Abstract

We have demonstrated and characterized the generation of ultra broadband microwave frequency combs with an optical pulse-injected semiconductor laser. Through optical pulse injection, the microwave frequency combs generated in the slave laser (SL) have bandwidths greater than 20 GHz within a ±5 dB amplitude variation, which is almost 3-fold of the 7 GHz relaxation oscillation frequency of the laser used. The line spacing of the comb is tunable from 990 MHz to 2.6 GHz, determined by the repetition frequency of the injection optical pulses produced by the master laser (ML) with optoelectronic feedback. At an offset frequency of 200 kHz, a single sideband (SSB) phase noise of -60 dBc/kHz (-90 dBc/Hz estimated) in the 1st harmonic is measured while a noise suppression relative to the injected regular pulsing state of the ML of more than 25 dB in the 17th harmonic is achieved. A pulsewidth of 29 ps and a rms timing jitter of 18.7 ps are obtained in the time domain for the microwave frequency comb generated. Further stabilization is realized by modulating the ML at the fundamental frequency of the injected regular pulsing state. The feasibility of utilizing the generated microwave frequency comb in frequency conversion and signal broadcasting is also explored. The conversion gain of each channel increases linearly as the signal power increases with a ratio of about 0.81 dB/dBm.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. B. Simpson, J. M. Liu, K. F. Huang, and K. Tai, "Nonlinear dynamics induced by external optical injection in semiconductor lasers," Quantum Semiclassic. Opt. 9, 765-784 (1997).
    [CrossRef]
  2. A. Hohl and A. Gavrielides, "Bifurcation cascade in a semiconductor laser subject to optical feedback," Phys. Rev. Lett. 82, 1148-1151 (1999).
    [CrossRef]
  3. S. Tang and J. M. Liu, "Chaotic pulsing and quasi-periodic route to chaos in a semiconductor laser with delayed opto-electronic feedback," IEEE J. Quantum Electron. 37, 329-336 (2001).
    [CrossRef]
  4. S. C. Chan, R. Diaz, and J. M. Liu, "Novel photonic application of nonlinear semiconductor laser dynamics," Opt. Quantum Electron. 40, 83-95 (2008).
    [CrossRef]
  5. A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. Garcia-Ojalvo, C. R. Mirasso, L. Pesquera, and K. Alan Shore, "Chaos-based communications at high bit rates using commercial fibre-optic links," Nature 438, 343-346 (2005).
    [CrossRef] [PubMed]
  6. T. Yoshino, M. Nara, S. Mnatzakanian, B. S. Lee, and T. C. Strand, "Laser diode feedback interferometer for stabilization and displacement measurements," Appl. Opt. 26, 892-897 (1987).
    [CrossRef] [PubMed]
  7. S. K. Hwang, H. F. Chen, and C. T. Lin, "All-optical frequency conversion using nonlinear dynamics of semiconductor lasers," Opt. Lett. 34, 812-814 (2009).
    [CrossRef] [PubMed]
