Abstract

We present two types of metamaterial-based spectral band-pass filters for the terahertz (THz) frequency range. The metamaterials are specifically designed to operate for waves at normal incidence and to be independent of the field polarization. The functional structures are embedded in films of benzocyclobutene (BCB) resulting in large-area, free-standing and flexible membranes with low intrinsic loss. The proposed filters are investigated by THz time-domain spectroscopy and show a pronounced transmission peak with over 80% amplitude transmission in the passband and a transmission rejection down to the noise level in the stopbands. The measurements are supported by numerical simulations which evidence that the high transmission response is related to the excitation of trapped modes.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. D. Veselago, “The electrodynamics of substances with simultaneously negative values of ε and µ,” Soviet Physics Uspekhi 10, 509–514 (1968).
    [CrossRef]
  2. D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite Medium with Simultaneously Negative Permeability and Permittivity,” Phys. Rev. Lett. 84, 4184–4187 (2000).
    [CrossRef] [PubMed]
  3. J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling Electromagnetic Fields,” Science 312, 1780–1782 (2006).
    [CrossRef] [PubMed]
  4. J. Li and J. B. Pendry, “Hiding under the Carpet: A New Strategy for Cloaking,” Phys. Rev. Lett. 101, 203,901 (2008).
    [CrossRef]
  5. A. C. Strikwerda, K. Fan, H. Tao, D. V. Pilon, X. Zhang, and R. D. Averitt, “Comparison of birefringent electric split-ring resonator and meanderline structures as quarter-wave plates at terahertz frequencies,” Opt. Express 17(1), 136–149 (2009).
    [CrossRef]
  6. W. J. Padilla, H.-T. Chen, J. Zide, A. Gossard, A. Taylor, and R. Averitt, “Active terahertz metamaterial devices,” Nature 444, 597 (2006).
    [CrossRef] [PubMed]
  7. H.-T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nature Photon. 3, 148 (2009).
    [CrossRef]
  8. W. L. Chan, H.-T. Chen, A. J. Taylor, I. Brener, M. J. Cich, and D. M. Mittleman, “A spatial light modulator for terahertz beams,” Appl. Phys. Lett. 94, 213,511 (2009).
    [CrossRef]
  9. V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp Trapped-Mode Resonances in Planar Metamaterials with a Broken Structural Symmetry,” Phys. Rev. Lett. 99, 147,401 (2007).
    [CrossRef]
  10. S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-Induced Transparency in Metamaterials,” Phys. Rev. Lett. 101, 047,401 (2008).
  11. N. Papasimakis, V. A. Fedotov, S. L. Prosvirnin, and N. I. Zheludev, “Metamaterial Analog of Electromagnetically Induced Transparency,” Phys. Rev. Lett. 101, 253,903 (2008).
    [CrossRef]
  12. P. Tassin, L. Zhang, T. Koschny, E. N. Economou, and C. M. Soukoulis, “Low-Loss Metamaterials Based on Classical Electromagnetically Induced Transparency,” Phys. Rev. Lett. 102, 053,901 (2009).
    [CrossRef]
  13. N. Liu, L. Langguth, T. Weiss, J. Kaestel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8, 758–762 (2009).
    [CrossRef] [PubMed]
  14. S. E. Harris, J. E. Field, and A. Imamoglu, “Nonlinear optical processes using electromagnetically induced transparency,” Phys. Rev. Lett. 64, 1107–1110 (1990).
    [CrossRef] [PubMed]
  15. C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature 409, 490–493 (2001).
    [CrossRef] [PubMed]
  16. B. A. Munk, Frequency Selective Surfaces: Theory and Design. (New York: Wiley-Interscience, 2000).
    [CrossRef]
  17. N. Behdad and K. Sarabandi, “A Frequency Selective Surface With Miniaturized Elements,” IEEE Transactions on Antennas and Propagation 55(5), 1239–1245 (2007).
  18. A. Mackay, “Proof of polarisation independence and nonexistence of crosspolar terms for targets presenting n-fold (n>2) rotational symmetry with special reference to frequency-selective surfaces,” Electron. Lett. 25(24), 1624–1625 (1989).
    [CrossRef]
  19. O. Paul, C. Imhof, B. Reinhard, R. Zengerle, and R. Beigang, “Negative index bulk metamaterial at terahertz frequencies,” Opt. Express 16(9), 6736–6744 (2008).
    [CrossRef]
  20. X. Chen, T. M. Grzegorczyk, B.-I. Wu, J. Pacheco, and J. A. Kong, “Robust method to retrieve the constitutive effective parameters of metamaterials,” Phys. Rev. E 70, 016,608 (2004).
    [CrossRef]

