Abstract

New methods for fabricating glass exposed-core microstructured optical fiber are demonstrated. The fiber designs consist of an optical fiber with a suspended micron-scale core that is partially exposed to the external environment, which is particularly useful for sensing. These fibers allow for strong evanescent field interactions with the surrounding media due to the small core size, while also providing the potential for real-time and distributed measurements. The experimental performance of an exposed-core fiber is compared to an equivalent microstructured fiber with an enclosed (protected) core in terms of their performance as evanescent field sensors. We demonstrate that the exposed-core fiber can provide a significantly improved measurement response time.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. V. Afshar, Y. Ruan, S. C. Warren-Smith, and T. M. Monro, “Enhanced fluorescence sensing using microstructured optical fibers: a comparison of forward and backward collection modes,” Opt. Lett. 33(13), 1473–1475 (2008).
    [CrossRef]
  2. S. C. Warren-Smith, S. V. Afshar, and T. M. Monro, “Theoretical study of liquid-immersed exposed-core microstructured optical fibers for sensing,” Opt. Express 16(12), 9034–9045 (2008).
    [CrossRef] [PubMed]
  3. Y. Zhu, H. Du, and R. Bise, “Design of solid-core microstructured optical fiber with steering-wheel air cladding for optimal evanescent-field sensing,” Opt. Express 14(8), 3541–3546 (2006).
    [CrossRef] [PubMed]
  4. Y. Zhu, R. T. Bise, J. Kanka, P. Peterka, and H. Du, “Fabrication and characterization of solid-core photonic crystal fiber with steering-wheel air-cladding for strong evanescent field overlap,” Opt. Commun. 281(1), 55–60 (2008).
    [CrossRef]
  5. H. Ebendorff-Heidepriem, S. C. Warren-Smith, and T. M. Monro, “Suspended nanowires: fabrication, design and characterization of fibers with nanoscale cores,” Opt. Express 17(4), 2646–2657 (2009).
    [CrossRef] [PubMed]
  6. Y. Ruan, T. C. Foo, S. C. Warren-Smith, P. Hoffmann, R. C. Moore, H. Ebendorff-Heidepriem, and T. M. Monro, “Antibody immobilization within glass microstructured fibers: a route to sensitive and selective biosensors,” Opt. Express 16(22), 18514–18523 (2008).
    [CrossRef] [PubMed]
  7. S. Afshar, S. C. Warren-Smith, and T. M. Monro, “Enhancement of fluorescence-based sensing using microstructured optical fibres,” Opt. Express 15(26), 17891–17901 (2007).
    [CrossRef] [PubMed]
  8. J. B. Jensen, P. E. Hoiby, G. Emiliyanov, O. Bang, L. H. Pedersen, and A. Bjarklev, “Selective detection of antibodies in microstructured polymer optical fibers,” Opt. Express 13(15), 5883–5889 (2005).
    [CrossRef] [PubMed]
  9. J. B. Jensen, L. H. Pedersen, P. E. Hoiby, L. B. Nielsen, T. P. Hansen, J. R. Folkenberg, J. Riishede, D. Noordegraaf, K. Nielsen, A. Carlsen, and A. Bjarklev, “Photonic crystal fiber based evanescent-wave sensor for detection of biomolecules in aqueous solutions,” Opt. Lett. 29(17), 1974–1976 (2004).