  8. F. Y. Lin and J. M. Liu, "Chaotic lidar," IEEE J. Sel. Top. Quantum Electron. 10, 991-997 (2004).
    [CrossRef]
  9. F. Y. Lin and J. M. Liu, "Chaotic radar using nonlinear laser dynamics," IEEE J. Quantum Electron. 40, 815-820 (2004).
    [CrossRef]
  10. W.W. Chow and S. Wieczorek, "Using chaos for remote sensing of laser radiation," Opt. Express. 17, 7491-7504 (2009).
    [CrossRef] [PubMed]
  11. S. C. Chan, G. Q. Xia, and J. M. Liu, "Optical generation of a precise microwave frequency comb by harmonic frequency locking," Opt. Lett. 32, 1917-1949 (2007).
    [CrossRef] [PubMed]
  12. C. B. Huang, S. G. Park, D. E. Leaird, and A. M. Weiner, "Nonlinear broadened phase-modulated continuouswave laser frequency combs characterized using DPSK decoding," Opt. Express 16, 2520-2527 (2008).
    [CrossRef] [PubMed]
  13. S. Bennett, B. Cai, E. Burr, O. Gough, and A. J. Seeds, "1.8-THz bandwidth, zero-frequency error, tunable optical comb generator for DWDM applications," IEEE Photon. Technol. Lett. 11, 551-553 (1999).
    [CrossRef]
  14. S. Ozharar, F. Quinlan, I. Ozdur, S. Gee, and P. J. Delfyett, "Ultraflat optical comb generation by phase-only modulation of continuous-wave light," IEEE Photon. Technol. Lett. 20, 36-38 (2008).
    [CrossRef]
  15. H. Y. Ryu, H. S. Moon, and H. S. Suh, "Optical frequency comb generator based on actively mode-locked fiber ring laser using an acousto-optic modulator with injection-seeding," Opt. Express 15, 11396-11401 (2007).
    [CrossRef] [PubMed]
  16. F. Quinlan, S. Ozharar, S. Gee, and P. J. Delfyett, "Harmonically mode-locked semiconductor-based lasers as high repetition rate ultralow noise pulse train and optical frequency comb sources," J. Opt. A: Pure Appl. Opt. 11, 103001-103023 (2009).
    [CrossRef]
  17. F. Y. Lin, S. Y. Tu, C. C. Huang, and S. M. Chang, "Nonlinear dynamics of semiconductor lasers under repetitive optical pulse injection," IEEE J. Sel. Top. Quantum Electron. 15, 604-611 (2009).
    [CrossRef]
  18. Y. S. Juan and F. Y. Lin, "Microwave-frequency-comb generation utilizing a semiconductor laser subject to optical pulse injection from an optoelectronic feedback laser," Opt. Lett. 34, 1636-1638 (2009).
    [CrossRef] [PubMed]
  19. For example, Picosecond Pulse Labs model 7112 comb generator.
  20. T. B. Simpson, J. M. Liu, and A. Gavrielides, "Bandwidth enhancement and broadband noise reduction in injection-locked semiconductor lasers," IEEE Photon. Technol. Lett. 1, 95-96 (1995).
  21. N. Schunk and K. Petermann, "Noise analysis of injection-locked semiconductor injection lasers," IEEE J. Quantum Electron. 22, 642-650 (1986).
    [CrossRef]
  22. From http://www.eu.anritsu.com/files/11410-00344.pdf
  23. T. Sakamoto, T. Kawanishi, and M. Izutsu, "Optoelectronic oscillator using a LiNbO3 phase modulator for selfoscillating frequency comb generation," Opt. Lett. 31, 811-813 (2006).
    [CrossRef] [PubMed]

