Abstract

In computation of full-parallax computer-generated hologram (CGH), balance between speed and memory usage is always the core of algorithm development. To solve the speed problem of coherent ray trace (CRT) algorithm and memory problem of look-up table (LUT) algorithm without sacrificing reconstructed object quality, we develop a novel algorithm with split look-up tables (S-LUT) and implement it on graphics processing unit (GPU). Our results show that S-LUT on GPU has the fastest speed among all the algorithms investigated in this paper, while it still maintaining low memory usage. We also demonstrate high quality objects reconstructed from CGHs computed with S-LUT on GPU. The GPU implementation of our new algorithm may enable real-time and interactive holographic 3D display in the future.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Slinger, C. Cameron, and M. Stanley, “Computer-generated holography as a generic display technology,” Computer 38(8), 46–53 (2005).
    [CrossRef]
  2. C. Slinger, C. Cameron, S. Coomber, R. Miller, D. Payne, A. Smith, M. Smith, M. Stanley, and P. Watson, “Recent developments in computer-generated holography: toward a practical electroholography system for interactive 3D visualization,” Proc. SPIE 5290, 27–41 (2004).
    [CrossRef]
  3. C. D. Cameron, D. A. Pain, M. Stanley, and C. W. Slinger, “Computational challengers of emerging novel true 3D holography displays,” Proc. SPIE 4109, 129–140 (2000).
    [CrossRef]
  4. J. W. Goodman, “Introduction to Fourier Optics 3rd Edition,” McGraw-Hill College, (Roberts & Co. Publishers, 2005).
  5. Y. Ichioka, M. Izumi, and Y. Suzuki, “Scanning halftone plotter and computer-generated continuous tone hologram,” Appl. Opt. 10(2), 403–411 (1971).
    [CrossRef] [PubMed]
  6. M. Lucente, “Diffraction-specific fringe computation for electro-holography,” Ph. D. Thesis, Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology (1994).
  7. N. Masuda, T. Ito, T. Tanaka, A. Shiraki, and T. Sugie, “Computer generated holography using a graphics processing unit,” Opt. Express 14(2), 603–608 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-2-603 .
    [CrossRef] [PubMed]
  8. M. Lucente, “Interactive computation of holograms using a look-up table,” J. Electron. Imaging 2(1), 28–34 (1993).
    [CrossRef]
  9. S. C. Kim and E. S. Kim, “Fast computation of hologram patterns of a 3D object using run-length encoding and novel look-up table methods,” Appl. Opt. 48(6), 1030–1041 (2009).
    [CrossRef]
  10. X. W. Xu, S. Solanki, X. A. Liang, S. H. Xu, A. T. Ridwan, Y. C. Pan, F. Farbiz, B. X. Xu, and T. C. Chong, “Computer-generated holography for dynamic display of 3D objects with full parallax,” The International Journal of Virtual Reality 8(2), 33–38 (2009), http://www.ijvr.org/issues/issue2-2009/6.pdf .
  11. T. Ito and T. Shimobaba, “One-unit system for electroholography by use of a special-purpose computational chip with a high-resolution liquid-crystal display toward a three-dimensional television,” Opt. Express 12(9), 1788–1793 (2004), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-12-9-1788 .
    [CrossRef] [PubMed]
  12. C. Petz and M. Magnor, “Fast hologram synthesis for 3D geometry models using graphics hardware,” Proc. SPIE 5005, 266–275 (2003).
    [CrossRef]
  13. L. Ahrenberg, P. Benzie, M. Magnor, and J. Watson, “Computer generated holography using parallel commodity graphics hardware,” Opt. Express 14(17), 7636–7641 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-17-7636 .
    [CrossRef] [PubMed]
  14. nVidia, “Compute Unified Device Architecture Programming Guide ver. 2.2”, (nVidia, 2009). http://developer.download.nvidia.com/compute/cuda/2_2/toolkit/docs/NVIDIA_CUDA_Programming_Guide_2.2.pdf
  15. nVidia, “Specification of GeForce GTX 285”, (nVidia, 2008). http://www.nvidia.com/object/product_geforce_gtx_285_us.html
    [PubMed]
  16. Intel, “Specification of Intel Core i7 processor Extreme Edition”, (Intel, 2009). http://www.intel.com/products/processor/corei7ee/specifications.htm
    [PubMed]
  17. MSI, “Specification of MSI N285GTX-T2D1G-OC”, (MSI, 2008). http://www.msi.com/index.php?func=prodvgaspec&maincat_no=130&cat2_no=136&cat3_no=&prod_no=1726#menu
    [PubMed]
  18. L. Golan and S. Shoham, “Speckle elimination using shift-averaging in high-rate holographic projection,” Opt. Express 17(3), 1330–1339 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-3-1330 .
    [CrossRef] [PubMed]