    [CrossRef] [PubMed]
  10. Y. L. Hoo, W. Jin, C. Shi, H. L. Ho, D. N. Wang, and S. C. Ruan, “Design and modeling of a photonic crystal fiber gas sensor,” Appl. Opt. 42(18), 3509–3515 (2003).
    [CrossRef] [PubMed]
  11. H. Lehmann, J. Kobelke, K. Schuster, A. Schwuchow, R. Willsch, and H. Bartelt, “Microstructured index-guiding fibers with large cladding holes for evanescent field chemical sensing,” Proc. SPIE 7004, 70042R (2008).
    [CrossRef]
  12. C. M. B. Cordeiro, E. M.D. Santos, C. H. Brito Cruz, C. J. S. de Matos, and D. S. Ferreiira, “Lateral access to the holes of photonic crystal fibers - selective filling and sensing applications,” Opt. Express 14(18), 8403–8412 (2006).
    [CrossRef] [PubMed]
  13. C. M. B. Cordeiro, C. J. S. de Matos, E. M. dos Santos, A. Bozolan, J. S. K. Ong, T. Facincani, G. Chesini, A. R. Vaz, and C. H. Brito Cruz, “Towards practical liquid and gas sensing with photonic crystal fibres: side access to the fibre microstructure and single-mode liquid-core fibre,” Meas. Sci. Technol. 18(10), 3075–3081 (2007).
    [CrossRef]
  14. C. Martelli, P. Olivero, J. Canning, N. Groothoff, B. Gibson, and S. Huntington, “Micromachining structured optical fibers using focused ion beam milling,” Opt. Lett. 32(11), 1575–1577 (2007).
    [CrossRef] [PubMed]
  15. A. van Brakel, C. Grivas, M. N. Petrovich, and D. J. Richardson, “Micro-channels machined in microstructured optical fibers by femtosecond laser,” Opt. Express 15(14), 8731–8736 (2007).
    [CrossRef] [PubMed]
  16. C. J. Hensley, D. H. Broaddus, C. B. Schaffer, and A. L. Gaeta, “Photonic band-gap fiber gas cell fabricated using femtosecond micromachining,” Opt. Express 15(11), 6690–6695 (2007).
    [CrossRef] [PubMed]
  17. H. C. Nguyen, B. T. Kuhlmey, E. C. Magi, M. J. Steel, P. Domachuk, C. L. Smith, and B. J. Eggleton, “Tapered photonic crystal fibres: properties, characterisation and applications,” Appl. Phys. B 81(2-3), 377–387 (2005).
    [CrossRef]
  18. F. M. Cox, R. Lwin, M. C. J. Large, and C. M. B. Cordeiro, “Opening up optical fibres,” Opt. Express 15(19), 11843–11848 (2007).
    [CrossRef] [PubMed]
  19. A. Karagiannis, A. N. Hrymak, and J. Vlachopoulos, “Three-dimensional non-isothermal extrusion flows,” Rheol. Acta 28(2), 121–133 (1989).
    [CrossRef]
  20. G. Brambilla, F. Xu, and X. Feng, “Fabrication of optical fibre nanowires and their optical and mechanical characterisation,” Electron. Lett. 42(9), 517–519 (2006).
    [CrossRef]
  21. Y. L. Hoo, W. Jin, H. L. Ho, D. N. Wang, and R. S. Windeler, “Evanescent-wave gas sensing using microstructure fiber,” Opt. Eng. 41(1), 8–9 (2002).
    [CrossRef]
  22. G. Pickrell, W. Peng, and A. Wang, “Random-hole optical fiber evanescent-wave gas sensing,” Opt. Lett. 29(13), 1476–1478 (2004).
    [CrossRef] [PubMed]
  23. T. Ritari, J. Tuominen, H. Ludvigsen, J. C. Petersen, T. Sørensen, T. P. Hansen, and H. R. Simonsen, “Gas sensing using air-guiding photonic bandgap fibers,” Opt. Express 12(17), 4080–4087 (2004).
    [CrossRef] [PubMed]