2009 (5)

W.W. Chow and S. Wieczorek, "Using chaos for remote sensing of laser radiation," Opt. Express. 17, 7491-7504 (2009).
[CrossRef] [PubMed]

F. Quinlan, S. Ozharar, S. Gee, and P. J. Delfyett, "Harmonically mode-locked semiconductor-based lasers as high repetition rate ultralow noise pulse train and optical frequency comb sources," J. Opt. A: Pure Appl. Opt. 11, 103001-103023 (2009).
[CrossRef]

F. Y. Lin, S. Y. Tu, C. C. Huang, and S. M. Chang, "Nonlinear dynamics of semiconductor lasers under repetitive optical pulse injection," IEEE J. Sel. Top. Quantum Electron. 15, 604-611 (2009).
[CrossRef]

S. K. Hwang, H. F. Chen, and C. T. Lin, "All-optical frequency conversion using nonlinear dynamics of semiconductor lasers," Opt. Lett. 34, 812-814 (2009).
[CrossRef] [PubMed]

Y. S. Juan and F. Y. Lin, "Microwave-frequency-comb generation utilizing a semiconductor laser subject to optical pulse injection from an optoelectronic feedback laser," Opt. Lett. 34, 1636-1638 (2009).
[CrossRef] [PubMed]

2008 (3)

C. B. Huang, S. G. Park, D. E. Leaird, and A. M. Weiner, "Nonlinear broadened phase-modulated continuouswave laser frequency combs characterized using DPSK decoding," Opt. Express 16, 2520-2527 (2008).
[CrossRef] [PubMed]

S. Ozharar, F. Quinlan, I. Ozdur, S. Gee, and P. J. Delfyett, "Ultraflat optical comb generation by phase-only modulation of continuous-wave light," IEEE Photon. Technol. Lett. 20, 36-38 (2008).
[CrossRef]

S. C. Chan, R. Diaz, and J. M. Liu, "Novel photonic application of nonlinear semiconductor laser dynamics," Opt. Quantum Electron. 40, 83-95 (2008).
[CrossRef]

2007 (2)

2006 (1)

2005 (1)

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. Garcia-Ojalvo, C. R. Mirasso, L. Pesquera, and K. Alan Shore, "Chaos-based communications at high bit rates using commercial fibre-optic links," Nature 438, 343-346 (2005).
[CrossRef] [PubMed]

2004 (2)

F. Y. Lin and J. M. Liu, "Chaotic lidar," IEEE J. Sel. Top. Quantum Electron. 10, 991-997 (2004).
[CrossRef]

F. Y. Lin and J. M. Liu, "Chaotic radar using nonlinear laser dynamics," IEEE J. Quantum Electron. 40, 815-820 (2004).
[CrossRef]

2001 (1)

S. Tang and J. M. Liu, "Chaotic pulsing and quasi-periodic route to chaos in a semiconductor laser with delayed opto-electronic feedback," IEEE J. Quantum Electron. 37, 329-336 (2001).
[CrossRef]

1999 (2)

S. Bennett, B. Cai, E. Burr, O. Gough, and A. J. Seeds, "1.8-THz bandwidth, zero-frequency error, tunable optical comb generator for DWDM applications," IEEE Photon. Technol. Lett. 11, 551-553 (1999).
[CrossRef]

A. Hohl and A. Gavrielides, "Bifurcation cascade in a semiconductor laser subject to optical feedback," Phys. Rev. Lett. 82, 1148-1151 (1999).
[CrossRef]

1997 (1)

T. B. Simpson, J. M. Liu, K. F. Huang, and K. Tai, "Nonlinear dynamics induced by external optical injection in semiconductor lasers," Quantum Semiclassic. Opt. 9, 765-784 (1997).
[CrossRef]

1995 (1)

T. B. Simpson, J. M. Liu, and A. Gavrielides, "Bandwidth enhancement and broadband noise reduction in injection-locked semiconductor lasers," IEEE Photon. Technol. Lett. 1, 95-96 (1995).

1987 (1)

1986 (1)

N. Schunk and K. Petermann, "Noise analysis of injection-locked semiconductor injection lasers," IEEE J. Quantum Electron. 22, 642-650 (1986).
[CrossRef]

Alan Shore, K.

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. Garcia-Ojalvo, C. R. Mirasso, L. Pesquera, and K. Alan Shore, "Chaos-based communications at high bit rates using commercial fibre-optic links," Nature 438, 343-346 (2005).
[CrossRef] [PubMed]

Annovazzi-Lodi, V.

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. Garcia-Ojalvo, C. R. Mirasso, L. Pesquera, and K. Alan Shore, "Chaos-based communications at high bit rates using commercial fibre-optic links," Nature 438, 343-346 (2005).
[CrossRef] [PubMed]

Argyris, A.

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. Garcia-Ojalvo, C. R. Mirasso, L. Pesquera, and K. Alan Shore, "Chaos-based communications at high bit rates using commercial fibre-optic links," Nature 438, 343-346 (2005).
[CrossRef] [PubMed]

Bennett, S.