2009 (3)

X. W. Xu, S. Solanki, X. A. Liang, S. H. Xu, A. T. Ridwan, Y. C. Pan, F. Farbiz, B. X. Xu, and T. C. Chong, “Computer-generated holography for dynamic display of 3D objects with full parallax,” The International Journal of Virtual Reality 8(2), 33–38 (2009), http://www.ijvr.org/issues/issue2-2009/6.pdf .

L. Golan and S. Shoham, “Speckle elimination using shift-averaging in high-rate holographic projection,” Opt. Express 17(3), 1330–1339 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-3-1330 .
[CrossRef] [PubMed]

S. C. Kim and E. S. Kim, “Fast computation of hologram patterns of a 3D object using run-length encoding and novel look-up table methods,” Appl. Opt. 48(6), 1030–1041 (2009).
[CrossRef]

2006 (2)

2005 (1)

C. Slinger, C. Cameron, and M. Stanley, “Computer-generated holography as a generic display technology,” Computer 38(8), 46–53 (2005).
[CrossRef]

2004 (2)

C. Slinger, C. Cameron, S. Coomber, R. Miller, D. Payne, A. Smith, M. Smith, M. Stanley, and P. Watson, “Recent developments in computer-generated holography: toward a practical electroholography system for interactive 3D visualization,” Proc. SPIE 5290, 27–41 (2004).
[CrossRef]

T. Ito and T. Shimobaba, “One-unit system for electroholography by use of a special-purpose computational chip with a high-resolution liquid-crystal display toward a three-dimensional television,” Opt. Express 12(9), 1788–1793 (2004), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-12-9-1788 .
[CrossRef] [PubMed]

2003 (1)

C. Petz and M. Magnor, “Fast hologram synthesis for 3D geometry models using graphics hardware,” Proc. SPIE 5005, 266–275 (2003).
[CrossRef]

2000 (1)

C. D. Cameron, D. A. Pain, M. Stanley, and C. W. Slinger, “Computational challengers of emerging novel true 3D holography displays,” Proc. SPIE 4109, 129–140 (2000).
[CrossRef]

1993 (1)

M. Lucente, “Interactive computation of holograms using a look-up table,” J. Electron. Imaging 2(1), 28–34 (1993).
[CrossRef]

1971 (1)

Ahrenberg, L.

Benzie, P.

Cameron, C.

C. Slinger, C. Cameron, and M. Stanley, “Computer-generated holography as a generic display technology,” Computer 38(8), 46–53 (2005).
[CrossRef]

C. Slinger, C. Cameron, S. Coomber, R. Miller, D. Payne, A. Smith, M. Smith, M. Stanley, and P. Watson, “Recent developments in computer-generated holography: toward a practical electroholography system for interactive 3D visualization,” Proc. SPIE 5290, 27–41 (2004).
[CrossRef]

Cameron, C. D.

C. D. Cameron, D. A. Pain, M. Stanley, and C. W. Slinger, “Computational challengers of emerging novel true 3D holography displays,” Proc. SPIE 4109, 129–140 (2000).
[CrossRef]

Chong, T. C.

X. W. Xu, S. Solanki, X. A. Liang, S. H. Xu, A. T. Ridwan, Y. C. Pan, F. Farbiz, B. X. Xu, and T. C. Chong, “Computer-generated holography for dynamic display of 3D objects with full parallax,” The International Journal of Virtual Reality 8(2), 33–38 (2009), http://www.ijvr.org/issues/issue2-2009/6.pdf .

Coomber, S.

C. Slinger, C. Cameron, S. Coomber, R. Miller, D. Payne, A. Smith, M. Smith, M. Stanley, and P. Watson, “Recent developments in computer-generated holography: toward a practical electroholography system for interactive 3D visualization,” Proc. SPIE 5290, 27–41 (2004).
[CrossRef]

Farbiz, F.