2009 (5)

A. C. Strikwerda, K. Fan, H. Tao, D. V. Pilon, X. Zhang, and R. D. Averitt, “Comparison of birefringent electric split-ring resonator and meanderline structures as quarter-wave plates at terahertz frequencies,” Opt. Express 17(1), 136–149 (2009).
[CrossRef]

H.-T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nature Photon. 3, 148 (2009).
[CrossRef]

W. L. Chan, H.-T. Chen, A. J. Taylor, I. Brener, M. J. Cich, and D. M. Mittleman, “A spatial light modulator for terahertz beams,” Appl. Phys. Lett. 94, 213,511 (2009).
[CrossRef]

P. Tassin, L. Zhang, T. Koschny, E. N. Economou, and C. M. Soukoulis, “Low-Loss Metamaterials Based on Classical Electromagnetically Induced Transparency,” Phys. Rev. Lett. 102, 053,901 (2009).
[CrossRef]

N. Liu, L. Langguth, T. Weiss, J. Kaestel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8, 758–762 (2009).
[CrossRef] [PubMed]

2008 (4)

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-Induced Transparency in Metamaterials,” Phys. Rev. Lett. 101, 047,401 (2008).

N. Papasimakis, V. A. Fedotov, S. L. Prosvirnin, and N. I. Zheludev, “Metamaterial Analog of Electromagnetically Induced Transparency,” Phys. Rev. Lett. 101, 253,903 (2008).
[CrossRef]

O. Paul, C. Imhof, B. Reinhard, R. Zengerle, and R. Beigang, “Negative index bulk metamaterial at terahertz frequencies,” Opt. Express 16(9), 6736–6744 (2008).
[CrossRef]

J. Li and J. B. Pendry, “Hiding under the Carpet: A New Strategy for Cloaking,” Phys. Rev. Lett. 101, 203,901 (2008).
[CrossRef]

2007 (2)

V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp Trapped-Mode Resonances in Planar Metamaterials with a Broken Structural Symmetry,” Phys. Rev. Lett. 99, 147,401 (2007).
[CrossRef]

N. Behdad and K. Sarabandi, “A Frequency Selective Surface With Miniaturized Elements,” IEEE Transactions on Antennas and Propagation 55(5), 1239–1245 (2007).

2006 (2)

W. J. Padilla, H.-T. Chen, J. Zide, A. Gossard, A. Taylor, and R. Averitt, “Active terahertz metamaterial devices,” Nature 444, 597 (2006).
[CrossRef] [PubMed]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling Electromagnetic Fields,” Science 312, 1780–1782 (2006).
[CrossRef] [PubMed]

2004 (1)

X. Chen, T. M. Grzegorczyk, B.-I. Wu, J. Pacheco, and J. A. Kong, “Robust method to retrieve the constitutive effective parameters of metamaterials,” Phys. Rev. E 70, 016,608 (2004).
[CrossRef]

2001 (1)

C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature 409, 490–493 (2001).
[CrossRef] [PubMed]

2000 (1)

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite Medium with Simultaneously Negative Permeability and Permittivity,” Phys. Rev. Lett. 84, 4184–4187 (2000).
[CrossRef] [PubMed]

