Abstract

It is shown that chalcogenide glasses with suitably underconstrained network can undergo reversible giant photocontractions up to a micron depth. These effects result from the combination of two attributes particular to these glasses, (i) the high photosensitivity characteristic of low coordination floppy networks and (ii) the wide window of structural configuration characteristic of fragile glass former. Interestingly these effects are reversible and subsequent irradiation with high intensity results in giant photoexpansion in the same glass. The combination of subsequent photocontraction and photoexpansion on the same glass surface has good potential for the design of complex optical elements.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Evans, J. S. Yu, J. David, L. Doris, K. Mi, S. Slivken, and M. Razeghi, “High-temperature, high-power, continuous-wave operation of buried heterostructure quantum-cascade lasers,” Appl. Phys. Lett. 84(3), 314–316 (2004).
    [CrossRef]
  2. N. Hô, M. C. Phillips, H. Qiao, P. J. Allen, K. Krishnaswami, B. J. Riley, T. L. Myers, and N. C. Anheier., “Single-mode low-loss chalcogenide glass waveguides for the mid-infrared,” Opt. Lett. 31(12), 1860–1862 (2006).
    [CrossRef] [PubMed]
  3. A. Saitoh and K. Tanaka, “Self-developing aspherical chalcogenide-glass microlenses for semiconductor lasers,” Appl. Phys. Lett. 83(9), 1725–1727 (2003).
    [CrossRef]
  4. A. Saliminia, T. Galstian, A. Villeneuve, K. Le Foulgoc, and K. Richardson, “Temperature dependence of Bragg reflectors in chalcogenide As2S3 glass slab waveguides,” J. Opt. Soc. Am. B 17(8), 1343–1348 (2000).
    [CrossRef]
  5. A. Ozols, N. Nordman, O. Nordman, and P. Riihola, “Model of holographic recording in amorphous chalcogenide films using subband-gap light at room temperature,” Phys. Rev. B 55(21), 14236–14244 (1997).
    [CrossRef]
  6. J. R. Neilson, A. Kovalskiy, M. Vlcek, H. Jain, and F. Miller, “Fabrication of nano-gratings in arsenic sulfide films,” J. Non-Cryst. Solids 353(13-15), 1427–1430 (2007).
    [CrossRef]
  7. P. Krecmer, A. M. Moulin, R. J. Stephenson, T. Rayment, M. E. Welland, and S. R. Elliott, “Reversible nanocontraction and dilatation in a solid induced by polarized light,” Science 277(5333), 1799–1802 (1997).
    [CrossRef]
  8. H. Hisakuni and K. Tanaka, “Giant photoexpansion in As2S3 glass,” Appl. Phys. Lett. 65(23), 2925–2927 (1994).
    [CrossRef]
  9. A. V. Kolobov, K. Tanaka, and K. Tanaka,“Structural study of amorphous selenium by in situ EXAFS: observation of photoinduced bond alternation,” Phys. Rev. B 55(2), 726–734 (1997).
    [CrossRef]
  10. K. Antoine, H. Jain, M. Vlcek, S. D. Senanayake, and D. A. Drabold, “Chemical origin of polarization-dependent photoinduced changes in an As36Se64 glass film via in situ synchrotron x-ray photoelectron spectroscopy,” Phys. Rev. B 79(5), 054204 (2009).
    [CrossRef]
  11. G. Yang, H. Jain, A. Ganjoo, D. Zhao, Y. Xu, H. Zeng, and G. Chen, “A photo-stable chalcogenide glass,” Opt. Express 16(14), 10565–10571 (2008).
    [CrossRef] [PubMed]
  12. L. Calvez, Z. Yang, and P. Lucas, “Light-induced matrix softening of Ge-As-Se network glasses,” Phys. Rev. Lett. 101(17), 177402 (2008).
    [CrossRef] [PubMed]
  13. M. F. Thorpe, “Continuous deformations in random networks,” J. Non-Cryst. Solids 57(3), 355–370 (1983).
    [CrossRef]
  14. H. He and M. F. Thorpe, “Elastic properties of glasses,” Phys. Rev. Lett. 54(19), 2107–2110 (1985).
    [CrossRef] [PubMed]
  15. C. A. Angell, “Relaxation in liquids, polymers and plastic crystals - strong/fragile patterns and problems,” J. Non-Cryst. Solids 131–133, 13–31 (1991).
    [CrossRef]
  16. L. M. Martinez and C. A. Angell, “A thermodynamic connection to the fragility of glass-forming liquids,” Nature 410(6829), 663–667 (2001).
    [CrossRef] [PubMed]
  17. C. A. Angell, B. E. Richards, and V. Velikov, “Simple glass-forming liquids: their definition, fragilities, and landscape excitation profiles,” J. Phys. Condens. Matter 11(10A), 005 (1999).
    [CrossRef]
  18. M. Tatsumisago, B. L. Halfpap, J. L. Green, S. M. Lindsay, and C. A. Angell, “Fragility of Ge-As-Se glass-forming liquids in relation to rigidity percolation, and the Kauzmann paradox,” Phys. Rev. Lett. 64(13), 1549–1552 (1990).
    [CrossRef] [PubMed]
  19. P. Lucas, A. Doraiswamy, and E. A. King, “Photoinduced structural relaxation in chalcogenide glasses,” J. Non-Cryst. Solids 332(1-3), 35–42 (2003).
    [CrossRef]
  20. P. Lucas, E. A. King, A. Doraiswamy, and P. Jivaganont, “Competitive photostructural effects in Ge-Se glass,” Phys. Rev. B 71(10), 104207 (2005).
    [CrossRef]
  21. P. Lucas, E. A. King, A. D. Horner, B. R. Johnson, and S. K. Sundaram, ““Photostructural relaxation in As–Se–S glasses: Effect of network fragility,” J. Non-Cryst. Solids 352(21-22), 2067–2072 (2006).
    [CrossRef]
  22. H. L. Ma, X. H. Zhang, J. Lucas, and C. T. Moynihan, ““Relaxation near room temperature in tellurium chalcohalide glasses,” J. Non-Cryst. Solids 140, 209–214 (1992).
    [CrossRef]
  23. N. P. Eisenberg, M. Manevich, M. Klebanov, V. Lyubin, and S. Shtutina, “Fabrication and testing of microlens arrays for the IR based on chalcogenide glassy resists,” J. Non-Cryst. Solids 198–200, 766–768 (1996).
    [CrossRef]
  24. C. Florea, J. S. Sanghera, L. B. Shaw, V. Q. Nguyen, and I. D. Aggarwal, “Surface relief gratings in AsSe glass fabricated under 800-nm laser exposure,” Mater. Lett. 61(6), 1271–1273 (2007).
    [CrossRef]
  25. O. Salminen, N. Nordman, P. Riihola, and A. Ozols, “Holographic recording and photocontraction of amorphous As2S3 films by 488.0 nm and 514.5 nm laser light illumination,” Opt. Commun. 116(4-6), 310–315 (1995).
    [CrossRef]
  26. Z. Yang, N. C. Anheier, H. A. Qiao, and P. Lucas, “Simultaneous microscopic measurements of photodarkening and photoexpansion in chalcogenide films,” J. Phys. D Appl. Phys. 42(13), 135412 (2009).
    [CrossRef]
  27. C. Spence and S. Elliott,“The mechanism of giant photocontrcation in obliquely-deposited thin films of amorphous germanium chalcogenides,” J. Non-Cryst. Solids 97-98, 1215–1218 (1987).
    [CrossRef]
  28. J. C. Phillips and M. L. Cohen, “Molecular models of giant photocontractive evaporated chalcogenide films,” Phys. Rev. B 26(6), 3510–3512 (1982).
    [CrossRef]
  29. K. Tanaka, “Reversible photoinduced change in intermolecular distance in amorphous As2S3 network,” Appl. Phys. Lett. 26(5), 243–245 (1975).
    [CrossRef]
  30. D. K. Biegelsen and R. A. Street, “Photoinduced defects in chalcogenide glasses,” Phys. Rev. Lett. 44(12), 803–806 (1980).
    [CrossRef]
  31. K. Tanaka, “Mechanisms of photodarkening in amorphous chalcogenides,” J. Non-Cryst. Solids 59–60, 925–928 (1983).
    [CrossRef]
  32. K. Tanaka, “Photoexpansion in As2S3 glass,” Phys. Rev. B 57(9), 5163–5167 (1998).
    [CrossRef]
  33. H. Hamanaka, K. Tanaka, A. Matsuda, and S. Iizima, “Reversible photo-induced volume changes in evaoprated As2S3 and As4Se5Ge1 films,” Sol. Stat. Com. 19(6), 499–501 (1976).
    [CrossRef]
  34. I. Shimizu and H. Fritzsche, “Thickness and refractive-index changes associated with photodarkening in evaporated As2S3 films,” J. Appl. Phys. 47(7), 2969–2971 (1976).
    [CrossRef]
  35. M. Kastner, “Compositional trends in the optical properties of amorphous lone-pair semiconductors,” Phys. Rev. B 7(12), 5237–5252 (1973).
    [CrossRef]
  36. M. Kasai, H. Nakatsui, and Y. Hajimoto, “Photodepression in As-S thin films,” J. Appl. Phys. 45(7), 3209–3210 (1974).
    [CrossRef]
  37. K. Tanaka, “Optica properties and photoinduced changes in amorphous As-S films,” Thin Solid Films 66(3), 271–279 (1980).
    [CrossRef]
  38. B. Singh, S. Rajagopalan, P. K. Bhat, D. K. Pandya, and K. L. Chopra, “Photocontraction effect in amorphous Se1-xGex films,” Sol. Stat. Com. 29(3), 167–169 (1979).
    [CrossRef]
  39. K. L. Chopra, K. Solomon Harshvardhan, S. Rajagopolan, and L. K. Malhotra, “On the origin of photocontraction effect in amorphous chalcogenide films,” Sol. State. Com. 40(4), 387–390 (1981).
    [CrossRef]
  40. I. Manika and J. Teteris, “Photoinduced changes of mechanical properties in amorphous arsenic chalcogenide films,” J. Non-Cryst. Solids 90(1-3), 505–508 (1987).
    [CrossRef]
  41. A. Schulte, C. Rivero, K. Richardson, K. Turcotte, V. Hamel, A. Villeneuve, T. Gastian, and R. Vallee, “Bulk-film structural differences of chalcogenide glasses probed in situ by near-infrared waveguide Raman spectroscopy,” Opt. Commun. 198(1-3), 125–128 (2001).
    [CrossRef]
  42. M. Frumar, B. Frumarova, T. Wagner, and P. Nemec, “Photo-induced phenomena in amorphous and glassy chalcogenides” in Photo-induced metastability in amorphous semiconductors, A. V. Kolobov, ed (WILEY-VCH GmbH & Co. KGaA, Weinheim, 2003)
  43. J. C. Mauro and A. K. Varshneya, “Model interaction potentials for selenium from ab initio molecular simulations,” Phys. Rev. B 71(21), 214105 (2005).
    [CrossRef]
  44. J. C. Mauro, R. J. Loucks, and J. Balakrishnan, “Split-step eigenvector-following technique for exploring enthalpy landscapes at absolute zero,” J. Phys. Chem. B 110(10), 5005–5011 (2006).
    [CrossRef] [PubMed]
  45. C. A. Angell, “Perspective on the glass transition,” J. Phys. Chem. Solids 49(8), 863–871 (1988).
    [CrossRef]
  46. P. Lucas, “Energy landscape and photoinduced structural changes in chalcogenide glasses,” J. Phys. Condens. Matter 18(24), 5629–5638 (2006).
    [CrossRef]