X. W. Xu, S. Solanki, X. A. Liang, S. H. Xu, A. T. Ridwan, Y. C. Pan, F. Farbiz, B. X. Xu, and T. C. Chong, “Computer-generated holography for dynamic display of 3D objects with full parallax,” The International Journal of Virtual Reality 8(2), 33–38 (2009), http://www.ijvr.org/issues/issue2-2009/6.pdf .

Golan, L.

Ichioka, Y.

Ito, T.

Izumi, M.

Kim, E. S.

Kim, S. C.

Liang, X. A.

X. W. Xu, S. Solanki, X. A. Liang, S. H. Xu, A. T. Ridwan, Y. C. Pan, F. Farbiz, B. X. Xu, and T. C. Chong, “Computer-generated holography for dynamic display of 3D objects with full parallax,” The International Journal of Virtual Reality 8(2), 33–38 (2009), http://www.ijvr.org/issues/issue2-2009/6.pdf .

Lucente, M.

M. Lucente, “Interactive computation of holograms using a look-up table,” J. Electron. Imaging 2(1), 28–34 (1993).
[CrossRef]

Magnor, M.

Masuda, N.

Miller, R.

C. Slinger, C. Cameron, S. Coomber, R. Miller, D. Payne, A. Smith, M. Smith, M. Stanley, and P. Watson, “Recent developments in computer-generated holography: toward a practical electroholography system for interactive 3D visualization,” Proc. SPIE 5290, 27–41 (2004).
[CrossRef]

Pain, D. A.

C. D. Cameron, D. A. Pain, M. Stanley, and C. W. Slinger, “Computational challengers of emerging novel true 3D holography displays,” Proc. SPIE 4109, 129–140 (2000).
[CrossRef]

Pan, Y. C.

X. W. Xu, S. Solanki, X. A. Liang, S. H. Xu, A. T. Ridwan, Y. C. Pan, F. Farbiz, B. X. Xu, and T. C. Chong, “Computer-generated holography for dynamic display of 3D objects with full parallax,” The International Journal of Virtual Reality 8(2), 33–38 (2009), http://www.ijvr.org/issues/issue2-2009/6.pdf .

Payne, D.

C. Slinger, C. Cameron, S. Coomber, R. Miller, D. Payne, A. Smith, M. Smith, M. Stanley, and P. Watson, “Recent developments in computer-generated holography: toward a practical electroholography system for interactive 3D visualization,” Proc. SPIE 5290, 27–41 (2004).
[CrossRef]

Petz, C.

C. Petz and M. Magnor, “Fast hologram synthesis for 3D geometry models using graphics hardware,” Proc. SPIE 5005, 266–275 (2003).
[CrossRef]

Ridwan, A. T.

X. W. Xu, S. Solanki, X. A. Liang, S. H. Xu, A. T. Ridwan, Y. C. Pan, F. Farbiz, B. X. Xu, and T. C. Chong, “Computer-generated holography for dynamic display of 3D objects with full parallax,” The International Journal of Virtual Reality 8(2), 33–38 (2009), http://www.ijvr.org/issues/issue2-2009/6.pdf .

Shimobaba, T.

Shiraki, A.

Shoham, S.

Slinger, C.

C. Slinger, C. Cameron, and M. Stanley, “Computer-generated holography as a generic display technology,” Computer 38(8), 46–53 (2005).
[CrossRef]

C. Slinger, C. Cameron, S. Coomber, R. Miller, D. Payne, A. Smith, M. Smith, M. Stanley, and P. Watson, “Recent developments in computer-generated holography: toward a practical electroholography system for interactive 3D visualization,” Proc. SPIE 5290, 27–41 (2004).
[CrossRef]

Slinger, C. W.

C. D. Cameron, D. A. Pain, M. Stanley, and C. W. Slinger, “Computational challengers of emerging novel true 3D holography displays,” Proc. SPIE 4109, 129–140 (2000).
[CrossRef]

Smith, A.

C. Slinger, C. Cameron, S. Coomber, R. Miller, D. Payne, A. Smith, M. Smith, M. Stanley, and P. Watson, “Recent developments in computer-generated holography: toward a practical electroholography system for interactive 3D visualization,” Proc. SPIE 5290, 27–41 (2004).
[CrossRef]

Smith, M.