S. Bennett, B. Cai, E. Burr, O. Gough, and A. J. Seeds, "1.8-THz bandwidth, zero-frequency error, tunable optical comb generator for DWDM applications," IEEE Photon. Technol. Lett. 11, 551-553 (1999).
[CrossRef]

Burr, E.

S. Bennett, B. Cai, E. Burr, O. Gough, and A. J. Seeds, "1.8-THz bandwidth, zero-frequency error, tunable optical comb generator for DWDM applications," IEEE Photon. Technol. Lett. 11, 551-553 (1999).
[CrossRef]

Cai, B.

S. Bennett, B. Cai, E. Burr, O. Gough, and A. J. Seeds, "1.8-THz bandwidth, zero-frequency error, tunable optical comb generator for DWDM applications," IEEE Photon. Technol. Lett. 11, 551-553 (1999).
[CrossRef]

Chan, S. C.

S. C. Chan, R. Diaz, and J. M. Liu, "Novel photonic application of nonlinear semiconductor laser dynamics," Opt. Quantum Electron. 40, 83-95 (2008).
[CrossRef]

S. C. Chan, G. Q. Xia, and J. M. Liu, "Optical generation of a precise microwave frequency comb by harmonic frequency locking," Opt. Lett. 32, 1917-1949 (2007).
[CrossRef] [PubMed]

Chang, S. M.

F. Y. Lin, S. Y. Tu, C. C. Huang, and S. M. Chang, "Nonlinear dynamics of semiconductor lasers under repetitive optical pulse injection," IEEE J. Sel. Top. Quantum Electron. 15, 604-611 (2009).
[CrossRef]

Chen, H. F.

Chow, W.W.

W.W. Chow and S. Wieczorek, "Using chaos for remote sensing of laser radiation," Opt. Express. 17, 7491-7504 (2009).
[CrossRef] [PubMed]

Colet, P.

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. Garcia-Ojalvo, C. R. Mirasso, L. Pesquera, and K. Alan Shore, "Chaos-based communications at high bit rates using commercial fibre-optic links," Nature 438, 343-346 (2005).
[CrossRef] [PubMed]

Delfyett, P. J.

F. Quinlan, S. Ozharar, S. Gee, and P. J. Delfyett, "Harmonically mode-locked semiconductor-based lasers as high repetition rate ultralow noise pulse train and optical frequency comb sources," J. Opt. A: Pure Appl. Opt. 11, 103001-103023 (2009).
[CrossRef]

S. Ozharar, F. Quinlan, I. Ozdur, S. Gee, and P. J. Delfyett, "Ultraflat optical comb generation by phase-only modulation of continuous-wave light," IEEE Photon. Technol. Lett. 20, 36-38 (2008).
[CrossRef]

Diaz, R.

S. C. Chan, R. Diaz, and J. M. Liu, "Novel photonic application of nonlinear semiconductor laser dynamics," Opt. Quantum Electron. 40, 83-95 (2008).
[CrossRef]

Fischer, I.

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. Garcia-Ojalvo, C. R. Mirasso, L. Pesquera, and K. Alan Shore, "Chaos-based communications at high bit rates using commercial fibre-optic links," Nature 438, 343-346 (2005).
[CrossRef] [PubMed]

Garcia-Ojalvo, J.

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. Garcia-Ojalvo, C. R. Mirasso, L. Pesquera, and K. Alan Shore, "Chaos-based communications at high bit rates using commercial fibre-optic links," Nature 438, 343-346 (2005).
[CrossRef] [PubMed]

Gavrielides, A.

A. Hohl and A. Gavrielides, "Bifurcation cascade in a semiconductor laser subject to optical feedback," Phys. Rev. Lett. 82, 1148-1151 (1999).
[CrossRef]

T. B. Simpson, J. M. Liu, and A. Gavrielides, "Bandwidth enhancement and broadband noise reduction in injection-locked semiconductor lasers," IEEE Photon. Technol. Lett. 1, 95-96 (1995).