2009

Z. Yang, N. C. Anheier, H. A. Qiao, and P. Lucas, “Simultaneous microscopic measurements of photodarkening and photoexpansion in chalcogenide films,” J. Phys. D Appl. Phys. 42(13), 135412 (2009).
[CrossRef]

K. Antoine, H. Jain, M. Vlcek, S. D. Senanayake, and D. A. Drabold, “Chemical origin of polarization-dependent photoinduced changes in an As36Se64 glass film via in situ synchrotron x-ray photoelectron spectroscopy,” Phys. Rev. B 79(5), 054204 (2009).
[CrossRef]

2008

G. Yang, H. Jain, A. Ganjoo, D. Zhao, Y. Xu, H. Zeng, and G. Chen, “A photo-stable chalcogenide glass,” Opt. Express 16(14), 10565–10571 (2008).
[CrossRef] [PubMed]

L. Calvez, Z. Yang, and P. Lucas, “Light-induced matrix softening of Ge-As-Se network glasses,” Phys. Rev. Lett. 101(17), 177402 (2008).
[CrossRef] [PubMed]

2007

C. Florea, J. S. Sanghera, L. B. Shaw, V. Q. Nguyen, and I. D. Aggarwal, “Surface relief gratings in AsSe glass fabricated under 800-nm laser exposure,” Mater. Lett. 61(6), 1271–1273 (2007).
[CrossRef]

J. R. Neilson, A. Kovalskiy, M. Vlcek, H. Jain, and F. Miller, “Fabrication of nano-gratings in arsenic sulfide films,” J. Non-Cryst. Solids 353(13-15), 1427–1430 (2007).
[CrossRef]

2006

P. Lucas, “Energy landscape and photoinduced structural changes in chalcogenide glasses,” J. Phys. Condens. Matter 18(24), 5629–5638 (2006).
[CrossRef]

N. Hô, M. C. Phillips, H. Qiao, P. J. Allen, K. Krishnaswami, B. J. Riley, T. L. Myers, and N. C. Anheier., “Single-mode low-loss chalcogenide glass waveguides for the mid-infrared,” Opt. Lett. 31(12), 1860–1862 (2006).
[CrossRef] [PubMed]

P. Lucas, E. A. King, A. D. Horner, B. R. Johnson, and S. K. Sundaram, ““Photostructural relaxation in As–Se–S glasses: Effect of network fragility,” J. Non-Cryst. Solids 352(21-22), 2067–2072 (2006).
[CrossRef]

J. C. Mauro, R. J. Loucks, and J. Balakrishnan, “Split-step eigenvector-following technique for exploring enthalpy landscapes at absolute zero,” J. Phys. Chem. B 110(10), 5005–5011 (2006).
[CrossRef] [PubMed]

2005

J. C. Mauro and A. K. Varshneya, “Model interaction potentials for selenium from ab initio molecular simulations,” Phys. Rev. B 71(21), 214105 (2005).
[CrossRef]

P. Lucas, E. A. King, A. Doraiswamy, and P. Jivaganont, “Competitive photostructural effects in Ge-Se glass,” Phys. Rev. B 71(10), 104207 (2005).
[CrossRef]

2004

A. Evans, J. S. Yu, J. David, L. Doris, K. Mi, S. Slivken, and M. Razeghi, “High-temperature, high-power, continuous-wave operation of buried heterostructure quantum-cascade lasers,” Appl. Phys. Lett. 84(3), 314–316 (2004).
[CrossRef]

2003

A. Saitoh and K. Tanaka, “Self-developing aspherical chalcogenide-glass microlenses for semiconductor lasers,” Appl. Phys. Lett. 83(9), 1725–1727 (2003).
[CrossRef]

P. Lucas, A. Doraiswamy, and E. A. King, “Photoinduced structural relaxation in chalcogenide glasses,” J. Non-Cryst. Solids 332(1-3), 35–42 (2003).
[CrossRef]

2001

L. M. Martinez and C. A. Angell, “A thermodynamic connection to the fragility of glass-forming liquids,” Nature 410(6829), 663–667 (2001).
[CrossRef] [PubMed]

A. Schulte, C. Rivero, K. Richardson, K. Turcotte, V. Hamel, A. Villeneuve, T. Gastian, and R. Vallee, “Bulk-film structural differences of chalcogenide glasses probed in situ by near-infrared waveguide Raman spectroscopy,” Opt. Commun. 198(1-3), 125–128 (2001).
[CrossRef]

2000

1999

C. A. Angell, B. E. Richards, and V. Velikov, “Simple glass-forming liquids: their definition, fragilities, and landscape excitation profiles,” J. Phys. Condens. Matter 11(10A), 005 (1999).
[CrossRef]

1998

K. Tanaka, “Photoexpansion in As2S3 glass,” Phys. Rev. B 57(9), 5163–5167 (1998).
[CrossRef]

1997

P. Krecmer, A. M. Moulin, R. J. Stephenson, T. Rayment, M. E. Welland, and S. R. Elliott, “Reversible nanocontraction and dilatation in a solid induced by polarized light,” Science 277(5333), 1799–1802 (1997).
[CrossRef]

A. Ozols, N. Nordman, O. Nordman, and P. Riihola, “Model of holographic recording in amorphous chalcogenide films using subband-gap light at room temperature,” Phys. Rev. B 55(21), 14236–14244 (1997).
[CrossRef]

A. V. Kolobov, K. Tanaka, and K. Tanaka,“Structural study of amorphous selenium by in situ EXAFS: observation of photoinduced bond alternation,” Phys. Rev. B 55(2), 726–734 (1997).
[CrossRef]

1996

N. P. Eisenberg, M. Manevich, M. Klebanov, V. Lyubin, and S. Shtutina, “Fabrication and testing of microlens arrays for the IR based on chalcogenide glassy resists,” J. Non-Cryst. Solids 198–200, 766–768 (1996).
[CrossRef]

1995

O. Salminen, N. Nordman, P. Riihola, and A. Ozols, “Holographic recording and photocontraction of amorphous As2S3 films by 488.0 nm and 514.5 nm laser light illumination,” Opt. Commun. 116(4-6), 310–315 (1995).
[CrossRef]

1994

H. Hisakuni and K. Tanaka, “Giant photoexpansion in As2S3 glass,” Appl. Phys. Lett. 65(23), 2925–2927 (1994).
[CrossRef]

1992

H. L. Ma, X. H. Zhang, J. Lucas, and C. T. Moynihan, ““Relaxation near room temperature in tellurium chalcohalide glasses,” J. Non-Cryst. Solids 140, 209–214 (1992).
[CrossRef]