1990 (1)

S. E. Harris, J. E. Field, and A. Imamoglu, “Nonlinear optical processes using electromagnetically induced transparency,” Phys. Rev. Lett. 64, 1107–1110 (1990).
[CrossRef] [PubMed]

1989 (1)

A. Mackay, “Proof of polarisation independence and nonexistence of crosspolar terms for targets presenting n-fold (n>2) rotational symmetry with special reference to frequency-selective surfaces,” Electron. Lett. 25(24), 1624–1625 (1989).
[CrossRef]

1968 (1)

V. D. Veselago, “The electrodynamics of substances with simultaneously negative values of ε and µ,” Soviet Physics Uspekhi 10, 509–514 (1968).
[CrossRef]

Averitt, R.

W. J. Padilla, H.-T. Chen, J. Zide, A. Gossard, A. Taylor, and R. Averitt, “Active terahertz metamaterial devices,” Nature 444, 597 (2006).
[CrossRef] [PubMed]

Averitt, R. D.

A. C. Strikwerda, K. Fan, H. Tao, D. V. Pilon, X. Zhang, and R. D. Averitt, “Comparison of birefringent electric split-ring resonator and meanderline structures as quarter-wave plates at terahertz frequencies,” Opt. Express 17(1), 136–149 (2009).
[CrossRef]

H.-T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nature Photon. 3, 148 (2009).
[CrossRef]

Azad, A. K.

H.-T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nature Photon. 3, 148 (2009).
[CrossRef]

Behdad, N.

N. Behdad and K. Sarabandi, “A Frequency Selective Surface With Miniaturized Elements,” IEEE Transactions on Antennas and Propagation 55(5), 1239–1245 (2007).

Behroozi, C. H.

C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature 409, 490–493 (2001).
[CrossRef] [PubMed]

Beigang, R.

O. Paul, C. Imhof, B. Reinhard, R. Zengerle, and R. Beigang, “Negative index bulk metamaterial at terahertz frequencies,” Opt. Express 16(9), 6736–6744 (2008).
[CrossRef]

Brener, I.

W. L. Chan, H.-T. Chen, A. J. Taylor, I. Brener, M. J. Cich, and D. M. Mittleman, “A spatial light modulator for terahertz beams,” Appl. Phys. Lett. 94, 213,511 (2009).
[CrossRef]

Chan, W. L.

W. L. Chan, H.-T. Chen, A. J. Taylor, I. Brener, M. J. Cich, and D. M. Mittleman, “A spatial light modulator for terahertz beams,” Appl. Phys. Lett. 94, 213,511 (2009).
[CrossRef]

Chen, H.-T.

W. L. Chan, H.-T. Chen, A. J. Taylor, I. Brener, M. J. Cich, and D. M. Mittleman, “A spatial light modulator for terahertz beams,” Appl. Phys. Lett. 94, 213,511 (2009).
[CrossRef]

H.-T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nature Photon. 3, 148 (2009).
[CrossRef]

W. J. Padilla, H.-T. Chen, J. Zide, A. Gossard, A. Taylor, and R. Averitt, “Active terahertz metamaterial devices,” Nature 444, 597 (2006).
[CrossRef] [PubMed]

Chen, X.

X. Chen, T. M. Grzegorczyk, B.-I. Wu, J. Pacheco, and J. A. Kong, “Robust method to retrieve the constitutive effective parameters of metamaterials,” Phys. Rev. E 70, 016,608 (2004).
[CrossRef]

Cich, M. J.

H.-T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nature Photon. 3, 148 (2009).
[CrossRef]

W. L. Chan, H.-T. Chen, A. J. Taylor, I. Brener, M. J. Cich, and D. M. Mittleman, “A spatial light modulator for terahertz beams,” Appl. Phys. Lett. 94, 213,511 (2009).
[CrossRef]

Dutton, Z.

