Abstract

An optically driven micropump that employs viscous drag exerted on a spinning microrotor with left- and right-handed spiral blades on its rotational axis has been developed using two-photon microfabrication. It was demonstrated that the twin spiral microrotor provides a higher rotation speed than a single spiral microrotor. The rotation speed reached 560 rpm at a laser power of 500 mW. The twin spiral microrotor was also applied to a viscous micropump with a U-shaped microchannel. To pump fluid, the twin spiral microrotor located at the corner of the U-shaped microchannel was rotated by focusing a laser beam. The flow field inside the U-shaped microchannel was analyzed using the finite element method (FEM) based on the Navier-Stokes equation to optimize the shape of the microchannel. It was confirmed that the rotation of the twin spiral microrotor generated a unidirectional laminar flow. Finally, a tandem micropump using two twin spiral microrotors was driven by a dual optical trapping system using a spatial light modulation technique.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11(5), 288–290 (1986).
    [CrossRef] [PubMed]
  2. D. G. Grier, “A revolution in optical manipulation,” Nature 424(6950), 810–816 (2003).
    [CrossRef] [PubMed]
  3. P. J. Rodrigo, L. Kelemen, D. Palima, C. A. Alonzo, P. Ormos, and J. Glückstad, “Optical microassembly platform for constructing reconfigurable microenvironments for biomedical studies,” Opt. Express 17(8), 6578–6583 (2009).
    [CrossRef] [PubMed]
  4. S. Ito, H. Yoshikawa, and H. Masuhara, “Laser manipulation and fixation of single gold nanoparticles in solution at room temperature,” Appl. Phys. Lett. 80(3), 482–484 (2002).
    [CrossRef]
  5. E. Higurashi, H. Ukita, H. Tanaka, and O. Ohguchi, “Optically induced rotation of anisotropic micro-objects fabricated by surface micromachining,” Appl. Phys. Lett. 64(17), 2209–2210 (1994).
    [CrossRef]
  6. P. Galajda and P. Ormos, “Complex micromachines produced and driven by light,” Appl. Phys. Lett. 78(2), 249–251 (2001).
    [CrossRef]
  7. S. L. Neale, M. P. MacDonald, K. Dholakia, and T. F. Krauss, “All-optical control of microfluidic components using form birefringence,” Nat. Mater. 4(7), 530–533 (2005).
    [CrossRef] [PubMed]
  8. S. Maruo, K. Ikuta, and H. Korogi, “Submicron manipulation tools driven by light in a liquid,” Appl. Phys. Lett. 82(1), 133–135 (2003).
    [CrossRef]
  9. S. Maruo, K. Ikuta, and H. Korogi, “Force-controllable, optically driven micromachines fabricated by single-step two-photon microstereolithography,” J. Microelectromech. Syst. 12(5), 533–539 (2003).
    [CrossRef]
  10. S. Maruo and H. Inoue, “Optically driven micropump produced by three-dimensional two-photon microfabrication,” Appl. Phys. Lett. 89(14), 144101 (2006).
    [CrossRef]
  11. S. Maruo and Y. Hiratsuka, “Optically driven micromanipulators with rotating arms,” J. Rob. Mechatronics 19, 565–568 (2007).
  12. A. Terray, J. Oakey, and D. W. M. Marr, “Microfluidic control using colloidal devices,” Science 296(5574), 1841–1844 (2002).
    [CrossRef] [PubMed]
  13. A. Terray, J. Oakey, and D. W. M. Marr, “Fabrication of linear colloidal structures for microfluidic applications,” Appl. Phys. Lett. 81(9), 1555–1557 (2002).
    [CrossRef]
  14. J. Leach, H. Mushfique, R. di Leonardo, M. Padgett, and J. Cooper, “An optically driven pump for microfluidics,” Lab Chip 6(6), 735–739 (2006).
    [CrossRef] [PubMed]
  15. K. Ladavac and D. Grier, “Microoptomechanical pumps assembled and driven by holographic optical vortex arrays,” Opt. Express 12(6), 1144–1149 (2004).
    [CrossRef] [PubMed]
  16. S. Maruo and H. Inoue, “Optically driven viscous micropump using a rotating microdisk,” Appl. Phys. Lett. 91(8), 084101 (2007).
    [CrossRef]
  17. S. Maruo, O. Nakamura, and S. Kawata, “Three-dimensional microfabrication with two-photon-absorbed photopolymerization,” Opt. Lett. 22(2), 132–134 (1997).
    [CrossRef] [PubMed]
  18. S. Kawata, H.-B. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices,” Nature 412(6848), 697–698 (2001).
    [CrossRef] [PubMed]
  19. W. Haske, V. W. Chen, J. M. Hales, W. T. Dong, S. Barlow, S. R. Marder, and J. W. Perry, “65 nm feature sizes using visible wavelength 3-D multiphoton lithography,” Opt. Express 15(6), 3426–3436 (2007).
    [CrossRef] [PubMed]
  20. L. Li, R. R. Gattass, E. Gershgoren, H. Hwang, and J. T. Fourkas, “Achieving λ/20 resolution by one-color initiation and deactivation of polymerization,” Science 324(5929), 910–913 (2009).
    [CrossRef] [PubMed]
  21. S. Maruo and J. T. Fourkas, “Recent progress in multiphoton microfabrication,” Lasers Photon Reviews 2(1-2), 100–111 (2008).
    [CrossRef]
  22. A. Takaura, H. Inoue, and S. Maruo, ““Laser-driven viscous micropump using a single microrotor,” Proc. of Int,” Symp. on Micro-nanomechatronics and Human Science 2007, 16–20 (2007) (MHS).
    [CrossRef]
  23. P. Galajda and P. Ormos, “Rotors produced and driven in laser tweezers with reversed direction of rotation,” Appl. Phys. Lett. 80(24), 4653–4655 (2002).
    [CrossRef]
  24. S. Maruo, T. Hasegawa and N. Yoshimura “Replication of three-dimensional rotary micromechanism by membrane-assisted transfer molding,” Jpn. J. Appl. Phys. 48, 06FH05 (2009).
  25. T. Hasegawa and S. Maruo, ““Two-photon microfabrication with a supercritical CO2 drying process toward replication of three-dimensional microstructures,” Proc. of Int,” Symp. on Micro-nanomechatronics and Human Science 2007, 12–15 (2007) (MHS).
    [CrossRef]