C. Slinger, C. Cameron, S. Coomber, R. Miller, D. Payne, A. Smith, M. Smith, M. Stanley, and P. Watson, “Recent developments in computer-generated holography: toward a practical electroholography system for interactive 3D visualization,” Proc. SPIE 5290, 27–41 (2004).
[CrossRef]

Solanki, S.

X. W. Xu, S. Solanki, X. A. Liang, S. H. Xu, A. T. Ridwan, Y. C. Pan, F. Farbiz, B. X. Xu, and T. C. Chong, “Computer-generated holography for dynamic display of 3D objects with full parallax,” The International Journal of Virtual Reality 8(2), 33–38 (2009), http://www.ijvr.org/issues/issue2-2009/6.pdf .

Stanley, M.

C. Slinger, C. Cameron, and M. Stanley, “Computer-generated holography as a generic display technology,” Computer 38(8), 46–53 (2005).
[CrossRef]

C. Slinger, C. Cameron, S. Coomber, R. Miller, D. Payne, A. Smith, M. Smith, M. Stanley, and P. Watson, “Recent developments in computer-generated holography: toward a practical electroholography system for interactive 3D visualization,” Proc. SPIE 5290, 27–41 (2004).
[CrossRef]

C. D. Cameron, D. A. Pain, M. Stanley, and C. W. Slinger, “Computational challengers of emerging novel true 3D holography displays,” Proc. SPIE 4109, 129–140 (2000).
[CrossRef]

Sugie, T.

Suzuki, Y.

Tanaka, T.

Watson, J.

Watson, P.

C. Slinger, C. Cameron, S. Coomber, R. Miller, D. Payne, A. Smith, M. Smith, M. Stanley, and P. Watson, “Recent developments in computer-generated holography: toward a practical electroholography system for interactive 3D visualization,” Proc. SPIE 5290, 27–41 (2004).
[CrossRef]

Xu, B. X.

X. W. Xu, S. Solanki, X. A. Liang, S. H. Xu, A. T. Ridwan, Y. C. Pan, F. Farbiz, B. X. Xu, and T. C. Chong, “Computer-generated holography for dynamic display of 3D objects with full parallax,” The International Journal of Virtual Reality 8(2), 33–38 (2009), http://www.ijvr.org/issues/issue2-2009/6.pdf .

Xu, S. H.

X. W. Xu, S. Solanki, X. A. Liang, S. H. Xu, A. T. Ridwan, Y. C. Pan, F. Farbiz, B. X. Xu, and T. C. Chong, “Computer-generated holography for dynamic display of 3D objects with full parallax,” The International Journal of Virtual Reality 8(2), 33–38 (2009), http://www.ijvr.org/issues/issue2-2009/6.pdf .

Xu, X. W.

X. W. Xu, S. Solanki, X. A. Liang, S. H. Xu, A. T. Ridwan, Y. C. Pan, F. Farbiz, B. X. Xu, and T. C. Chong, “Computer-generated holography for dynamic display of 3D objects with full parallax,” The International Journal of Virtual Reality 8(2), 33–38 (2009), http://www.ijvr.org/issues/issue2-2009/6.pdf .

Appl. Opt. (2)

Computer (1)

C. Slinger, C. Cameron, and M. Stanley, “Computer-generated holography as a generic display technology,” Computer 38(8), 46–53 (2005).
[CrossRef]

J. Electron. Imaging (1)

M. Lucente, “Interactive computation of holograms using a look-up table,” J. Electron. Imaging 2(1), 28–34 (1993).
[CrossRef]

Opt. Express (4)

Proc. SPIE (3)

C. Slinger, C. Cameron, S. Coomber, R. Miller, D. Payne, A. Smith, M. Smith, M. Stanley, and P. Watson, “Recent developments in computer-generated holography: toward a practical electroholography system for interactive 3D visualization,” Proc. SPIE 5290, 27–41 (2004).
[CrossRef]

C. D. Cameron, D. A. Pain, M. Stanley, and C. W. Slinger, “Computational challengers of emerging novel true 3D holography displays,” Proc. SPIE 4109, 129–140 (2000).
[CrossRef]

C. Petz and M. Magnor, “Fast hologram synthesis for 3D geometry models using graphics hardware,” Proc. SPIE 5005, 266–275 (2003).
[CrossRef]

The International Journal of Virtual Reality (1)

X. W. Xu, S. Solanki, X. A. Liang, S. H. Xu, A. T. Ridwan, Y. C. Pan, F. Farbiz, B. X. Xu, and T. C. Chong, “Computer-generated holography for dynamic display of 3D objects with full parallax,” The International Journal of Virtual Reality 8(2), 33–38 (2009), http://www.ijvr.org/issues/issue2-2009/6.pdf .