C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature 409, 490–493 (2001).
[CrossRef] [PubMed]

Economou, E. N.

P. Tassin, L. Zhang, T. Koschny, E. N. Economou, and C. M. Soukoulis, “Low-Loss Metamaterials Based on Classical Electromagnetically Induced Transparency,” Phys. Rev. Lett. 102, 053,901 (2009).
[CrossRef]

Fan, K.

A. C. Strikwerda, K. Fan, H. Tao, D. V. Pilon, X. Zhang, and R. D. Averitt, “Comparison of birefringent electric split-ring resonator and meanderline structures as quarter-wave plates at terahertz frequencies,” Opt. Express 17(1), 136–149 (2009).
[CrossRef]

Fedotov, V. A.

N. Papasimakis, V. A. Fedotov, S. L. Prosvirnin, and N. I. Zheludev, “Metamaterial Analog of Electromagnetically Induced Transparency,” Phys. Rev. Lett. 101, 253,903 (2008).
[CrossRef]

V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp Trapped-Mode Resonances in Planar Metamaterials with a Broken Structural Symmetry,” Phys. Rev. Lett. 99, 147,401 (2007).
[CrossRef]

Field, J. E.

S. E. Harris, J. E. Field, and A. Imamoglu, “Nonlinear optical processes using electromagnetically induced transparency,” Phys. Rev. Lett. 64, 1107–1110 (1990).
[CrossRef] [PubMed]

Fleischhauer, M.

N. Liu, L. Langguth, T. Weiss, J. Kaestel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8, 758–762 (2009).
[CrossRef] [PubMed]

Genov, D. A.

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-Induced Transparency in Metamaterials,” Phys. Rev. Lett. 101, 047,401 (2008).

Giessen, H.

N. Liu, L. Langguth, T. Weiss, J. Kaestel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8, 758–762 (2009).
[CrossRef] [PubMed]

Gossard, A.

W. J. Padilla, H.-T. Chen, J. Zide, A. Gossard, A. Taylor, and R. Averitt, “Active terahertz metamaterial devices,” Nature 444, 597 (2006).
[CrossRef] [PubMed]

Grzegorczyk, T. M.

X. Chen, T. M. Grzegorczyk, B.-I. Wu, J. Pacheco, and J. A. Kong, “Robust method to retrieve the constitutive effective parameters of metamaterials,” Phys. Rev. E 70, 016,608 (2004).
[CrossRef]

Harris, S. E.

S. E. Harris, J. E. Field, and A. Imamoglu, “Nonlinear optical processes using electromagnetically induced transparency,” Phys. Rev. Lett. 64, 1107–1110 (1990).
[CrossRef] [PubMed]

Hau, L. V.

C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature 409, 490–493 (2001).
[CrossRef] [PubMed]

Imamoglu, A.

S. E. Harris, J. E. Field, and A. Imamoglu, “Nonlinear optical processes using electromagnetically induced transparency,” Phys. Rev. Lett. 64, 1107–1110 (1990).
[CrossRef] [PubMed]

Imhof, C.

O. Paul, C. Imhof, B. Reinhard, R. Zengerle, and R. Beigang, “Negative index bulk metamaterial at terahertz frequencies,” Opt. Express 16(9), 6736–6744 (2008).
[CrossRef]

Kaestel, J.

N. Liu, L. Langguth, T. Weiss, J. Kaestel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8, 758–762 (2009).
[CrossRef] [PubMed]

Kong, J. A.

X. Chen, T. M. Grzegorczyk, B.-I. Wu, J. Pacheco, and J. A. Kong, “Robust method to retrieve the constitutive effective parameters of metamaterials,” Phys. Rev. E 70, 016,608 (2004).
[CrossRef]

Koschny, T.

P. Tassin, L. Zhang, T. Koschny, E. N. Economou, and C. M. Soukoulis, “Low-Loss Metamaterials Based on Classical Electromagnetically Induced Transparency,” Phys. Rev. Lett. 102, 053,901 (2009).
[CrossRef]

Langguth, L.