2009 (1)

2008 (5)

2007 (6)

2006 (3)

2005 (2)

H. C. Nguyen, B. T. Kuhlmey, E. C. Magi, M. J. Steel, P. Domachuk, C. L. Smith, and B. J. Eggleton, “Tapered photonic crystal fibres: properties, characterisation and applications,” Appl. Phys. B 81(2-3), 377–387 (2005).
[CrossRef]

J. B. Jensen, P. E. Hoiby, G. Emiliyanov, O. Bang, L. H. Pedersen, and A. Bjarklev, “Selective detection of antibodies in microstructured polymer optical fibers,” Opt. Express 13(15), 5883–5889 (2005).
[CrossRef] [PubMed]

2004 (3)

2003 (1)

2002 (1)

Y. L. Hoo, W. Jin, H. L. Ho, D. N. Wang, and R. S. Windeler, “Evanescent-wave gas sensing using microstructure fiber,” Opt. Eng. 41(1), 8–9 (2002).
[CrossRef]

1989 (1)

A. Karagiannis, A. N. Hrymak, and J. Vlachopoulos, “Three-dimensional non-isothermal extrusion flows,” Rheol. Acta 28(2), 121–133 (1989).
[CrossRef]

Afshar, S.

Afshar, S. V.

Bang, O.

Bartelt, H.

H. Lehmann, J. Kobelke, K. Schuster, A. Schwuchow, R. Willsch, and H. Bartelt, “Microstructured index-guiding fibers with large cladding holes for evanescent field chemical sensing,” Proc. SPIE 7004, 70042R (2008).
[CrossRef]

Bise, R.

Bise, R. T.

Y. Zhu, R. T. Bise, J. Kanka, P. Peterka, and H. Du, “Fabrication and characterization of solid-core photonic crystal fiber with steering-wheel air-cladding for strong evanescent field overlap,” Opt. Commun. 281(1), 55–60 (2008).
[CrossRef]

Bjarklev, A.

Bozolan, A.

C. M. B. Cordeiro, C. J. S. de Matos, E. M. dos Santos, A. Bozolan, J. S. K. Ong, T. Facincani, G. Chesini, A. R. Vaz, and C. H. Brito Cruz, “Towards practical liquid and gas sensing with photonic crystal fibres: side access to the fibre microstructure and single-mode liquid-core fibre,” Meas. Sci. Technol. 18(10), 3075–3081 (2007).
[CrossRef]

Brambilla, G.

G. Brambilla, F. Xu, and X. Feng, “Fabrication of optical fibre nanowires and their optical and mechanical characterisation,” Electron. Lett. 42(9), 517–519 (2006).
[CrossRef]

Brito Cruz, C. H.

C. M. B. Cordeiro, C. J. S. de Matos, E. M. dos Santos, A. Bozolan, J. S. K. Ong, T. Facincani, G. Chesini, A. R. Vaz, and C. H. Brito Cruz, “Towards practical liquid and gas sensing with photonic crystal fibres: side access to the fibre microstructure and single-mode liquid-core fibre,” Meas. Sci. Technol. 18(10), 3075–3081 (2007).
[CrossRef]

C. M. B. Cordeiro, E. M.D. Santos, C. H. Brito Cruz, C. J. S. de Matos, and D. S. Ferreiira, “Lateral access to the holes of photonic crystal fibers - selective filling and sensing applications,” Opt. Express 14(18), 8403–8412 (2006).
[CrossRef] [PubMed]

Broaddus, D. H.

Canning, J.

Carlsen, A.

Chesini, G.

C. M. B. Cordeiro, C. J. S. de Matos, E. M. dos Santos, A. Bozolan, J. S. K. Ong, T. Facincani, G. Chesini, A. R. Vaz, and C. H. Brito Cruz, “Towards practical liquid and gas sensing with photonic crystal fibres: side access to the fibre microstructure and single-mode liquid-core fibre,” Meas. Sci. Technol. 18(10), 3075–3081 (2007).
[CrossRef]

Cordeiro, C. M. B.

C. M. B. Cordeiro, C. J. S. de Matos, E. M. dos Santos, A. Bozolan, J. S. K. Ong, T. Facincani, G. Chesini, A. R. Vaz, and C. H. Brito Cruz, “Towards practical liquid and gas sensing with photonic crystal fibres: side access to the fibre microstructure and single-mode liquid-core fibre,” Meas. Sci. Technol. 18(10), 3075–3081 (2007).
[CrossRef]

F. M. Cox, R. Lwin, M. C. J. Large, and C. M. B. Cordeiro, “Opening up optical fibres,” Opt. Express 15(19), 11843–11848 (2007).
[CrossRef] [PubMed]

C. M. B. Cordeiro, E. M.D. Santos, C. H. Brito Cruz, C. J. S. de Matos, and D. S. Ferreiira, “Lateral access to the holes of photonic crystal fibers - selective filling and sensing applications,” Opt. Express 14(18), 8403–8412 (2006).
[CrossRef] [PubMed]

Cox, F. M.

de Matos, C. J. S.