Gee, S.

F. Quinlan, S. Ozharar, S. Gee, and P. J. Delfyett, "Harmonically mode-locked semiconductor-based lasers as high repetition rate ultralow noise pulse train and optical frequency comb sources," J. Opt. A: Pure Appl. Opt. 11, 103001-103023 (2009).
[CrossRef]

S. Ozharar, F. Quinlan, I. Ozdur, S. Gee, and P. J. Delfyett, "Ultraflat optical comb generation by phase-only modulation of continuous-wave light," IEEE Photon. Technol. Lett. 20, 36-38 (2008).
[CrossRef]

Gough, O.

S. Bennett, B. Cai, E. Burr, O. Gough, and A. J. Seeds, "1.8-THz bandwidth, zero-frequency error, tunable optical comb generator for DWDM applications," IEEE Photon. Technol. Lett. 11, 551-553 (1999).
[CrossRef]

Hohl, A.

A. Hohl and A. Gavrielides, "Bifurcation cascade in a semiconductor laser subject to optical feedback," Phys. Rev. Lett. 82, 1148-1151 (1999).
[CrossRef]

Huang, C. B.

Huang, C. C.

F. Y. Lin, S. Y. Tu, C. C. Huang, and S. M. Chang, "Nonlinear dynamics of semiconductor lasers under repetitive optical pulse injection," IEEE J. Sel. Top. Quantum Electron. 15, 604-611 (2009).
[CrossRef]

Huang, K. F.

T. B. Simpson, J. M. Liu, K. F. Huang, and K. Tai, "Nonlinear dynamics induced by external optical injection in semiconductor lasers," Quantum Semiclassic. Opt. 9, 765-784 (1997).
[CrossRef]

Hwang, S. K.

Izutsu, M.

Juan, Y. S.

Kawanishi, T.

Larger, L.

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. Garcia-Ojalvo, C. R. Mirasso, L. Pesquera, and K. Alan Shore, "Chaos-based communications at high bit rates using commercial fibre-optic links," Nature 438, 343-346 (2005).
[CrossRef] [PubMed]

Leaird, D. E.

Lee, B. S.

Lin, C. T.

Lin, F. Y.

Y. S. Juan and F. Y. Lin, "Microwave-frequency-comb generation utilizing a semiconductor laser subject to optical pulse injection from an optoelectronic feedback laser," Opt. Lett. 34, 1636-1638 (2009).
[CrossRef] [PubMed]

F. Y. Lin, S. Y. Tu, C. C. Huang, and S. M. Chang, "Nonlinear dynamics of semiconductor lasers under repetitive optical pulse injection," IEEE J. Sel. Top. Quantum Electron. 15, 604-611 (2009).
[CrossRef]

F. Y. Lin and J. M. Liu, "Chaotic lidar," IEEE J. Sel. Top. Quantum Electron. 10, 991-997 (2004).
[CrossRef]

F. Y. Lin and J. M. Liu, "Chaotic radar using nonlinear laser dynamics," IEEE J. Quantum Electron. 40, 815-820 (2004).
[CrossRef]

Liu, J. M.

S. C. Chan, R. Diaz, and J. M. Liu, "Novel photonic application of nonlinear semiconductor laser dynamics," Opt. Quantum Electron. 40, 83-95 (2008).
[CrossRef]

S. C. Chan, G. Q. Xia, and J. M. Liu, "Optical generation of a precise microwave frequency comb by harmonic frequency locking," Opt. Lett. 32, 1917-1949 (2007).
[CrossRef] [PubMed]

F. Y. Lin and J. M. Liu, "Chaotic radar using nonlinear laser dynamics," IEEE J. Quantum Electron. 40, 815-820 (2004).
[CrossRef]