N. Liu, L. Langguth, T. Weiss, J. Kaestel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8, 758–762 (2009).
[CrossRef] [PubMed]

Li, J.

J. Li and J. B. Pendry, “Hiding under the Carpet: A New Strategy for Cloaking,” Phys. Rev. Lett. 101, 203,901 (2008).
[CrossRef]

Liu, C.

C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature 409, 490–493 (2001).
[CrossRef] [PubMed]

Liu, M.

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-Induced Transparency in Metamaterials,” Phys. Rev. Lett. 101, 047,401 (2008).

Liu, N.

N. Liu, L. Langguth, T. Weiss, J. Kaestel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8, 758–762 (2009).
[CrossRef] [PubMed]

Mackay, A.

A. Mackay, “Proof of polarisation independence and nonexistence of crosspolar terms for targets presenting n-fold (n>2) rotational symmetry with special reference to frequency-selective surfaces,” Electron. Lett. 25(24), 1624–1625 (1989).
[CrossRef]

Mittleman, D. M.

W. L. Chan, H.-T. Chen, A. J. Taylor, I. Brener, M. J. Cich, and D. M. Mittleman, “A spatial light modulator for terahertz beams,” Appl. Phys. Lett. 94, 213,511 (2009).
[CrossRef]

Munk, B. A.

B. A. Munk, Frequency Selective Surfaces: Theory and Design. (New York: Wiley-Interscience, 2000).
[CrossRef]

Nemat-Nasser, S. C.

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite Medium with Simultaneously Negative Permeability and Permittivity,” Phys. Rev. Lett. 84, 4184–4187 (2000).
[CrossRef] [PubMed]

Pacheco, J.

X. Chen, T. M. Grzegorczyk, B.-I. Wu, J. Pacheco, and J. A. Kong, “Robust method to retrieve the constitutive effective parameters of metamaterials,” Phys. Rev. E 70, 016,608 (2004).
[CrossRef]

Padilla, W. J.

H.-T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nature Photon. 3, 148 (2009).
[CrossRef]

W. J. Padilla, H.-T. Chen, J. Zide, A. Gossard, A. Taylor, and R. Averitt, “Active terahertz metamaterial devices,” Nature 444, 597 (2006).
[CrossRef] [PubMed]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite Medium with Simultaneously Negative Permeability and Permittivity,” Phys. Rev. Lett. 84, 4184–4187 (2000).
[CrossRef] [PubMed]

Papasimakis, N.

N. Papasimakis, V. A. Fedotov, S. L. Prosvirnin, and N. I. Zheludev, “Metamaterial Analog of Electromagnetically Induced Transparency,” Phys. Rev. Lett. 101, 253,903 (2008).
[CrossRef]

V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp Trapped-Mode Resonances in Planar Metamaterials with a Broken Structural Symmetry,” Phys. Rev. Lett. 99, 147,401 (2007).
[CrossRef]

Paul, O.

O. Paul, C. Imhof, B. Reinhard, R. Zengerle, and R. Beigang, “Negative index bulk metamaterial at terahertz frequencies,” Opt. Express 16(9), 6736–6744 (2008).
[CrossRef]

Pendry, J. B.

J. Li and J. B. Pendry, “Hiding under the Carpet: A New Strategy for Cloaking,” Phys. Rev. Lett. 101, 203,901 (2008).
[CrossRef]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling Electromagnetic Fields,” Science 312, 1780–1782 (2006).
[CrossRef] [PubMed]

Pfau, T.

N. Liu, L. Langguth, T. Weiss, J. Kaestel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8, 758–762 (2009).
[CrossRef] [PubMed]

Pilon, D. V.