1991

C. A. Angell, “Relaxation in liquids, polymers and plastic crystals - strong/fragile patterns and problems,” J. Non-Cryst. Solids 131–133, 13–31 (1991).
[CrossRef]

1990

M. Tatsumisago, B. L. Halfpap, J. L. Green, S. M. Lindsay, and C. A. Angell, “Fragility of Ge-As-Se glass-forming liquids in relation to rigidity percolation, and the Kauzmann paradox,” Phys. Rev. Lett. 64(13), 1549–1552 (1990).
[CrossRef] [PubMed]

1988

C. A. Angell, “Perspective on the glass transition,” J. Phys. Chem. Solids 49(8), 863–871 (1988).
[CrossRef]

1987

I. Manika and J. Teteris, “Photoinduced changes of mechanical properties in amorphous arsenic chalcogenide films,” J. Non-Cryst. Solids 90(1-3), 505–508 (1987).
[CrossRef]

C. Spence and S. Elliott,“The mechanism of giant photocontrcation in obliquely-deposited thin films of amorphous germanium chalcogenides,” J. Non-Cryst. Solids 97-98, 1215–1218 (1987).
[CrossRef]

1985

H. He and M. F. Thorpe, “Elastic properties of glasses,” Phys. Rev. Lett. 54(19), 2107–2110 (1985).
[CrossRef] [PubMed]

1983

M. F. Thorpe, “Continuous deformations in random networks,” J. Non-Cryst. Solids 57(3), 355–370 (1983).
[CrossRef]

K. Tanaka, “Mechanisms of photodarkening in amorphous chalcogenides,” J. Non-Cryst. Solids 59–60, 925–928 (1983).
[CrossRef]

1982

J. C. Phillips and M. L. Cohen, “Molecular models of giant photocontractive evaporated chalcogenide films,” Phys. Rev. B 26(6), 3510–3512 (1982).
[CrossRef]

1981

K. L. Chopra, K. Solomon Harshvardhan, S. Rajagopolan, and L. K. Malhotra, “On the origin of photocontraction effect in amorphous chalcogenide films,” Sol. State. Com. 40(4), 387–390 (1981).
[CrossRef]

1980

K. Tanaka, “Optica properties and photoinduced changes in amorphous As-S films,” Thin Solid Films 66(3), 271–279 (1980).
[CrossRef]

D. K. Biegelsen and R. A. Street, “Photoinduced defects in chalcogenide glasses,” Phys. Rev. Lett. 44(12), 803–806 (1980).
[CrossRef]

1979

B. Singh, S. Rajagopalan, P. K. Bhat, D. K. Pandya, and K. L. Chopra, “Photocontraction effect in amorphous Se1-xGex films,” Sol. Stat. Com. 29(3), 167–169 (1979).
[CrossRef]

1976

H. Hamanaka, K. Tanaka, A. Matsuda, and S. Iizima, “Reversible photo-induced volume changes in evaoprated As2S3 and As4Se5Ge1 films,” Sol. Stat. Com. 19(6), 499–501 (1976).
[CrossRef]

I. Shimizu and H. Fritzsche, “Thickness and refractive-index changes associated with photodarkening in evaporated As2S3 films,” J. Appl. Phys. 47(7), 2969–2971 (1976).
[CrossRef]

1975

K. Tanaka, “Reversible photoinduced change in intermolecular distance in amorphous As2S3 network,” Appl. Phys. Lett. 26(5), 243–245 (1975).
[CrossRef]

1974

M. Kasai, H. Nakatsui, and Y. Hajimoto, “Photodepression in As-S thin films,” J. Appl. Phys. 45(7), 3209–3210 (1974).
[CrossRef]

1973

M. Kastner, “Compositional trends in the optical properties of amorphous lone-pair semiconductors,” Phys. Rev. B 7(12), 5237–5252 (1973).
[CrossRef]

Aggarwal, I. D.

C. Florea, J. S. Sanghera, L. B. Shaw, V. Q. Nguyen, and I. D. Aggarwal, “Surface relief gratings in AsSe glass fabricated under 800-nm laser exposure,” Mater. Lett. 61(6), 1271–1273 (2007).
[CrossRef]

Allen, P. J.

Angell, C. A.

L. M. Martinez and C. A. Angell, “A thermodynamic connection to the fragility of glass-forming liquids,” Nature 410(6829), 663–667 (2001).
[CrossRef] [PubMed]

C. A. Angell, B. E. Richards, and V. Velikov, “Simple glass-forming liquids: their definition, fragilities, and landscape excitation profiles,” J. Phys. Condens. Matter 11(10A), 005 (1999).
[CrossRef]

C. A. Angell, “Relaxation in liquids, polymers and plastic crystals - strong/fragile patterns and problems,” J. Non-Cryst. Solids 131–133, 13–31 (1991).
[CrossRef]

M. Tatsumisago, B. L. Halfpap, J. L. Green, S. M. Lindsay, and C. A. Angell, “Fragility of Ge-As-Se glass-forming liquids in relation to rigidity percolation, and the Kauzmann paradox,” Phys. Rev. Lett. 64(13), 1549–1552 (1990).
[CrossRef] [PubMed]

C. A. Angell, “Perspective on the glass transition,” J. Phys. Chem. Solids 49(8), 863–871 (1988).
[CrossRef]

Anheier, N. C.

Z. Yang, N. C. Anheier, H. A. Qiao, and P. Lucas, “Simultaneous microscopic measurements of photodarkening and photoexpansion in chalcogenide films,” J. Phys. D Appl. Phys. 42(13), 135412 (2009).
[CrossRef]

N. Hô, M. C. Phillips, H. Qiao, P. J. Allen, K. Krishnaswami, B. J. Riley, T. L. Myers, and N. C. Anheier., “Single-mode low-loss chalcogenide glass waveguides for the mid-infrared,” Opt. Lett. 31(12), 1860–1862 (2006).
[CrossRef] [PubMed]

Antoine, K.

K. Antoine, H. Jain, M. Vlcek, S. D. Senanayake, and D. A. Drabold, “Chemical origin of polarization-dependent photoinduced changes in an As36Se64 glass film via in situ synchrotron x-ray photoelectron spectroscopy,” Phys. Rev. B 79(5), 054204 (2009).
[CrossRef]

Balakrishnan, J.

J. C. Mauro, R. J. Loucks, and J. Balakrishnan, “Split-step eigenvector-following technique for exploring enthalpy landscapes at absolute zero,” J. Phys. Chem. B 110(10), 5005–5011 (2006).
[CrossRef] [PubMed]

Bhat, P. K.

B. Singh, S. Rajagopalan, P. K. Bhat, D. K. Pandya, and K. L. Chopra, “Photocontraction effect in amorphous Se1-xGex films,” Sol. Stat. Com. 29(3), 167–169 (1979).
[CrossRef]

Biegelsen, D. K.

D. K. Biegelsen and R. A. Street, “Photoinduced defects in chalcogenide glasses,” Phys. Rev. Lett. 44(12), 803–806 (1980).
[CrossRef]

Calvez, L.

L. Calvez, Z. Yang, and P. Lucas, “Light-induced matrix softening of Ge-As-Se network glasses,” Phys. Rev. Lett. 101(17), 177402 (2008).
[CrossRef] [PubMed]

Chen, G.

Chopra, K. L.

K. L. Chopra, K. Solomon Harshvardhan, S. Rajagopolan, and L. K. Malhotra, “On the origin of photocontraction effect in amorphous chalcogenide films,” Sol. State. Com. 40(4), 387–390 (1981).
[CrossRef]

B. Singh, S. Rajagopalan, P. K. Bhat, D. K. Pandya, and K. L. Chopra, “Photocontraction effect in amorphous Se1-xGex films,” Sol. Stat. Com. 29(3), 167–169 (1979).
[CrossRef]

Cohen, M. L.

J. C. Phillips and M. L. Cohen, “Molecular models of giant photocontractive evaporated chalcogenide films,” Phys. Rev. B 26(6), 3510–3512 (1982).
[CrossRef]

David, J.

A. Evans, J. S. Yu, J. David, L. Doris, K. Mi, S. Slivken, and M. Razeghi, “High-temperature, high-power, continuous-wave operation of buried heterostructure quantum-cascade lasers,” Appl. Phys. Lett. 84(3), 314–316 (2004).
[CrossRef]

Doraiswamy, A.

P. Lucas, E. A. King, A. Doraiswamy, and P. Jivaganont, “Competitive photostructural effects in Ge-Se glass,” Phys. Rev. B 71(10), 104207 (2005).
[CrossRef]

P. Lucas, A. Doraiswamy, and E. A. King, “Photoinduced structural relaxation in chalcogenide glasses,” J. Non-Cryst. Solids 332(1-3), 35–42 (2003).
[CrossRef]

Doris, L.

A. Evans, J. S. Yu, J. David, L. Doris, K. Mi, S. Slivken, and M. Razeghi, “High-temperature, high-power, continuous-wave operation of buried heterostructure quantum-cascade lasers,” Appl. Phys. Lett. 84(3), 314–316 (2004).
[CrossRef]

Drabold, D. A.