C. M. B. Cordeiro, C. J. S. de Matos, E. M. dos Santos, A. Bozolan, J. S. K. Ong, T. Facincani, G. Chesini, A. R. Vaz, and C. H. Brito Cruz, “Towards practical liquid and gas sensing with photonic crystal fibres: side access to the fibre microstructure and single-mode liquid-core fibre,” Meas. Sci. Technol. 18(10), 3075–3081 (2007).
[CrossRef]

C. M. B. Cordeiro, E. M.D. Santos, C. H. Brito Cruz, C. J. S. de Matos, and D. S. Ferreiira, “Lateral access to the holes of photonic crystal fibers - selective filling and sensing applications,” Opt. Express 14(18), 8403–8412 (2006).
[CrossRef] [PubMed]

Domachuk, P.

H. C. Nguyen, B. T. Kuhlmey, E. C. Magi, M. J. Steel, P. Domachuk, C. L. Smith, and B. J. Eggleton, “Tapered photonic crystal fibres: properties, characterisation and applications,” Appl. Phys. B 81(2-3), 377–387 (2005).
[CrossRef]

dos Santos, E. M.

C. M. B. Cordeiro, C. J. S. de Matos, E. M. dos Santos, A. Bozolan, J. S. K. Ong, T. Facincani, G. Chesini, A. R. Vaz, and C. H. Brito Cruz, “Towards practical liquid and gas sensing with photonic crystal fibres: side access to the fibre microstructure and single-mode liquid-core fibre,” Meas. Sci. Technol. 18(10), 3075–3081 (2007).
[CrossRef]

Du, H.

Y. Zhu, R. T. Bise, J. Kanka, P. Peterka, and H. Du, “Fabrication and characterization of solid-core photonic crystal fiber with steering-wheel air-cladding for strong evanescent field overlap,” Opt. Commun. 281(1), 55–60 (2008).
[CrossRef]

Y. Zhu, H. Du, and R. Bise, “Design of solid-core microstructured optical fiber with steering-wheel air cladding for optimal evanescent-field sensing,” Opt. Express 14(8), 3541–3546 (2006).
[CrossRef] [PubMed]

Ebendorff-Heidepriem, H.

Eggleton, B. J.

H. C. Nguyen, B. T. Kuhlmey, E. C. Magi, M. J. Steel, P. Domachuk, C. L. Smith, and B. J. Eggleton, “Tapered photonic crystal fibres: properties, characterisation and applications,” Appl. Phys. B 81(2-3), 377–387 (2005).
[CrossRef]

Emiliyanov, G.

Facincani, T.

C. M. B. Cordeiro, C. J. S. de Matos, E. M. dos Santos, A. Bozolan, J. S. K. Ong, T. Facincani, G. Chesini, A. R. Vaz, and C. H. Brito Cruz, “Towards practical liquid and gas sensing with photonic crystal fibres: side access to the fibre microstructure and single-mode liquid-core fibre,” Meas. Sci. Technol. 18(10), 3075–3081 (2007).
[CrossRef]

Feng, X.

G. Brambilla, F. Xu, and X. Feng, “Fabrication of optical fibre nanowires and their optical and mechanical characterisation,” Electron. Lett. 42(9), 517–519 (2006).
[CrossRef]

Ferreiira, D. S.

Folkenberg, J. R.

Foo, T. C.

Gaeta, A. L.

Gibson, B.

Grivas, C.

Groothoff, N.

Hansen, T. P.

Hensley, C. J.

Ho, H. L.

Y. L. Hoo, W. Jin, C. Shi, H. L. Ho, D. N. Wang, and S. C. Ruan, “Design and modeling of a photonic crystal fiber gas sensor,” Appl. Opt. 42(18), 3509–3515 (2003).
[CrossRef] [PubMed]

Y. L. Hoo, W. Jin, H. L. Ho, D. N. Wang, and R. S. Windeler, “Evanescent-wave gas sensing using microstructure fiber,” Opt. Eng. 41(1), 8–9 (2002).
[CrossRef]

Hoffmann, P.

Hoiby, P. E.

Hoo, Y. L.