A. C. Strikwerda, K. Fan, H. Tao, D. V. Pilon, X. Zhang, and R. D. Averitt, “Comparison of birefringent electric split-ring resonator and meanderline structures as quarter-wave plates at terahertz frequencies,” Opt. Express 17(1), 136–149 (2009).
[CrossRef]

Prosvirnin, S. L.

N. Papasimakis, V. A. Fedotov, S. L. Prosvirnin, and N. I. Zheludev, “Metamaterial Analog of Electromagnetically Induced Transparency,” Phys. Rev. Lett. 101, 253,903 (2008).
[CrossRef]

V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp Trapped-Mode Resonances in Planar Metamaterials with a Broken Structural Symmetry,” Phys. Rev. Lett. 99, 147,401 (2007).
[CrossRef]

Reinhard, B.

O. Paul, C. Imhof, B. Reinhard, R. Zengerle, and R. Beigang, “Negative index bulk metamaterial at terahertz frequencies,” Opt. Express 16(9), 6736–6744 (2008).
[CrossRef]

Rose, M.

V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp Trapped-Mode Resonances in Planar Metamaterials with a Broken Structural Symmetry,” Phys. Rev. Lett. 99, 147,401 (2007).
[CrossRef]

Sarabandi, K.

N. Behdad and K. Sarabandi, “A Frequency Selective Surface With Miniaturized Elements,” IEEE Transactions on Antennas and Propagation 55(5), 1239–1245 (2007).

Schultz, S.

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite Medium with Simultaneously Negative Permeability and Permittivity,” Phys. Rev. Lett. 84, 4184–4187 (2000).
[CrossRef] [PubMed]

Schurig, D.

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling Electromagnetic Fields,” Science 312, 1780–1782 (2006).
[CrossRef] [PubMed]

Smith, D. R.

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling Electromagnetic Fields,” Science 312, 1780–1782 (2006).
[CrossRef] [PubMed]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite Medium with Simultaneously Negative Permeability and Permittivity,” Phys. Rev. Lett. 84, 4184–4187 (2000).
[CrossRef] [PubMed]

Soukoulis, C. M.

P. Tassin, L. Zhang, T. Koschny, E. N. Economou, and C. M. Soukoulis, “Low-Loss Metamaterials Based on Classical Electromagnetically Induced Transparency,” Phys. Rev. Lett. 102, 053,901 (2009).
[CrossRef]

Strikwerda, A. C.

A. C. Strikwerda, K. Fan, H. Tao, D. V. Pilon, X. Zhang, and R. D. Averitt, “Comparison of birefringent electric split-ring resonator and meanderline structures as quarter-wave plates at terahertz frequencies,” Opt. Express 17(1), 136–149 (2009).
[CrossRef]

Tao, H.

A. C. Strikwerda, K. Fan, H. Tao, D. V. Pilon, X. Zhang, and R. D. Averitt, “Comparison of birefringent electric split-ring resonator and meanderline structures as quarter-wave plates at terahertz frequencies,” Opt. Express 17(1), 136–149 (2009).
[CrossRef]

Tassin, P.

P. Tassin, L. Zhang, T. Koschny, E. N. Economou, and C. M. Soukoulis, “Low-Loss Metamaterials Based on Classical Electromagnetically Induced Transparency,” Phys. Rev. Lett. 102, 053,901 (2009).
[CrossRef]

Taylor, A.

W. J. Padilla, H.-T. Chen, J. Zide, A. Gossard, A. Taylor, and R. Averitt, “Active terahertz metamaterial devices,” Nature 444, 597 (2006).
[CrossRef] [PubMed]

Taylor, A. J.

W. L. Chan, H.-T. Chen, A. J. Taylor, I. Brener, M. J. Cich, and D. M. Mittleman, “A spatial light modulator for terahertz beams,” Appl. Phys. Lett. 94, 213,511 (2009).
[CrossRef]

H.-T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nature Photon. 3, 148 (2009).
[CrossRef]

Veselago, V. D.