F. Y. Lin and J. M. Liu, "Chaotic lidar," IEEE J. Sel. Top. Quantum Electron. 10, 991-997 (2004).
[CrossRef]

S. Tang and J. M. Liu, "Chaotic pulsing and quasi-periodic route to chaos in a semiconductor laser with delayed opto-electronic feedback," IEEE J. Quantum Electron. 37, 329-336 (2001).
[CrossRef]

T. B. Simpson, J. M. Liu, K. F. Huang, and K. Tai, "Nonlinear dynamics induced by external optical injection in semiconductor lasers," Quantum Semiclassic. Opt. 9, 765-784 (1997).
[CrossRef]

T. B. Simpson, J. M. Liu, and A. Gavrielides, "Bandwidth enhancement and broadband noise reduction in injection-locked semiconductor lasers," IEEE Photon. Technol. Lett. 1, 95-96 (1995).

Mirasso, C. R.

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. Garcia-Ojalvo, C. R. Mirasso, L. Pesquera, and K. Alan Shore, "Chaos-based communications at high bit rates using commercial fibre-optic links," Nature 438, 343-346 (2005).
[CrossRef] [PubMed]

Mnatzakanian, S.

Moon, H. S.

Nara, M.

Ozdur, I.

S. Ozharar, F. Quinlan, I. Ozdur, S. Gee, and P. J. Delfyett, "Ultraflat optical comb generation by phase-only modulation of continuous-wave light," IEEE Photon. Technol. Lett. 20, 36-38 (2008).
[CrossRef]

Ozharar, S.

F. Quinlan, S. Ozharar, S. Gee, and P. J. Delfyett, "Harmonically mode-locked semiconductor-based lasers as high repetition rate ultralow noise pulse train and optical frequency comb sources," J. Opt. A: Pure Appl. Opt. 11, 103001-103023 (2009).
[CrossRef]

S. Ozharar, F. Quinlan, I. Ozdur, S. Gee, and P. J. Delfyett, "Ultraflat optical comb generation by phase-only modulation of continuous-wave light," IEEE Photon. Technol. Lett. 20, 36-38 (2008).
[CrossRef]

Park, S. G.

Pesquera, L.

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. Garcia-Ojalvo, C. R. Mirasso, L. Pesquera, and K. Alan Shore, "Chaos-based communications at high bit rates using commercial fibre-optic links," Nature 438, 343-346 (2005).
[CrossRef] [PubMed]

Petermann, K.

N. Schunk and K. Petermann, "Noise analysis of injection-locked semiconductor injection lasers," IEEE J. Quantum Electron. 22, 642-650 (1986).
[CrossRef]

Quinlan, F.

F. Quinlan, S. Ozharar, S. Gee, and P. J. Delfyett, "Harmonically mode-locked semiconductor-based lasers as high repetition rate ultralow noise pulse train and optical frequency comb sources," J. Opt. A: Pure Appl. Opt. 11, 103001-103023 (2009).
[CrossRef]

S. Ozharar, F. Quinlan, I. Ozdur, S. Gee, and P. J. Delfyett, "Ultraflat optical comb generation by phase-only modulation of continuous-wave light," IEEE Photon. Technol. Lett. 20, 36-38 (2008).
[CrossRef]

Ryu, H. Y.

Sakamoto, T.

Schunk, N.

N. Schunk and K. Petermann, "Noise analysis of injection-locked semiconductor injection lasers," IEEE J. Quantum Electron. 22, 642-650 (1986).
[CrossRef]

Seeds, A. J.

S. Bennett, B. Cai, E. Burr, O. Gough, and A. J. Seeds, "1.8-THz bandwidth, zero-frequency error, tunable optical comb generator for DWDM applications," IEEE Photon. Technol. Lett. 11, 551-553 (1999).
[CrossRef]

Simpson, T. B.