Y. L. Hoo, W. Jin, C. Shi, H. L. Ho, D. N. Wang, and S. C. Ruan, “Design and modeling of a photonic crystal fiber gas sensor,” Appl. Opt. 42(18), 3509–3515 (2003).
[CrossRef] [PubMed]

Y. L. Hoo, W. Jin, H. L. Ho, D. N. Wang, and R. S. Windeler, “Evanescent-wave gas sensing using microstructure fiber,” Opt. Eng. 41(1), 8–9 (2002).
[CrossRef]

Hrymak, A. N.

A. Karagiannis, A. N. Hrymak, and J. Vlachopoulos, “Three-dimensional non-isothermal extrusion flows,” Rheol. Acta 28(2), 121–133 (1989).
[CrossRef]

Huntington, S.

Jensen, J. B.

Jin, W.

Y. L. Hoo, W. Jin, C. Shi, H. L. Ho, D. N. Wang, and S. C. Ruan, “Design and modeling of a photonic crystal fiber gas sensor,” Appl. Opt. 42(18), 3509–3515 (2003).
[CrossRef] [PubMed]

Y. L. Hoo, W. Jin, H. L. Ho, D. N. Wang, and R. S. Windeler, “Evanescent-wave gas sensing using microstructure fiber,” Opt. Eng. 41(1), 8–9 (2002).
[CrossRef]

Kanka, J.

Y. Zhu, R. T. Bise, J. Kanka, P. Peterka, and H. Du, “Fabrication and characterization of solid-core photonic crystal fiber with steering-wheel air-cladding for strong evanescent field overlap,” Opt. Commun. 281(1), 55–60 (2008).
[CrossRef]

Karagiannis, A.

A. Karagiannis, A. N. Hrymak, and J. Vlachopoulos, “Three-dimensional non-isothermal extrusion flows,” Rheol. Acta 28(2), 121–133 (1989).
[CrossRef]

Kobelke, J.

H. Lehmann, J. Kobelke, K. Schuster, A. Schwuchow, R. Willsch, and H. Bartelt, “Microstructured index-guiding fibers with large cladding holes for evanescent field chemical sensing,” Proc. SPIE 7004, 70042R (2008).
[CrossRef]

Kuhlmey, B. T.

H. C. Nguyen, B. T. Kuhlmey, E. C. Magi, M. J. Steel, P. Domachuk, C. L. Smith, and B. J. Eggleton, “Tapered photonic crystal fibres: properties, characterisation and applications,” Appl. Phys. B 81(2-3), 377–387 (2005).
[CrossRef]

Large, M. C. J.

Lehmann, H.

H. Lehmann, J. Kobelke, K. Schuster, A. Schwuchow, R. Willsch, and H. Bartelt, “Microstructured index-guiding fibers with large cladding holes for evanescent field chemical sensing,” Proc. SPIE 7004, 70042R (2008).
[CrossRef]

Ludvigsen, H.

Lwin, R.

Magi, E. C.

H. C. Nguyen, B. T. Kuhlmey, E. C. Magi, M. J. Steel, P. Domachuk, C. L. Smith, and B. J. Eggleton, “Tapered photonic crystal fibres: properties, characterisation and applications,” Appl. Phys. B 81(2-3), 377–387 (2005).
[CrossRef]

Martelli, C.

Monro, T. M.

Moore, R. C.

Nguyen, H. C.

H. C. Nguyen, B. T. Kuhlmey, E. C. Magi, M. J. Steel, P. Domachuk, C. L. Smith, and B. J. Eggleton, “Tapered photonic crystal fibres: properties, characterisation and applications,” Appl. Phys. B 81(2-3), 377–387 (2005).
[CrossRef]

Nielsen, K.

Nielsen, L. B.

Noordegraaf, D.

Olivero, P.

Ong, J. S. K.

C. M. B. Cordeiro, C. J. S. de Matos, E. M. dos Santos, A. Bozolan, J. S. K. Ong, T. Facincani, G. Chesini, A. R. Vaz, and C. H. Brito Cruz, “Towards practical liquid and gas sensing with photonic crystal fibres: side access to the fibre microstructure and single-mode liquid-core fibre,” Meas. Sci. Technol. 18(10), 3075–3081 (2007).
[CrossRef]

Pedersen, L. H.

Peng, W.

Peterka, P.

