Xu, M. Kimmel, E. Zeek, P. O’Shea, R. Trebino, S. Coen, and R. S. Windeler, “Cross-correlation frequency resolved optical gating analysis of broadband continuum generation in photonic crystal fiber: simulations and experiments,” Opt. Express 10(21), 1215–1221 (2002), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-10-21-1215 .
[PubMed]

T. Hori, J. Takayanagi, N. Nishizawa, and T. Goto, “Flatly broadened, wideband and low noise supercontinuum generation in highly nonlinear hybrid fiber,” Opt. Express 12(2), 317–324 (2004), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-12-2-317 .
[CrossRef] [PubMed]

F. Adler, K. Moutzouris, A. Leitenstorfer, H. Schnatz, B. Lipphardt, G. Grosche, and F. Tauser, “Phase-locked two-branch erbium-doped fiber laser system for long-term precision measurements of optical frequencies,” Opt. Express 12(24), 5872–5880 (2004), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-12-24-5872 .
[CrossRef] [PubMed]

H. Inaba, Y. Daimon, F.-L. Hong, A. Onae, K. Minoshima, T. R. Schibli, H. Matsumoto, M. Hirano, T. Okuno, M. Onishi, and M. Nakazawa, “Long-term measurement of optical frequencies using a simple, robust and low-noise fiber based frequency comb,” Opt. Express 14(12), 5223–5231 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-12-5223 .
[CrossRef] [PubMed]

Y. Kim, S. Kim, Y.-J. Kim, H. Hussein, and S.-W. Kim, “Er-doped fiber frequency comb with mHz relative linewidth,” Opt. Express 17(14), 11972–11977 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-14-11972 .
[CrossRef] [PubMed]

Opt. Lett. (3)

Phys. Rev. Lett. (1)

Th. Udem, J. Reichert, R. Holzwarth, and T. W. Hänsch, “Absolute optical frequency measurement of the cesium D1 line with a mode-locked laser,” Phys. Rev. Lett. 82(18), 3568–3571 (1999).
[CrossRef]

Science (1)

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288(5466), 635–639 (2000).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Optical hardware configurations. (a) Overall system design to stabilize the fiber frequency comb of an Er-doped fiber femtosecond laser. (b) Spectrometer system to monitor the longer wavelength portion than 2 μm. The blue dotted line indicates the Tm:Ho-doped fiber to be added to redistribute the supercontinuum generated by the HNLF fiber. DCF: dispersion-compensating fiber, EDF: erbium-doped fiber, HNLF: highly nonlinear fiber, HWP: half-wave plate, F: optical filter, I: isolator, L: lens, LD: laser diode, LP: linear polarizer, LPF: 1500 nm long pass filter, PPLN: periodically poled lithium niobate, PD: photo-detector, WDM: wavelength division multiplexer.

Fig. 2
Fig. 2

Spectral redistribution of the supercontinuum. (a) Energy levels of the Tm3+ and Ho3+ ions in silica [Ref 11.]. Two absorption regions at 1.2 μm and 1.7 μm wavelengths and the emission region from 1.8 μm to 2.1 μm wavelengths permit redistributing the supercontinuum spectral power. (b) Original supercontinuum spectrum generated by a highly nonlinear fiber. (c) Redistributed spectrum using the Tm:Ho-doped fiber.

Fig. 3
Fig. 3

Experimental results of the second harmonics generated around 1030 nm wavelength using (a) Tm:Ho-doped fibers of different lengths, and (b) single-mode fiber.

Fig. 4
Fig. 4

Experimental results. (a) S/N ratio of fceo vs. fiber length. (b) Measured rf signal of fceo when a Tm:Ho-doped fiber of 12 cm length is added to redistribute the spectral power of generated supercontinuum.

Metrics