T. B. Simpson, J. M. Liu, K. F. Huang, and K. Tai, "Nonlinear dynamics induced by external optical injection in semiconductor lasers," Quantum Semiclassic. Opt. 9, 765-784 (1997).
[CrossRef]

T. B. Simpson, J. M. Liu, and A. Gavrielides, "Bandwidth enhancement and broadband noise reduction in injection-locked semiconductor lasers," IEEE Photon. Technol. Lett. 1, 95-96 (1995).

Strand, T. C.

Suh, H. S.

Syvridis, D.

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. Garcia-Ojalvo, C. R. Mirasso, L. Pesquera, and K. Alan Shore, "Chaos-based communications at high bit rates using commercial fibre-optic links," Nature 438, 343-346 (2005).
[CrossRef] [PubMed]

Tai, K.

T. B. Simpson, J. M. Liu, K. F. Huang, and K. Tai, "Nonlinear dynamics induced by external optical injection in semiconductor lasers," Quantum Semiclassic. Opt. 9, 765-784 (1997).
[CrossRef]

Tang, S.

S. Tang and J. M. Liu, "Chaotic pulsing and quasi-periodic route to chaos in a semiconductor laser with delayed opto-electronic feedback," IEEE J. Quantum Electron. 37, 329-336 (2001).
[CrossRef]

Tu, S. Y.

F. Y. Lin, S. Y. Tu, C. C. Huang, and S. M. Chang, "Nonlinear dynamics of semiconductor lasers under repetitive optical pulse injection," IEEE J. Sel. Top. Quantum Electron. 15, 604-611 (2009).
[CrossRef]

Weiner, A. M.

Wieczorek, S.

W.W. Chow and S. Wieczorek, "Using chaos for remote sensing of laser radiation," Opt. Express. 17, 7491-7504 (2009).
[CrossRef] [PubMed]

Xia, G. Q.

Yoshino, T.

Appl. Opt. (1)

IEEE J. Quantum Electron. (3)

N. Schunk and K. Petermann, "Noise analysis of injection-locked semiconductor injection lasers," IEEE J. Quantum Electron. 22, 642-650 (1986).
[CrossRef]

S. Tang and J. M. Liu, "Chaotic pulsing and quasi-periodic route to chaos in a semiconductor laser with delayed opto-electronic feedback," IEEE J. Quantum Electron. 37, 329-336 (2001).
[CrossRef]

F. Y. Lin and J. M. Liu, "Chaotic radar using nonlinear laser dynamics," IEEE J. Quantum Electron. 40, 815-820 (2004).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (2)

F. Y. Lin and J. M. Liu, "Chaotic lidar," IEEE J. Sel. Top. Quantum Electron. 10, 991-997 (2004).
[CrossRef]

F. Y. Lin, S. Y. Tu, C. C. Huang, and S. M. Chang, "Nonlinear dynamics of semiconductor lasers under repetitive optical pulse injection," IEEE J. Sel. Top. Quantum Electron. 15, 604-611 (2009).
[CrossRef]

IEEE Photon. Technol. Lett. (3)

S. Bennett, B. Cai, E. Burr, O. Gough, and A. J. Seeds, "1.8-THz bandwidth, zero-frequency error, tunable optical comb generator for DWDM applications," IEEE Photon. Technol. Lett. 11, 551-553 (1999).
[CrossRef]

S. Ozharar, F. Quinlan, I. Ozdur, S. Gee, and P. J. Delfyett, "Ultraflat optical comb generation by phase-only modulation of continuous-wave light," IEEE Photon. Technol. Lett. 20, 36-38 (2008).
[CrossRef]

T. B. Simpson, J. M. Liu, and A. Gavrielides, "Bandwidth enhancement and broadband noise reduction in injection-locked semiconductor lasers," IEEE Photon. Technol. Lett. 1, 95-96 (1995).