Y. Zhu, R. T. Bise, J. Kanka, P. Peterka, and H. Du, “Fabrication and characterization of solid-core photonic crystal fiber with steering-wheel air-cladding for strong evanescent field overlap,” Opt. Commun. 281(1), 55–60 (2008).
[CrossRef]

Petersen, J. C.

Petrovich, M. N.

Pickrell, G.

Richardson, D. J.

Riishede, J.

Ritari, T.

Ruan, S. C.

Ruan, Y.

Santos, E. M.D.

Schaffer, C. B.

Schuster, K.

H. Lehmann, J. Kobelke, K. Schuster, A. Schwuchow, R. Willsch, and H. Bartelt, “Microstructured index-guiding fibers with large cladding holes for evanescent field chemical sensing,” Proc. SPIE 7004, 70042R (2008).
[CrossRef]

Schwuchow, A.

H. Lehmann, J. Kobelke, K. Schuster, A. Schwuchow, R. Willsch, and H. Bartelt, “Microstructured index-guiding fibers with large cladding holes for evanescent field chemical sensing,” Proc. SPIE 7004, 70042R (2008).
[CrossRef]

Shi, C.

Simonsen, H. R.

Smith, C. L.

H. C. Nguyen, B. T. Kuhlmey, E. C. Magi, M. J. Steel, P. Domachuk, C. L. Smith, and B. J. Eggleton, “Tapered photonic crystal fibres: properties, characterisation and applications,” Appl. Phys. B 81(2-3), 377–387 (2005).
[CrossRef]

Sørensen, T.

Steel, M. J.

H. C. Nguyen, B. T. Kuhlmey, E. C. Magi, M. J. Steel, P. Domachuk, C. L. Smith, and B. J. Eggleton, “Tapered photonic crystal fibres: properties, characterisation and applications,” Appl. Phys. B 81(2-3), 377–387 (2005).
[CrossRef]

Tuominen, J.

van Brakel, A.

Vaz, A. R.

C. M. B. Cordeiro, C. J. S. de Matos, E. M. dos Santos, A. Bozolan, J. S. K. Ong, T. Facincani, G. Chesini, A. R. Vaz, and C. H. Brito Cruz, “Towards practical liquid and gas sensing with photonic crystal fibres: side access to the fibre microstructure and single-mode liquid-core fibre,” Meas. Sci. Technol. 18(10), 3075–3081 (2007).
[CrossRef]

Vlachopoulos, J.

A. Karagiannis, A. N. Hrymak, and J. Vlachopoulos, “Three-dimensional non-isothermal extrusion flows,” Rheol. Acta 28(2), 121–133 (1989).
[CrossRef]

Wang, A.

Wang, D. N.

Y. L. Hoo, W. Jin, C. Shi, H. L. Ho, D. N. Wang, and S. C. Ruan, “Design and modeling of a photonic crystal fiber gas sensor,” Appl. Opt. 42(18), 3509–3515 (2003).
[CrossRef] [PubMed]

Y. L. Hoo, W. Jin, H. L. Ho, D. N. Wang, and R. S. Windeler, “Evanescent-wave gas sensing using microstructure fiber,” Opt. Eng. 41(1), 8–9 (2002).
[CrossRef]

Warren-Smith, S. C.

Willsch, R.

H. Lehmann, J. Kobelke, K. Schuster, A. Schwuchow, R. Willsch, and H. Bartelt, “Microstructured index-guiding fibers with large cladding holes for evanescent field chemical sensing,” Proc. SPIE 7004, 70042R (2008).
[CrossRef]

Windeler, R. S.

Y. L. Hoo, W. Jin, H. L. Ho, D. N. Wang, and R. S. Windeler, “Evanescent-wave gas sensing using microstructure fiber,” Opt. Eng. 41(1), 8–9 (2002).
[CrossRef]

Xu, F.

G. Brambilla, F. Xu, and X. Feng, “Fabrication of optical fibre nanowires and their optical and mechanical characterisation,” Electron. Lett. 42(9), 517–519 (2006).
[CrossRef]

Zhu, Y.