K. Antoine, H. Jain, M. Vlcek, S. D. Senanayake, and D. A. Drabold, “Chemical origin of polarization-dependent photoinduced changes in an As36Se64 glass film via in situ synchrotron x-ray photoelectron spectroscopy,” Phys. Rev. B 79(5), 054204 (2009).
[CrossRef]

Eisenberg, N. P.

N. P. Eisenberg, M. Manevich, M. Klebanov, V. Lyubin, and S. Shtutina, “Fabrication and testing of microlens arrays for the IR based on chalcogenide glassy resists,” J. Non-Cryst. Solids 198–200, 766–768 (1996).
[CrossRef]

Elliott, S.

C. Spence and S. Elliott,“The mechanism of giant photocontrcation in obliquely-deposited thin films of amorphous germanium chalcogenides,” J. Non-Cryst. Solids 97-98, 1215–1218 (1987).
[CrossRef]

Elliott, S. R.

P. Krecmer, A. M. Moulin, R. J. Stephenson, T. Rayment, M. E. Welland, and S. R. Elliott, “Reversible nanocontraction and dilatation in a solid induced by polarized light,” Science 277(5333), 1799–1802 (1997).
[CrossRef]

Evans, A.

A. Evans, J. S. Yu, J. David, L. Doris, K. Mi, S. Slivken, and M. Razeghi, “High-temperature, high-power, continuous-wave operation of buried heterostructure quantum-cascade lasers,” Appl. Phys. Lett. 84(3), 314–316 (2004).
[CrossRef]

Florea, C.

C. Florea, J. S. Sanghera, L. B. Shaw, V. Q. Nguyen, and I. D. Aggarwal, “Surface relief gratings in AsSe glass fabricated under 800-nm laser exposure,” Mater. Lett. 61(6), 1271–1273 (2007).
[CrossRef]

Fritzsche, H.

I. Shimizu and H. Fritzsche, “Thickness and refractive-index changes associated with photodarkening in evaporated As2S3 films,” J. Appl. Phys. 47(7), 2969–2971 (1976).
[CrossRef]

Galstian, T.

Ganjoo, A.

Gastian, T.

A. Schulte, C. Rivero, K. Richardson, K. Turcotte, V. Hamel, A. Villeneuve, T. Gastian, and R. Vallee, “Bulk-film structural differences of chalcogenide glasses probed in situ by near-infrared waveguide Raman spectroscopy,” Opt. Commun. 198(1-3), 125–128 (2001).
[CrossRef]

Green, J. L.

M. Tatsumisago, B. L. Halfpap, J. L. Green, S. M. Lindsay, and C. A. Angell, “Fragility of Ge-As-Se glass-forming liquids in relation to rigidity percolation, and the Kauzmann paradox,” Phys. Rev. Lett. 64(13), 1549–1552 (1990).
[CrossRef] [PubMed]

Hajimoto, Y.

M. Kasai, H. Nakatsui, and Y. Hajimoto, “Photodepression in As-S thin films,” J. Appl. Phys. 45(7), 3209–3210 (1974).
[CrossRef]

Halfpap, B. L.

M. Tatsumisago, B. L. Halfpap, J. L. Green, S. M. Lindsay, and C. A. Angell, “Fragility of Ge-As-Se glass-forming liquids in relation to rigidity percolation, and the Kauzmann paradox,” Phys. Rev. Lett. 64(13), 1549–1552 (1990).
[CrossRef] [PubMed]

Hamanaka, H.

H. Hamanaka, K. Tanaka, A. Matsuda, and S. Iizima, “Reversible photo-induced volume changes in evaoprated As2S3 and As4Se5Ge1 films,” Sol. Stat. Com. 19(6), 499–501 (1976).
[CrossRef]

Hamel, V.

A. Schulte, C. Rivero, K. Richardson, K. Turcotte, V. Hamel, A. Villeneuve, T. Gastian, and R. Vallee, “Bulk-film structural differences of chalcogenide glasses probed in situ by near-infrared waveguide Raman spectroscopy,” Opt. Commun. 198(1-3), 125–128 (2001).
[CrossRef]

He, H.

H. He and M. F. Thorpe, “Elastic properties of glasses,” Phys. Rev. Lett. 54(19), 2107–2110 (1985).
[CrossRef] [PubMed]

Hisakuni, H.

H. Hisakuni and K. Tanaka, “Giant photoexpansion in As2S3 glass,” Appl. Phys. Lett. 65(23), 2925–2927 (1994).
[CrossRef]

Hô, N.

Horner, A. D.

P. Lucas, E. A. King, A. D. Horner, B. R. Johnson, and S. K. Sundaram, ““Photostructural relaxation in As–Se–S glasses: Effect of network fragility,” J. Non-Cryst. Solids 352(21-22), 2067–2072 (2006).
[CrossRef]

Iizima, S.

H. Hamanaka, K. Tanaka, A. Matsuda, and S. Iizima, “Reversible photo-induced volume changes in evaoprated As2S3 and As4Se5Ge1 films,” Sol. Stat. Com. 19(6), 499–501 (1976).
[CrossRef]

Jain, H.

K. Antoine, H. Jain, M. Vlcek, S. D. Senanayake, and D. A. Drabold, “Chemical origin of polarization-dependent photoinduced changes in an As36Se64 glass film via in situ synchrotron x-ray photoelectron spectroscopy,” Phys. Rev. B 79(5), 054204 (2009).
[CrossRef]

G. Yang, H. Jain, A. Ganjoo, D. Zhao, Y. Xu, H. Zeng, and G. Chen, “A photo-stable chalcogenide glass,” Opt. Express 16(14), 10565–10571 (2008).
[CrossRef] [PubMed]

J. R. Neilson, A. Kovalskiy, M. Vlcek, H. Jain, and F. Miller, “Fabrication of nano-gratings in arsenic sulfide films,” J. Non-Cryst. Solids 353(13-15), 1427–1430 (2007).
[CrossRef]

Jivaganont, P.

P. Lucas, E. A. King, A. Doraiswamy, and P. Jivaganont, “Competitive photostructural effects in Ge-Se glass,” Phys. Rev. B 71(10), 104207 (2005).
[CrossRef]

Johnson, B. R.

P. Lucas, E. A. King, A. D. Horner, B. R. Johnson, and S. K. Sundaram, ““Photostructural relaxation in As–Se–S glasses: Effect of network fragility,” J. Non-Cryst. Solids 352(21-22), 2067–2072 (2006).
[CrossRef]

Kasai, M.

M. Kasai, H. Nakatsui, and Y. Hajimoto, “Photodepression in As-S thin films,” J. Appl. Phys. 45(7), 3209–3210 (1974).
[CrossRef]

Kastner, M.

M. Kastner, “Compositional trends in the optical properties of amorphous lone-pair semiconductors,” Phys. Rev. B 7(12), 5237–5252 (1973).
[CrossRef]

King, E. A.

P. Lucas, E. A. King, A. D. Horner, B. R. Johnson, and S. K. Sundaram, ““Photostructural relaxation in As–Se–S glasses: Effect of network fragility,” J. Non-Cryst. Solids 352(21-22), 2067–2072 (2006).
[CrossRef]

P. Lucas, E. A. King, A. Doraiswamy, and P. Jivaganont, “Competitive photostructural effects in Ge-Se glass,” Phys. Rev. B 71(10), 104207 (2005).
[CrossRef]

P. Lucas, A. Doraiswamy, and E. A. King, “Photoinduced structural relaxation in chalcogenide glasses,” J. Non-Cryst. Solids 332(1-3), 35–42 (2003).
[CrossRef]

Klebanov, M.

N. P. Eisenberg, M. Manevich, M. Klebanov, V. Lyubin, and S. Shtutina, “Fabrication and testing of microlens arrays for the IR based on chalcogenide glassy resists,” J. Non-Cryst. Solids 198–200, 766–768 (1996).
[CrossRef]

Kolobov, A. V.

A. V. Kolobov, K. Tanaka, and K. Tanaka,“Structural study of amorphous selenium by in situ EXAFS: observation of photoinduced bond alternation,” Phys. Rev. B 55(2), 726–734 (1997).
[CrossRef]

Kovalskiy, A.

J. R. Neilson, A. Kovalskiy, M. Vlcek, H. Jain, and F. Miller, “Fabrication of nano-gratings in arsenic sulfide films,” J. Non-Cryst. Solids 353(13-15), 1427–1430 (2007).
[CrossRef]

Krecmer, P.

P. Krecmer, A. M. Moulin, R. J. Stephenson, T. Rayment, M. E. Welland, and S. R. Elliott, “Reversible nanocontraction and dilatation in a solid induced by polarized light,” Science 277(5333), 1799–1802 (1997).
[CrossRef]

Krishnaswami, K.

Le Foulgoc, K.

Lindsay, S. M.