Other (6)

nVidia, “Compute Unified Device Architecture Programming Guide ver. 2.2”, (nVidia, 2009). http://developer.download.nvidia.com/compute/cuda/2_2/toolkit/docs/NVIDIA_CUDA_Programming_Guide_2.2.pdf

nVidia, “Specification of GeForce GTX 285”, (nVidia, 2008). http://www.nvidia.com/object/product_geforce_gtx_285_us.html
[PubMed]

Intel, “Specification of Intel Core i7 processor Extreme Edition”, (Intel, 2009). http://www.intel.com/products/processor/corei7ee/specifications.htm
[PubMed]

MSI, “Specification of MSI N285GTX-T2D1G-OC”, (MSI, 2008). http://www.msi.com/index.php?func=prodvgaspec&maincat_no=130&cat2_no=136&cat3_no=&prod_no=1726#menu
[PubMed]

J. W. Goodman, “Introduction to Fourier Optics 3rd Edition,” McGraw-Hill College, (Roberts & Co. Publishers, 2005).

M. Lucente, “Diffraction-specific fringe computation for electro-holography,” Ph. D. Thesis, Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology (1994).

Supplementary Material (1)

» Media 1: AVI (4393 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Time for calculation of H(Δx,zj) and V(Δy,zj) for S-LUT.

Fig. 2
Fig. 2

Comparison of computational speed among algorithms on CPU and GPU.

Fig. 3
Fig. 3

Computation time of S-LUT on GPU.

Fig. 4
Fig. 4

Comparison of memory usage among algorithms on CPU and GPU.

Fig. 5
Fig. 5

Comparison of memory usage for high resolution SLM and object space.

Fig. 6
Fig. 6

Reconstructed objects: (a) 2D resolution chart by CRT on CPU, (b) 2D resolution chart by S-LUT on GPU, (c) 3D teapot by CRT on CPU, and (d) 3D teapot by S-LUT on GPU.

Fig. 7
Fig. 7

(Media 1) Video clip of a rotating 3D globe reconstructed from holograms computed with S-LUT on GPU.

Tables (3)

Tables Icon

Table 1 Complexity, operation and memory usage comparison among algorithms

Tables Icon

Table 2 Specifications of PC

Tables Icon

Table 3 CGH computation parameters

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

I(xh,yh)=j=0N1ajcos[2πλ(xhxj)2+(yhyj)2+zj2],
I(xh,yh)=j=0N1ajT(Δx,Δy,zj),
I(xh,yh)=j=0N1ajcos(2πλΔx2+Δy2+zj2),
I(xh,yh)=j=0N1ajcos{2πλ[zj+12zj(Δx2+Δy2)]}.
I(xh,yh)=j=0N1ajcos[2πλ(zj+12zjΔx2+zj+12zjΔy2)].
I(xh,yh)=j=0N1ajcos(2πλΔx2+zj2+2πλΔy2+zj2).
Ic(xh,yh)=j=0N1ajei(2πλΔx2+zj2+2πλΔy2+zj2)=j=0N1ajei(2πλΔx2+zj2)×ei(2πλΔy2+zj2).
Ic(xh,yh)=j=0N1ajH(Δx,zj)×V(Δy,zj).
Ic(xh,yh)|(xj,zj)=j=0n1ajH(Δx,zj)×V(Δy,zj)=H(Δx,zj)×j=0n1ajV(Δy,zj).
Step 1:  S(yh)=j=0n1ajV(Δy,zj);
Step 2:  Ic(xh,yh)|(xj,zj)=H(Δx,zj)×S(yh),
Ic(xh,yh)=Ic(xh,yh)|(xj,zj).

Metrics