V. D. Veselago, “The electrodynamics of substances with simultaneously negative values of ε and µ,” Soviet Physics Uspekhi 10, 509–514 (1968).
[CrossRef]

Vier, D. C.

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite Medium with Simultaneously Negative Permeability and Permittivity,” Phys. Rev. Lett. 84, 4184–4187 (2000).
[CrossRef] [PubMed]

Wang, Y.

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-Induced Transparency in Metamaterials,” Phys. Rev. Lett. 101, 047,401 (2008).

Weiss, T.

N. Liu, L. Langguth, T. Weiss, J. Kaestel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8, 758–762 (2009).
[CrossRef] [PubMed]

Wu, B.-I.

X. Chen, T. M. Grzegorczyk, B.-I. Wu, J. Pacheco, and J. A. Kong, “Robust method to retrieve the constitutive effective parameters of metamaterials,” Phys. Rev. E 70, 016,608 (2004).
[CrossRef]

Zengerle, R.

O. Paul, C. Imhof, B. Reinhard, R. Zengerle, and R. Beigang, “Negative index bulk metamaterial at terahertz frequencies,” Opt. Express 16(9), 6736–6744 (2008).
[CrossRef]

Zhang, L.

P. Tassin, L. Zhang, T. Koschny, E. N. Economou, and C. M. Soukoulis, “Low-Loss Metamaterials Based on Classical Electromagnetically Induced Transparency,” Phys. Rev. Lett. 102, 053,901 (2009).
[CrossRef]

Zhang, S.

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-Induced Transparency in Metamaterials,” Phys. Rev. Lett. 101, 047,401 (2008).

Zhang, X.

A. C. Strikwerda, K. Fan, H. Tao, D. V. Pilon, X. Zhang, and R. D. Averitt, “Comparison of birefringent electric split-ring resonator and meanderline structures as quarter-wave plates at terahertz frequencies,” Opt. Express 17(1), 136–149 (2009).
[CrossRef]

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-Induced Transparency in Metamaterials,” Phys. Rev. Lett. 101, 047,401 (2008).

Zheludev, N. I.

N. Papasimakis, V. A. Fedotov, S. L. Prosvirnin, and N. I. Zheludev, “Metamaterial Analog of Electromagnetically Induced Transparency,” Phys. Rev. Lett. 101, 253,903 (2008).
[CrossRef]

V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp Trapped-Mode Resonances in Planar Metamaterials with a Broken Structural Symmetry,” Phys. Rev. Lett. 99, 147,401 (2007).
[CrossRef]

Zide, J.

W. J. Padilla, H.-T. Chen, J. Zide, A. Gossard, A. Taylor, and R. Averitt, “Active terahertz metamaterial devices,” Nature 444, 597 (2006).
[CrossRef] [PubMed]

Appl. Phys. Lett. (1)

W. L. Chan, H.-T. Chen, A. J. Taylor, I. Brener, M. J. Cich, and D. M. Mittleman, “A spatial light modulator for terahertz beams,” Appl. Phys. Lett. 94, 213,511 (2009).
[CrossRef]

Electron. Lett. (1)

A. Mackay, “Proof of polarisation independence and nonexistence of crosspolar terms for targets presenting n-fold (n>2) rotational symmetry with special reference to frequency-selective surfaces,” Electron. Lett. 25(24), 1624–1625 (1989).
[CrossRef]

IEEE Transactions on Antennas and Propagation (1)

N. Behdad and K. Sarabandi, “A Frequency Selective Surface With Miniaturized Elements,” IEEE Transactions on Antennas and Propagation 55(5), 1239–1245 (2007).