M. Tatsumisago, B. L. Halfpap, J. L. Green, S. M. Lindsay, and C. A. Angell, “Fragility of Ge-As-Se glass-forming liquids in relation to rigidity percolation, and the Kauzmann paradox,” Phys. Rev. Lett. 64(13), 1549–1552 (1990).
[CrossRef] [PubMed]

Loucks, R. J.

J. C. Mauro, R. J. Loucks, and J. Balakrishnan, “Split-step eigenvector-following technique for exploring enthalpy landscapes at absolute zero,” J. Phys. Chem. B 110(10), 5005–5011 (2006).
[CrossRef] [PubMed]

Lucas, J.

H. L. Ma, X. H. Zhang, J. Lucas, and C. T. Moynihan, ““Relaxation near room temperature in tellurium chalcohalide glasses,” J. Non-Cryst. Solids 140, 209–214 (1992).
[CrossRef]

Lucas, P.

Z. Yang, N. C. Anheier, H. A. Qiao, and P. Lucas, “Simultaneous microscopic measurements of photodarkening and photoexpansion in chalcogenide films,” J. Phys. D Appl. Phys. 42(13), 135412 (2009).
[CrossRef]

L. Calvez, Z. Yang, and P. Lucas, “Light-induced matrix softening of Ge-As-Se network glasses,” Phys. Rev. Lett. 101(17), 177402 (2008).
[CrossRef] [PubMed]

P. Lucas, E. A. King, A. D. Horner, B. R. Johnson, and S. K. Sundaram, ““Photostructural relaxation in As–Se–S glasses: Effect of network fragility,” J. Non-Cryst. Solids 352(21-22), 2067–2072 (2006).
[CrossRef]

P. Lucas, “Energy landscape and photoinduced structural changes in chalcogenide glasses,” J. Phys. Condens. Matter 18(24), 5629–5638 (2006).
[CrossRef]

P. Lucas, E. A. King, A. Doraiswamy, and P. Jivaganont, “Competitive photostructural effects in Ge-Se glass,” Phys. Rev. B 71(10), 104207 (2005).
[CrossRef]

P. Lucas, A. Doraiswamy, and E. A. King, “Photoinduced structural relaxation in chalcogenide glasses,” J. Non-Cryst. Solids 332(1-3), 35–42 (2003).
[CrossRef]

Lyubin, V.

N. P. Eisenberg, M. Manevich, M. Klebanov, V. Lyubin, and S. Shtutina, “Fabrication and testing of microlens arrays for the IR based on chalcogenide glassy resists,” J. Non-Cryst. Solids 198–200, 766–768 (1996).
[CrossRef]

Ma, H. L.

H. L. Ma, X. H. Zhang, J. Lucas, and C. T. Moynihan, ““Relaxation near room temperature in tellurium chalcohalide glasses,” J. Non-Cryst. Solids 140, 209–214 (1992).
[CrossRef]

Malhotra, L. K.

K. L. Chopra, K. Solomon Harshvardhan, S. Rajagopolan, and L. K. Malhotra, “On the origin of photocontraction effect in amorphous chalcogenide films,” Sol. State. Com. 40(4), 387–390 (1981).
[CrossRef]

Manevich, M.

N. P. Eisenberg, M. Manevich, M. Klebanov, V. Lyubin, and S. Shtutina, “Fabrication and testing of microlens arrays for the IR based on chalcogenide glassy resists,” J. Non-Cryst. Solids 198–200, 766–768 (1996).
[CrossRef]

Manika, I.

I. Manika and J. Teteris, “Photoinduced changes of mechanical properties in amorphous arsenic chalcogenide films,” J. Non-Cryst. Solids 90(1-3), 505–508 (1987).
[CrossRef]

Martinez, L. M.

L. M. Martinez and C. A. Angell, “A thermodynamic connection to the fragility of glass-forming liquids,” Nature 410(6829), 663–667 (2001).
[CrossRef] [PubMed]

Matsuda, A.

H. Hamanaka, K. Tanaka, A. Matsuda, and S. Iizima, “Reversible photo-induced volume changes in evaoprated As2S3 and As4Se5Ge1 films,” Sol. Stat. Com. 19(6), 499–501 (1976).
[CrossRef]

Mauro, J. C.

J. C. Mauro, R. J. Loucks, and J. Balakrishnan, “Split-step eigenvector-following technique for exploring enthalpy landscapes at absolute zero,” J. Phys. Chem. B 110(10), 5005–5011 (2006).
[CrossRef] [PubMed]

J. C. Mauro and A. K. Varshneya, “Model interaction potentials for selenium from ab initio molecular simulations,” Phys. Rev. B 71(21), 214105 (2005).
[CrossRef]

Mi, K.

A. Evans, J. S. Yu, J. David, L. Doris, K. Mi, S. Slivken, and M. Razeghi, “High-temperature, high-power, continuous-wave operation of buried heterostructure quantum-cascade lasers,” Appl. Phys. Lett. 84(3), 314–316 (2004).
[CrossRef]

Miller, F.

J. R. Neilson, A. Kovalskiy, M. Vlcek, H. Jain, and F. Miller, “Fabrication of nano-gratings in arsenic sulfide films,” J. Non-Cryst. Solids 353(13-15), 1427–1430 (2007).
[CrossRef]

Moulin, A. M.

P. Krecmer, A. M. Moulin, R. J. Stephenson, T. Rayment, M. E. Welland, and S. R. Elliott, “Reversible nanocontraction and dilatation in a solid induced by polarized light,” Science 277(5333), 1799–1802 (1997).
[CrossRef]

Moynihan, C. T.

H. L. Ma, X. H. Zhang, J. Lucas, and C. T. Moynihan, ““Relaxation near room temperature in tellurium chalcohalide glasses,” J. Non-Cryst. Solids 140, 209–214 (1992).
[CrossRef]

Myers, T. L.

Nakatsui, H.

M. Kasai, H. Nakatsui, and Y. Hajimoto, “Photodepression in As-S thin films,” J. Appl. Phys. 45(7), 3209–3210 (1974).
[CrossRef]

Neilson, J. R.

J. R. Neilson, A. Kovalskiy, M. Vlcek, H. Jain, and F. Miller, “Fabrication of nano-gratings in arsenic sulfide films,” J. Non-Cryst. Solids 353(13-15), 1427–1430 (2007).
[CrossRef]

Nguyen, V. Q.

C. Florea, J. S. Sanghera, L. B. Shaw, V. Q. Nguyen, and I. D. Aggarwal, “Surface relief gratings in AsSe glass fabricated under 800-nm laser exposure,” Mater. Lett. 61(6), 1271–1273 (2007).
[CrossRef]

Nordman, N.

A. Ozols, N. Nordman, O. Nordman, and P. Riihola, “Model of holographic recording in amorphous chalcogenide films using subband-gap light at room temperature,” Phys. Rev. B 55(21), 14236–14244 (1997).
[CrossRef]

O. Salminen, N. Nordman, P. Riihola, and A. Ozols, “Holographic recording and photocontraction of amorphous As2S3 films by 488.0 nm and 514.5 nm laser light illumination,” Opt. Commun. 116(4-6), 310–315 (1995).
[CrossRef]

Nordman, O.

A. Ozols, N. Nordman, O. Nordman, and P. Riihola, “Model of holographic recording in amorphous chalcogenide films using subband-gap light at room temperature,” Phys. Rev. B 55(21), 14236–14244 (1997).
[CrossRef]

Ozols, A.

A. Ozols, N. Nordman, O. Nordman, and P. Riihola, “Model of holographic recording in amorphous chalcogenide films using subband-gap light at room temperature,” Phys. Rev. B 55(21), 14236–14244 (1997).
[CrossRef]

O. Salminen, N. Nordman, P. Riihola, and A. Ozols, “Holographic recording and photocontraction of amorphous As2S3 films by 488.0 nm and 514.5 nm laser light illumination,” Opt. Commun. 116(4-6), 310–315 (1995).
[CrossRef]

Pandya, D. K.

B. Singh, S. Rajagopalan, P. K. Bhat, D. K. Pandya, and K. L. Chopra, “Photocontraction effect in amorphous Se1-xGex films,” Sol. Stat. Com. 29(3), 167–169 (1979).
[CrossRef]

Phillips, J. C.

J. C. Phillips and M. L. Cohen, “Molecular models of giant photocontractive evaporated chalcogenide films,” Phys. Rev. B 26(6), 3510–3512 (1982).
[CrossRef]

Phillips, M. C.

Qiao, H.

Qiao, H. A.

Z. Yang, N. C. Anheier, H. A. Qiao, and P. Lucas, “Simultaneous microscopic measurements of photodarkening and photoexpansion in chalcogenide films,” J. Phys. D Appl. Phys. 42(13), 135412 (2009).
[CrossRef]

Rajagopalan, S.

B. Singh, S. Rajagopalan, P. K. Bhat, D. K. Pandya, and K. L. Chopra, “Photocontraction effect in amorphous Se1-xGex films,” Sol. Stat. Com. 29(3), 167–169 (1979).
[CrossRef]

Rajagopolan, S.