J. Opt. A: Pure Appl. Opt. (1)

F. Quinlan, S. Ozharar, S. Gee, and P. J. Delfyett, "Harmonically mode-locked semiconductor-based lasers as high repetition rate ultralow noise pulse train and optical frequency comb sources," J. Opt. A: Pure Appl. Opt. 11, 103001-103023 (2009).
[CrossRef]

Nature (1)

A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. Garcia-Ojalvo, C. R. Mirasso, L. Pesquera, and K. Alan Shore, "Chaos-based communications at high bit rates using commercial fibre-optic links," Nature 438, 343-346 (2005).
[CrossRef] [PubMed]

Opt. Express (2)

Opt. Express. (1)

W.W. Chow and S. Wieczorek, "Using chaos for remote sensing of laser radiation," Opt. Express. 17, 7491-7504 (2009).
[CrossRef] [PubMed]

Opt. Lett. (4)

Opt. Quantum Electron. (1)

S. C. Chan, R. Diaz, and J. M. Liu, "Novel photonic application of nonlinear semiconductor laser dynamics," Opt. Quantum Electron. 40, 83-95 (2008).
[CrossRef]

Phys. Rev. Lett. (1)

A. Hohl and A. Gavrielides, "Bifurcation cascade in a semiconductor laser subject to optical feedback," Phys. Rev. Lett. 82, 1148-1151 (1999).
[CrossRef]

Quantum Semiclassic. Opt. (1)

T. B. Simpson, J. M. Liu, K. F. Huang, and K. Tai, "Nonlinear dynamics induced by external optical injection in semiconductor lasers," Quantum Semiclassic. Opt. 9, 765-784 (1997).
[CrossRef]

Other (2)

From http://www.eu.anritsu.com/files/11410-00344.pdf

For example, Picosecond Pulse Labs model 7112 comb generator.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Experimental setup of the microwave frequency comb generation system. The slave laser (SL) is optically injected by the regular pulsing state from a master laser (ML) subject to optoelectronic feedback. PD: photodetector, OI: optical isolator, BS: beamsplitter, PBS: polarizing beamsplitter, HW: half-wave plate, VA: variable attenuator, FR: Faraday rotator, and A: amplifier. Solid and dashed lines indicate optical and electrical paths, respectively.

Fig. 2.
Fig. 2.

(a) Power spectrum and (b) corresponding pulse train of the regular pulsing state in the ML subject to optoelectronic feedback and (c) power spectrum and (d) corresponded pulse train of the microwave frequency comb generated in the SL with J=30 mA, ξi =0.31, and Ω=8.2 GHz.

Fig. 3.
Fig. 3.

Power spectra of (a) the ML and (b) the SL when the ML is current modulated at 1.15 GHz without the optoelectronic feedback.

Fig. 4.
Fig. 4.

(a) Power spectrum and (b) corresponding pulse train of the regular pulsing state in the ML subject to optoelectronic feedback and (c) power spectrum and (d) corresponding pulse train of the microwave frequency comb generated in the SL with J=30 mA, ξi =0.31, and Ω=8.2 GHz. The ML is current modulated at the 1 st harmonic frequency of 1.15 GHz.

Fig. 5.
Fig. 5.

Power spectra of the 1 st harmonics of the regular pulsing state of the ML (a) without and (c) with the modulation and the generated microwave frequency comb in the SL (b) without and (d) with the modulation. The arrows mark the 3-dB spectral linewidths.

Fig. 6.
Fig. 6.

(Color online) SSB phase noise of (a) the 1 st and (b) the 17 th harmonics of the regular pulsing state of the ML (dotted curves) and the microwave frequency comb of the SL (solid curves) with (black) and without (red) the modulation.

Fig. 7.
Fig. 7.

(Color online) (a) Power spectrum of the microwave frequency comb (green) with exactly 1.0 GHz line spacing generated with J=28.3 mA, ξi =0.31, and Ω=11.7 GHz and the spectrum after introducing a sinusoidal signal at the 6th harmonic (black). (b) Conversion gain of each channel for different signal power. The solid lines are the linear fittings.

Metrics