Nat. Mater. (1)

N. Liu, L. Langguth, T. Weiss, J. Kaestel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8, 758–762 (2009).
[CrossRef] [PubMed]

Nature (2)

W. J. Padilla, H.-T. Chen, J. Zide, A. Gossard, A. Taylor, and R. Averitt, “Active terahertz metamaterial devices,” Nature 444, 597 (2006).
[CrossRef] [PubMed]

C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature 409, 490–493 (2001).
[CrossRef] [PubMed]

Nature Photon. (1)

H.-T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nature Photon. 3, 148 (2009).
[CrossRef]

Opt. Express (2)

A. C. Strikwerda, K. Fan, H. Tao, D. V. Pilon, X. Zhang, and R. D. Averitt, “Comparison of birefringent electric split-ring resonator and meanderline structures as quarter-wave plates at terahertz frequencies,” Opt. Express 17(1), 136–149 (2009).
[CrossRef]

O. Paul, C. Imhof, B. Reinhard, R. Zengerle, and R. Beigang, “Negative index bulk metamaterial at terahertz frequencies,” Opt. Express 16(9), 6736–6744 (2008).
[CrossRef]

Phys. Rev. E (1)

X. Chen, T. M. Grzegorczyk, B.-I. Wu, J. Pacheco, and J. A. Kong, “Robust method to retrieve the constitutive effective parameters of metamaterials,” Phys. Rev. E 70, 016,608 (2004).
[CrossRef]

Phys. Rev. Lett. (7)

S. E. Harris, J. E. Field, and A. Imamoglu, “Nonlinear optical processes using electromagnetically induced transparency,” Phys. Rev. Lett. 64, 1107–1110 (1990).
[CrossRef] [PubMed]

V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, “Sharp Trapped-Mode Resonances in Planar Metamaterials with a Broken Structural Symmetry,” Phys. Rev. Lett. 99, 147,401 (2007).
[CrossRef]

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-Induced Transparency in Metamaterials,” Phys. Rev. Lett. 101, 047,401 (2008).

N. Papasimakis, V. A. Fedotov, S. L. Prosvirnin, and N. I. Zheludev, “Metamaterial Analog of Electromagnetically Induced Transparency,” Phys. Rev. Lett. 101, 253,903 (2008).
[CrossRef]

P. Tassin, L. Zhang, T. Koschny, E. N. Economou, and C. M. Soukoulis, “Low-Loss Metamaterials Based on Classical Electromagnetically Induced Transparency,” Phys. Rev. Lett. 102, 053,901 (2009).
[CrossRef]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite Medium with Simultaneously Negative Permeability and Permittivity,” Phys. Rev. Lett. 84, 4184–4187 (2000).
[CrossRef] [PubMed]

J. Li and J. B. Pendry, “Hiding under the Carpet: A New Strategy for Cloaking,” Phys. Rev. Lett. 101, 203,901 (2008).
[CrossRef]

Science (1)

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling Electromagnetic Fields,” Science 312, 1780–1782 (2006).
[CrossRef] [PubMed]

Soviet Physics Uspekhi (1)

V. D. Veselago, “The electrodynamics of substances with simultaneously negative values of ε and µ,” Soviet Physics Uspekhi 10, 509–514 (1968).
[CrossRef]

Other (1)

B. A. Munk, Frequency Selective Surfaces: Theory and Design. (New York: Wiley-Interscience, 2000).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Microscope pictures of (a) the cross-slot structure and (b) the two layers of wire-andplate structure. (c) Resulting metamaterial membrane with a functional area of 9×9mm2.

Fig. 2.
Fig. 2.

Experimental (Exp) and numerical (Sim) amplitude transmission and reflection results for (a) the cross-slot and (b) the wire-and-plate structure for different numbers of layers of unit cells.

Fig. 3.
Fig. 3.

Surface current distribution at the center frequency of the passband for (a) the cross-slot structure and (b) the front plane (left) and the backplane (right) of the wire-and-plate structure. The incident electric field is vertically polarized.

Fig. 4.
Fig. 4.

Retrieved values of (a) the effective index of refraction and (b) the effective permittivity of the bandpass filters where (·)’ and (·)” denote the real and imaginary part, respectively. The spectral passband is shaded.

Metrics