K. L. Chopra, K. Solomon Harshvardhan, S. Rajagopolan, and L. K. Malhotra, “On the origin of photocontraction effect in amorphous chalcogenide films,” Sol. State. Com. 40(4), 387–390 (1981).
[CrossRef]

Rayment, T.

P. Krecmer, A. M. Moulin, R. J. Stephenson, T. Rayment, M. E. Welland, and S. R. Elliott, “Reversible nanocontraction and dilatation in a solid induced by polarized light,” Science 277(5333), 1799–1802 (1997).
[CrossRef]

Razeghi, M.

A. Evans, J. S. Yu, J. David, L. Doris, K. Mi, S. Slivken, and M. Razeghi, “High-temperature, high-power, continuous-wave operation of buried heterostructure quantum-cascade lasers,” Appl. Phys. Lett. 84(3), 314–316 (2004).
[CrossRef]

Richards, B. E.

C. A. Angell, B. E. Richards, and V. Velikov, “Simple glass-forming liquids: their definition, fragilities, and landscape excitation profiles,” J. Phys. Condens. Matter 11(10A), 005 (1999).
[CrossRef]

Richardson, K.

A. Schulte, C. Rivero, K. Richardson, K. Turcotte, V. Hamel, A. Villeneuve, T. Gastian, and R. Vallee, “Bulk-film structural differences of chalcogenide glasses probed in situ by near-infrared waveguide Raman spectroscopy,” Opt. Commun. 198(1-3), 125–128 (2001).
[CrossRef]

A. Saliminia, T. Galstian, A. Villeneuve, K. Le Foulgoc, and K. Richardson, “Temperature dependence of Bragg reflectors in chalcogenide As2S3 glass slab waveguides,” J. Opt. Soc. Am. B 17(8), 1343–1348 (2000).
[CrossRef]

Riihola, P.

A. Ozols, N. Nordman, O. Nordman, and P. Riihola, “Model of holographic recording in amorphous chalcogenide films using subband-gap light at room temperature,” Phys. Rev. B 55(21), 14236–14244 (1997).
[CrossRef]

O. Salminen, N. Nordman, P. Riihola, and A. Ozols, “Holographic recording and photocontraction of amorphous As2S3 films by 488.0 nm and 514.5 nm laser light illumination,” Opt. Commun. 116(4-6), 310–315 (1995).
[CrossRef]

Riley, B. J.

Rivero, C.

A. Schulte, C. Rivero, K. Richardson, K. Turcotte, V. Hamel, A. Villeneuve, T. Gastian, and R. Vallee, “Bulk-film structural differences of chalcogenide glasses probed in situ by near-infrared waveguide Raman spectroscopy,” Opt. Commun. 198(1-3), 125–128 (2001).
[CrossRef]

Saitoh, A.

A. Saitoh and K. Tanaka, “Self-developing aspherical chalcogenide-glass microlenses for semiconductor lasers,” Appl. Phys. Lett. 83(9), 1725–1727 (2003).
[CrossRef]

Saliminia, A.

Salminen, O.

O. Salminen, N. Nordman, P. Riihola, and A. Ozols, “Holographic recording and photocontraction of amorphous As2S3 films by 488.0 nm and 514.5 nm laser light illumination,” Opt. Commun. 116(4-6), 310–315 (1995).
[CrossRef]

Sanghera, J. S.

C. Florea, J. S. Sanghera, L. B. Shaw, V. Q. Nguyen, and I. D. Aggarwal, “Surface relief gratings in AsSe glass fabricated under 800-nm laser exposure,” Mater. Lett. 61(6), 1271–1273 (2007).
[CrossRef]

Schulte, A.

A. Schulte, C. Rivero, K. Richardson, K. Turcotte, V. Hamel, A. Villeneuve, T. Gastian, and R. Vallee, “Bulk-film structural differences of chalcogenide glasses probed in situ by near-infrared waveguide Raman spectroscopy,” Opt. Commun. 198(1-3), 125–128 (2001).
[CrossRef]

Senanayake, S. D.

K. Antoine, H. Jain, M. Vlcek, S. D. Senanayake, and D. A. Drabold, “Chemical origin of polarization-dependent photoinduced changes in an As36Se64 glass film via in situ synchrotron x-ray photoelectron spectroscopy,” Phys. Rev. B 79(5), 054204 (2009).
[CrossRef]

Shaw, L. B.

C. Florea, J. S. Sanghera, L. B. Shaw, V. Q. Nguyen, and I. D. Aggarwal, “Surface relief gratings in AsSe glass fabricated under 800-nm laser exposure,” Mater. Lett. 61(6), 1271–1273 (2007).
[CrossRef]

Shimizu, I.

I. Shimizu and H. Fritzsche, “Thickness and refractive-index changes associated with photodarkening in evaporated As2S3 films,” J. Appl. Phys. 47(7), 2969–2971 (1976).
[CrossRef]

Shtutina, S.

N. P. Eisenberg, M. Manevich, M. Klebanov, V. Lyubin, and S. Shtutina, “Fabrication and testing of microlens arrays for the IR based on chalcogenide glassy resists,” J. Non-Cryst. Solids 198–200, 766–768 (1996).
[CrossRef]

Singh, B.

B. Singh, S. Rajagopalan, P. K. Bhat, D. K. Pandya, and K. L. Chopra, “Photocontraction effect in amorphous Se1-xGex films,” Sol. Stat. Com. 29(3), 167–169 (1979).
[CrossRef]

Slivken, S.

A. Evans, J. S. Yu, J. David, L. Doris, K. Mi, S. Slivken, and M. Razeghi, “High-temperature, high-power, continuous-wave operation of buried heterostructure quantum-cascade lasers,” Appl. Phys. Lett. 84(3), 314–316 (2004).
[CrossRef]

Solomon Harshvardhan, K.

K. L. Chopra, K. Solomon Harshvardhan, S. Rajagopolan, and L. K. Malhotra, “On the origin of photocontraction effect in amorphous chalcogenide films,” Sol. State. Com. 40(4), 387–390 (1981).
[CrossRef]

Spence, C.

C. Spence and S. Elliott,“The mechanism of giant photocontrcation in obliquely-deposited thin films of amorphous germanium chalcogenides,” J. Non-Cryst. Solids 97-98, 1215–1218 (1987).
[CrossRef]

Stephenson, R. J.

P. Krecmer, A. M. Moulin, R. J. Stephenson, T. Rayment, M. E. Welland, and S. R. Elliott, “Reversible nanocontraction and dilatation in a solid induced by polarized light,” Science 277(5333), 1799–1802 (1997).
[CrossRef]

Street, R. A.

D. K. Biegelsen and R. A. Street, “Photoinduced defects in chalcogenide glasses,” Phys. Rev. Lett. 44(12), 803–806 (1980).
[CrossRef]

Sundaram, S. K.

P. Lucas, E. A. King, A. D. Horner, B. R. Johnson, and S. K. Sundaram, ““Photostructural relaxation in As–Se–S glasses: Effect of network fragility,” J. Non-Cryst. Solids 352(21-22), 2067–2072 (2006).
[CrossRef]

Tanaka, K.

A. Saitoh and K. Tanaka, “Self-developing aspherical chalcogenide-glass microlenses for semiconductor lasers,” Appl. Phys. Lett. 83(9), 1725–1727 (2003).
[CrossRef]

K. Tanaka, “Photoexpansion in As2S3 glass,” Phys. Rev. B 57(9), 5163–5167 (1998).
[CrossRef]

A. V. Kolobov, K. Tanaka, and K. Tanaka,“Structural study of amorphous selenium by in situ EXAFS: observation of photoinduced bond alternation,” Phys. Rev. B 55(2), 726–734 (1997).
[CrossRef]

A. V. Kolobov, K. Tanaka, and K. Tanaka,“Structural study of amorphous selenium by in situ EXAFS: observation of photoinduced bond alternation,” Phys. Rev. B 55(2), 726–734 (1997).
[CrossRef]

H. Hisakuni and K. Tanaka, “Giant photoexpansion in As2S3 glass,” Appl. Phys. Lett. 65(23), 2925–2927 (1994).
[CrossRef]

K. Tanaka, “Mechanisms of photodarkening in amorphous chalcogenides,” J. Non-Cryst. Solids 59–60, 925–928 (1983).
[CrossRef]

K. Tanaka, “Optica properties and photoinduced changes in amorphous As-S films,” Thin Solid Films 66(3), 271–279 (1980).
[CrossRef]

H. Hamanaka, K. Tanaka, A. Matsuda, and S. Iizima, “Reversible photo-induced volume changes in evaoprated As2S3 and As4Se5Ge1 films,” Sol. Stat. Com. 19(6), 499–501 (1976).
[CrossRef]

K. Tanaka, “Reversible photoinduced change in intermolecular distance in amorphous As2S3 network,” Appl. Phys. Lett. 26(5), 243–245 (1975).
[CrossRef]

Tatsumisago, M.

M. Tatsumisago, B. L. Halfpap, J. L. Green, S. M. Lindsay, and C. A. Angell, “Fragility of Ge-As-Se glass-forming liquids in relation to rigidity percolation, and the Kauzmann paradox,” Phys. Rev. Lett. 64(13), 1549–1552 (1990).
[CrossRef] [PubMed]

Teteris, J.