Y. Zhu, R. T. Bise, J. Kanka, P. Peterka, and H. Du, “Fabrication and characterization of solid-core photonic crystal fiber with steering-wheel air-cladding for strong evanescent field overlap,” Opt. Commun. 281(1), 55–60 (2008).
[CrossRef]

Y. Zhu, H. Du, and R. Bise, “Design of solid-core microstructured optical fiber with steering-wheel air cladding for optimal evanescent-field sensing,” Opt. Express 14(8), 3541–3546 (2006).
[CrossRef] [PubMed]

Appl. Opt. (1)

Appl. Phys. B (1)

H. C. Nguyen, B. T. Kuhlmey, E. C. Magi, M. J. Steel, P. Domachuk, C. L. Smith, and B. J. Eggleton, “Tapered photonic crystal fibres: properties, characterisation and applications,” Appl. Phys. B 81(2-3), 377–387 (2005).
[CrossRef]

Electron. Lett. (1)

G. Brambilla, F. Xu, and X. Feng, “Fabrication of optical fibre nanowires and their optical and mechanical characterisation,” Electron. Lett. 42(9), 517–519 (2006).
[CrossRef]

Meas. Sci. Technol. (1)

C. M. B. Cordeiro, C. J. S. de Matos, E. M. dos Santos, A. Bozolan, J. S. K. Ong, T. Facincani, G. Chesini, A. R. Vaz, and C. H. Brito Cruz, “Towards practical liquid and gas sensing with photonic crystal fibres: side access to the fibre microstructure and single-mode liquid-core fibre,” Meas. Sci. Technol. 18(10), 3075–3081 (2007).
[CrossRef]

Opt. Commun. (1)

Y. Zhu, R. T. Bise, J. Kanka, P. Peterka, and H. Du, “Fabrication and characterization of solid-core photonic crystal fiber with steering-wheel air-cladding for strong evanescent field overlap,” Opt. Commun. 281(1), 55–60 (2008).
[CrossRef]

Opt. Eng. (1)

Y. L. Hoo, W. Jin, H. L. Ho, D. N. Wang, and R. S. Windeler, “Evanescent-wave gas sensing using microstructure fiber,” Opt. Eng. 41(1), 8–9 (2002).
[CrossRef]

Opt. Express (11)

J. B. Jensen, P. E. Hoiby, G. Emiliyanov, O. Bang, L. H. Pedersen, and A. Bjarklev, “Selective detection of antibodies in microstructured polymer optical fibers,” Opt. Express 13(15), 5883–5889 (2005).
[CrossRef] [PubMed]

Y. Zhu, H. Du, and R. Bise, “Design of solid-core microstructured optical fiber with steering-wheel air cladding for optimal evanescent-field sensing,” Opt. Express 14(8), 3541–3546 (2006).
[CrossRef] [PubMed]

C. M. B. Cordeiro, E. M.D. Santos, C. H. Brito Cruz, C. J. S. de Matos, and D. S. Ferreiira, “Lateral access to the holes of photonic crystal fibers - selective filling and sensing applications,” Opt. Express 14(18), 8403–8412 (2006).
[CrossRef] [PubMed]

C. J. Hensley, D. H. Broaddus, C. B. Schaffer, and A. L. Gaeta, “Photonic band-gap fiber gas cell fabricated using femtosecond micromachining,” Opt. Express 15(11), 6690–6695 (2007).
[CrossRef] [PubMed]

A. van Brakel, C. Grivas, M. N. Petrovich, and D. J. Richardson, “Micro-channels machined in microstructured optical fibers by femtosecond laser,” Opt. Express 15(14), 8731–8736 (2007).
[CrossRef] [PubMed]

F. M. Cox, R. Lwin, M. C. J. Large, and C. M. B. Cordeiro, “Opening up optical fibres,” Opt. Express 15(19), 11843–11848 (2007).
[CrossRef] [PubMed]

S. Afshar, S. C. Warren-Smith, and T. M. Monro, “Enhancement of fluorescence-based sensing using microstructured optical fibres,” Opt. Express 15(26), 17891–17901 (2007).
[CrossRef] [PubMed]

S. C. Warren-Smith, S. V. Afshar, and T. M. Monro, “Theoretical study of liquid-immersed exposed-core microstructured optical fibers for sensing,” Opt. Express 16(12), 9034–9045 (2008).
[CrossRef] [PubMed]

T. Ritari, J. Tuominen, H. Ludvigsen, J. C. Petersen, T. Sørensen, T. P. Hansen, and H. R. Simonsen, “Gas sensing using air-guiding photonic bandgap fibers,” Opt. Express 12(17), 4080–4087 (2004).
[CrossRef] [PubMed]

Y. Ruan, T. C. Foo, S. C. Warren-Smith, P. Hoffmann, R. C. Moore, H. Ebendorff-Heidepriem, and T. M. Monro, “Antibody immobilization within glass microstructured fibers: a route to sensitive and selective biosensors,” Opt. Express 16(22), 18514–18523 (2008).
[CrossRef] [PubMed]

H. Ebendorff-Heidepriem, S. C. Warren-Smith, and T. M. Monro, “Suspended nanowires: fabrication, design and characterization of fibers with nanoscale cores,” Opt. Express 17(4), 2646–2657 (2009).
[CrossRef] [PubMed]

Opt. Lett. (4)

Proc. SPIE (1)

H. Lehmann, J. Kobelke, K. Schuster, A. Schwuchow, R. Willsch, and H. Bartelt, “Microstructured index-guiding fibers with large cladding holes for evanescent field chemical sensing,” Proc. SPIE 7004, 70042R (2008).
[CrossRef]

Rheol. Acta (1)

A. Karagiannis, A. N. Hrymak, and J. Vlachopoulos, “Three-dimensional non-isothermal extrusion flows,” Rheol. Acta 28(2), 121–133 (1989).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Schematic diagram of the fabrication process.

Fig. 2
Fig. 2

Trial #1 exposed-core fibers fabricated from a symmetric WW preform, the image sizes are (a) 200μm, (b) 80μm, (c) 80μm, and (d) 40μm. Images (c) and (d) show the fiber after HF etching.

Fig. 3
Fig. 3

Trial #2 exposed-core fibers fabricated from an asymmetric WW preform, the image sizes are (a) 200μm, (b) 35μm, (c) 35μm, and (d) 40μm. Images (c) and (d) show the fiber after HF etching.

Fig. 4
Fig. 4

Trial #3 exposed-core fibers fabricated from a symmetric WW preform with slot and standard strut thickness. The image sizes are (a) 200μm, (b) 50μm, (c) 200μm, and (d) 40μm.

Fig. 5
Fig. 5

Trial #4 exposed-core fibers fabricated from a symmetric WW preform with slot and increased strut thickness. The image sizes are (a) 170 μm, (b) 40 μm, (c) 200 μm, and (d) 40 μm.

Fig. 6
Fig. 6

Measured loss for trial #1 protected-core fiber (blue), trial #2 protected-core fiber (red), trial #3 directly-drawn exposed-core fiber (black), and trial #4 directly-drawn exposed-core fiber (green). The WW preform used to fabricate the trial #4 fiber was ultrasonically cleaned prior to fiber drawing. The loss of an enclosed wagon wheel fiber with a similar core diameter (2.1 μm, compared to 2.0-3.0 μm) has been included for comparison (orange) [5]. The WW preform used to fabricate this fiber was also ultrasonically cleaned.

Fig. 7
Fig. 7

Atomic force microscopy images of the surface of HF etched bare fiber (upper images) and the surface without etching (lower images). The images sizes are 5 μm x 5 μm and the image height spans 50 nm.

Fig. 8
Fig. 8

Experimental setup for measuring the fluorescence sensor time response for (a) exposed-core fiber (trial #4, Fig. 5) and (b) enclosed (protected) core fiber (trial #2 not-etched, Fig. 3 (a, b)).

Fig. 9
Fig. 9

(a) The spectral signal recorded over time using an exposed-core fiber (trial #4, Fig. 5) as the bath was filled with Rhodamine B. (b) Same as for (a) considering the initial few seconds only.

Fig. 10
Fig. 10

Fluorescence signal measured for the enclosed (protected) core fibers (trial #2 before etching) over 30 mins (a) and 80 mins (b). Different colors refer to repeats of the same experiment.

Tables (1)

Tables Icon

Table 1 Summary of the exposed-core fiber fabrication trials. Loss values have been included from Sec. 3.

Metrics