I. Manika and J. Teteris, “Photoinduced changes of mechanical properties in amorphous arsenic chalcogenide films,” J. Non-Cryst. Solids 90(1-3), 505–508 (1987).
[CrossRef]

Thorpe, M. F.

H. He and M. F. Thorpe, “Elastic properties of glasses,” Phys. Rev. Lett. 54(19), 2107–2110 (1985).
[CrossRef] [PubMed]

M. F. Thorpe, “Continuous deformations in random networks,” J. Non-Cryst. Solids 57(3), 355–370 (1983).
[CrossRef]

Turcotte, K.

A. Schulte, C. Rivero, K. Richardson, K. Turcotte, V. Hamel, A. Villeneuve, T. Gastian, and R. Vallee, “Bulk-film structural differences of chalcogenide glasses probed in situ by near-infrared waveguide Raman spectroscopy,” Opt. Commun. 198(1-3), 125–128 (2001).
[CrossRef]

Vallee, R.

A. Schulte, C. Rivero, K. Richardson, K. Turcotte, V. Hamel, A. Villeneuve, T. Gastian, and R. Vallee, “Bulk-film structural differences of chalcogenide glasses probed in situ by near-infrared waveguide Raman spectroscopy,” Opt. Commun. 198(1-3), 125–128 (2001).
[CrossRef]

Varshneya, A. K.

J. C. Mauro and A. K. Varshneya, “Model interaction potentials for selenium from ab initio molecular simulations,” Phys. Rev. B 71(21), 214105 (2005).
[CrossRef]

Velikov, V.

C. A. Angell, B. E. Richards, and V. Velikov, “Simple glass-forming liquids: their definition, fragilities, and landscape excitation profiles,” J. Phys. Condens. Matter 11(10A), 005 (1999).
[CrossRef]

Villeneuve, A.

A. Schulte, C. Rivero, K. Richardson, K. Turcotte, V. Hamel, A. Villeneuve, T. Gastian, and R. Vallee, “Bulk-film structural differences of chalcogenide glasses probed in situ by near-infrared waveguide Raman spectroscopy,” Opt. Commun. 198(1-3), 125–128 (2001).
[CrossRef]

A. Saliminia, T. Galstian, A. Villeneuve, K. Le Foulgoc, and K. Richardson, “Temperature dependence of Bragg reflectors in chalcogenide As2S3 glass slab waveguides,” J. Opt. Soc. Am. B 17(8), 1343–1348 (2000).
[CrossRef]

Vlcek, M.

K. Antoine, H. Jain, M. Vlcek, S. D. Senanayake, and D. A. Drabold, “Chemical origin of polarization-dependent photoinduced changes in an As36Se64 glass film via in situ synchrotron x-ray photoelectron spectroscopy,” Phys. Rev. B 79(5), 054204 (2009).
[CrossRef]

J. R. Neilson, A. Kovalskiy, M. Vlcek, H. Jain, and F. Miller, “Fabrication of nano-gratings in arsenic sulfide films,” J. Non-Cryst. Solids 353(13-15), 1427–1430 (2007).
[CrossRef]

Welland, M. E.

P. Krecmer, A. M. Moulin, R. J. Stephenson, T. Rayment, M. E. Welland, and S. R. Elliott, “Reversible nanocontraction and dilatation in a solid induced by polarized light,” Science 277(5333), 1799–1802 (1997).
[CrossRef]

Xu, Y.

Yang, G.

Yang, Z.

Z. Yang, N. C. Anheier, H. A. Qiao, and P. Lucas, “Simultaneous microscopic measurements of photodarkening and photoexpansion in chalcogenide films,” J. Phys. D Appl. Phys. 42(13), 135412 (2009).
[CrossRef]

L. Calvez, Z. Yang, and P. Lucas, “Light-induced matrix softening of Ge-As-Se network glasses,” Phys. Rev. Lett. 101(17), 177402 (2008).
[CrossRef] [PubMed]

Yu, J. S.

A. Evans, J. S. Yu, J. David, L. Doris, K. Mi, S. Slivken, and M. Razeghi, “High-temperature, high-power, continuous-wave operation of buried heterostructure quantum-cascade lasers,” Appl. Phys. Lett. 84(3), 314–316 (2004).
[CrossRef]

Zeng, H.

Zhang, X. H.

H. L. Ma, X. H. Zhang, J. Lucas, and C. T. Moynihan, ““Relaxation near room temperature in tellurium chalcohalide glasses,” J. Non-Cryst. Solids 140, 209–214 (1992).
[CrossRef]

Zhao, D.

Appl. Phys. Lett.

K. Tanaka, “Reversible photoinduced change in intermolecular distance in amorphous As2S3 network,” Appl. Phys. Lett. 26(5), 243–245 (1975).
[CrossRef]

A. Evans, J. S. Yu, J. David, L. Doris, K. Mi, S. Slivken, and M. Razeghi, “High-temperature, high-power, continuous-wave operation of buried heterostructure quantum-cascade lasers,” Appl. Phys. Lett. 84(3), 314–316 (2004).
[CrossRef]

A. Saitoh and K. Tanaka, “Self-developing aspherical chalcogenide-glass microlenses for semiconductor lasers,” Appl. Phys. Lett. 83(9), 1725–1727 (2003).
[CrossRef]

H. Hisakuni and K. Tanaka, “Giant photoexpansion in As2S3 glass,” Appl. Phys. Lett. 65(23), 2925–2927 (1994).
[CrossRef]

J. Appl. Phys.

I. Shimizu and H. Fritzsche, “Thickness and refractive-index changes associated with photodarkening in evaporated As2S3 films,” J. Appl. Phys. 47(7), 2969–2971 (1976).
[CrossRef]

M. Kasai, H. Nakatsui, and Y. Hajimoto, “Photodepression in As-S thin films,” J. Appl. Phys. 45(7), 3209–3210 (1974).
[CrossRef]

J. Non-Cryst. Solids

K. Tanaka, “Mechanisms of photodarkening in amorphous chalcogenides,” J. Non-Cryst. Solids 59–60, 925–928 (1983).
[CrossRef]

I. Manika and J. Teteris, “Photoinduced changes of mechanical properties in amorphous arsenic chalcogenide films,” J. Non-Cryst. Solids 90(1-3), 505–508 (1987).
[CrossRef]

M. F. Thorpe, “Continuous deformations in random networks,” J. Non-Cryst. Solids 57(3), 355–370 (1983).
[CrossRef]

C. A. Angell, “Relaxation in liquids, polymers and plastic crystals - strong/fragile patterns and problems,” J. Non-Cryst. Solids 131–133, 13–31 (1991).
[CrossRef]

P. Lucas, A. Doraiswamy, and E. A. King, “Photoinduced structural relaxation in chalcogenide glasses,” J. Non-Cryst. Solids 332(1-3), 35–42 (2003).
[CrossRef]

P. Lucas, E. A. King, A. D. Horner, B. R. Johnson, and S. K. Sundaram, ““Photostructural relaxation in As–Se–S glasses: Effect of network fragility,” J. Non-Cryst. Solids 352(21-22), 2067–2072 (2006).
[CrossRef]

H. L. Ma, X. H. Zhang, J. Lucas, and C. T. Moynihan, ““Relaxation near room temperature in tellurium chalcohalide glasses,” J. Non-Cryst. Solids 140, 209–214 (1992).
[CrossRef]

N. P. Eisenberg, M. Manevich, M. Klebanov, V. Lyubin, and S. Shtutina, “Fabrication and testing of microlens arrays for the IR based on chalcogenide glassy resists,” J. Non-Cryst. Solids 198–200, 766–768 (1996).
[CrossRef]

C. Spence and S. Elliott,“The mechanism of giant photocontrcation in obliquely-deposited thin films of amorphous germanium chalcogenides,” J. Non-Cryst. Solids 97-98, 1215–1218 (1987).
[CrossRef]

J. R. Neilson, A. Kovalskiy, M. Vlcek, H. Jain, and F. Miller, “Fabrication of nano-gratings in arsenic sulfide films,” J. Non-Cryst. Solids 353(13-15), 1427–1430 (2007).
[CrossRef]

J. Opt. Soc. Am. B

J. Phys. Chem. B

J. C. Mauro, R. J. Loucks, and J. Balakrishnan, “Split-step eigenvector-following technique for exploring enthalpy landscapes at absolute zero,” J. Phys. Chem. B 110(10), 5005–5011 (2006).
[CrossRef] [PubMed]

J. Phys. Chem. Solids

C. A. Angell, “Perspective on the glass transition,” J. Phys. Chem. Solids 49(8), 863–871 (1988).
[CrossRef]

J. Phys. Condens. Matter

P. Lucas, “Energy landscape and photoinduced structural changes in chalcogenide glasses,” J. Phys. Condens. Matter 18(24), 5629–5638 (2006).
[CrossRef]

C. A. Angell, B. E. Richards, and V. Velikov, “Simple glass-forming liquids: their definition, fragilities, and landscape excitation profiles,” J. Phys. Condens. Matter 11(10A), 005 (1999).
[CrossRef]

J. Phys. D Appl. Phys.

Z. Yang, N. C. Anheier, H. A. Qiao, and P. Lucas, “Simultaneous microscopic measurements of photodarkening and photoexpansion in chalcogenide films,” J. Phys. D Appl. Phys. 42(13), 135412 (2009).
[CrossRef]

Mater. Lett.

C. Florea, J. S. Sanghera, L. B. Shaw, V. Q. Nguyen, and I. D. Aggarwal, “Surface relief gratings in AsSe glass fabricated under 800-nm laser exposure,” Mater. Lett. 61(6), 1271–1273 (2007).
[CrossRef]

Nature

L. M. Martinez and C. A. Angell, “A thermodynamic connection to the fragility of glass-forming liquids,” Nature 410(6829), 663–667 (2001).
[CrossRef] [PubMed]

Opt. Commun.

O. Salminen, N. Nordman, P. Riihola, and A. Ozols, “Holographic recording and photocontraction of amorphous As2S3 films by 488.0 nm and 514.5 nm laser light illumination,” Opt. Commun. 116(4-6), 310–315 (1995).
[CrossRef]

A. Schulte, C. Rivero, K. Richardson, K. Turcotte, V. Hamel, A. Villeneuve, T. Gastian, and R. Vallee, “Bulk-film structural differences of chalcogenide glasses probed in situ by near-infrared waveguide Raman spectroscopy,” Opt. Commun. 198(1-3), 125–128 (2001).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. B

J. C. Mauro and A. K. Varshneya, “Model interaction potentials for selenium from ab initio molecular simulations,” Phys. Rev. B 71(21), 214105 (2005).
[CrossRef]

A. V. Kolobov, K. Tanaka, and K. Tanaka,“Structural study of amorphous selenium by in situ EXAFS: observation of photoinduced bond alternation,” Phys. Rev. B 55(2), 726–734 (1997).
[CrossRef]

K. Antoine, H. Jain, M. Vlcek, S. D. Senanayake, and D. A. Drabold, “Chemical origin of polarization-dependent photoinduced changes in an As36Se64 glass film via in situ synchrotron x-ray photoelectron spectroscopy,” Phys. Rev. B 79(5), 054204 (2009).
[CrossRef]

A. Ozols, N. Nordman, O. Nordman, and P. Riihola, “Model of holographic recording in amorphous chalcogenide films using subband-gap light at room temperature,” Phys. Rev. B 55(21), 14236–14244 (1997).
[CrossRef]

K. Tanaka, “Photoexpansion in As2S3 glass,” Phys. Rev. B 57(9), 5163–5167 (1998).
[CrossRef]

M. Kastner, “Compositional trends in the optical properties of amorphous lone-pair semiconductors,” Phys. Rev. B 7(12), 5237–5252 (1973).
[CrossRef]

J. C. Phillips and M. L. Cohen, “Molecular models of giant photocontractive evaporated chalcogenide films,” Phys. Rev. B 26(6), 3510–3512 (1982).
[CrossRef]

P. Lucas, E. A. King, A. Doraiswamy, and P. Jivaganont, “Competitive photostructural effects in Ge-Se glass,” Phys. Rev. B 71(10), 104207 (2005).
[CrossRef]

Phys. Rev. Lett.

M. Tatsumisago, B. L. Halfpap, J. L. Green, S. M. Lindsay, and C. A. Angell, “Fragility of Ge-As-Se glass-forming liquids in relation to rigidity percolation, and the Kauzmann paradox,” Phys. Rev. Lett. 64(13), 1549–1552 (1990).
[CrossRef] [PubMed]

H. He and M. F. Thorpe, “Elastic properties of glasses,” Phys. Rev. Lett. 54(19), 2107–2110 (1985).
[CrossRef] [PubMed]

L. Calvez, Z. Yang, and P. Lucas, “Light-induced matrix softening of Ge-As-Se network glasses,” Phys. Rev. Lett. 101(17), 177402 (2008).
[CrossRef] [PubMed]

D. K. Biegelsen and R. A. Street, “Photoinduced defects in chalcogenide glasses,” Phys. Rev. Lett. 44(12), 803–806 (1980).
[CrossRef]

Science

P. Krecmer, A. M. Moulin, R. J. Stephenson, T. Rayment, M. E. Welland, and S. R. Elliott, “Reversible nanocontraction and dilatation in a solid induced by polarized light,” Science 277(5333), 1799–1802 (1997).
[CrossRef]

Sol. Stat. Com.

H. Hamanaka, K. Tanaka, A. Matsuda, and S. Iizima, “Reversible photo-induced volume changes in evaoprated As2S3 and As4Se5Ge1 films,” Sol. Stat. Com. 19(6), 499–501 (1976).
[CrossRef]

B. Singh, S. Rajagopalan, P. K. Bhat, D. K. Pandya, and K. L. Chopra, “Photocontraction effect in amorphous Se1-xGex films,” Sol. Stat. Com. 29(3), 167–169 (1979).
[CrossRef]

Sol. State. Com.

K. L. Chopra, K. Solomon Harshvardhan, S. Rajagopolan, and L. K. Malhotra, “On the origin of photocontraction effect in amorphous chalcogenide films,” Sol. State. Com. 40(4), 387–390 (1981).
[CrossRef]

Thin Solid Films

K. Tanaka, “Optica properties and photoinduced changes in amorphous As-S films,” Thin Solid Films 66(3), 271–279 (1980).
[CrossRef]

Other

M. Frumar, B. Frumarova, T. Wagner, and P. Nemec, “Photo-induced phenomena in amorphous and glassy chalcogenides” in Photo-induced metastability in amorphous semiconductors, A. V. Kolobov, ed (WILEY-VCH GmbH & Co. KGaA, Weinheim, 2003)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Temperature dependence of the molar volume of a strong glassformer compared with a fragile glassformer. Fragile glassforming liquids have a sharper volume variation with temperature. As a result, fragile glasses frozen-in at fast cooling rate have a wide potential for volume relaxation and well-annealed fragile glasses have wide potential for photoexpansion

Fig. 2
Fig. 2

(Color online) Interferometric profilometer images of photoinduced microlenses in a GeAsSe13 glass. a) Convex lenses produced by photoexpansion on a 2 mm thick annealed glass disc. Height is ~3.8 microns (5W/cm2, 20 min). b) Concave lenses produced by photocontraction on a 2 mm thick quenched glass disc. Depth is ~800 nm (0.4W/cm2, 20 min). c) Combined concave-convex lenses produced on a 2 mm thick quenched glass disc. The depth is ~600 nm after 8 min irradiation with a low intensity of 0.4 W/cm2, followed by a reversible expansion of ~400 nm upon high intensity irradiation of 3.5 W/cm2 for 2 min with a focused beam. Complete reversibility of the contraction is observed for longer irradiation time at high intensity.

Fig. 3
Fig. 3

Effect of irradiation time on a volume change in GeAsSe13 glass upon irradiation with 825 nm laser light through a 5X microscope objective; a) Photoexpansion of an annealed glass upon irradiation with 4.5 W/cm2 intensity for 5 min. b) Photocontraction of a quenched glass upon irradiation with 0.5 W/cm2 intensity for 2 min. c) Saturation of the photoexpansion effect with irradiation time in the annealed glass. d) Saturation of the photocontraction effect with irradiation time in the quenched glass. Lines in figure c) & d) are guides to the eye

Fig. 4
Fig. 4

(Color online) Effect of light intensity on the photoinduced volume change in GeAsSe13 glass upon irradiation of a 0.5mm2 area with an 825 nm laser for 10 min. The annealed glass (black dots) shows photoexpansion, while the quenched glass (red dots) shows photocontraction. For large irradiation intensity, the quenched glass eventually develops expansion.

Fig. 5
Fig. 5

(Color online) Variation of the enthalpy of GeAsSe13 glass estimated by measuring the fictive temperature of the glass upon irradiation with 825 nm laser light; Upper curve: decrease in enthalpy of a glass quenched in water and irradiated at 1.6 W/cm2. Lower curve: Increase in enthalpy of an annealed glass irradiated at 3.2 W/cm2

Fig. 6
Fig. 6

Magnitude of photocontraction as a function of the initial glass enthalpy in a GeAsSe13 glass irradiated for 10 min with a 3 W/cm2 laser at 825nm. The greater the initial enthalpy the greater the magnitude of photocontraction. The glasses used in this experiment are obtained by quenching the melts in liquid nitrogen, ice water and air, respectively. As described in Fig. 1, the fastest cooled glasses have a larger propensity for volume contraction.

Fig. 7
Fig. 7

(Color online) Band edge shift upon irradiation of GeAsSe13 glass: a) Annealed glass irradiated at 825 nm and 3.2 W/cm2; b) Quenched glass irradiated at 825 nm and 1.6 W/cm2; c) Saturation of photodarkening with time in annealed glass. d) Saturation of photobleaching with time in quenched glass. Lines in figure c) & d) are guides to the eye.

Metrics