2009 (2)

P. J. Rodrigo, L. Kelemen, D. Palima, C. A. Alonzo, P. Ormos, and J. Glückstad, “Optical microassembly platform for constructing reconfigurable microenvironments for biomedical studies,” Opt. Express 17(8), 6578–6583 (2009).
[CrossRef] [PubMed]

L. Li, R. R. Gattass, E. Gershgoren, H. Hwang, and J. T. Fourkas, “Achieving λ/20 resolution by one-color initiation and deactivation of polymerization,” Science 324(5929), 910–913 (2009).
[CrossRef] [PubMed]

2008 (1)

S. Maruo and J. T. Fourkas, “Recent progress in multiphoton microfabrication,” Lasers Photon Reviews 2(1-2), 100–111 (2008).
[CrossRef]

2007 (5)

A. Takaura, H. Inoue, and S. Maruo, ““Laser-driven viscous micropump using a single microrotor,” Proc. of Int,” Symp. on Micro-nanomechatronics and Human Science 2007, 16–20 (2007) (MHS).
[CrossRef]

T. Hasegawa and S. Maruo, ““Two-photon microfabrication with a supercritical CO2 drying process toward replication of three-dimensional microstructures,” Proc. of Int,” Symp. on Micro-nanomechatronics and Human Science 2007, 12–15 (2007) (MHS).
[CrossRef]

S. Maruo and Y. Hiratsuka, “Optically driven micromanipulators with rotating arms,” J. Rob. Mechatronics 19, 565–568 (2007).

S. Maruo and H. Inoue, “Optically driven viscous micropump using a rotating microdisk,” Appl. Phys. Lett. 91(8), 084101 (2007).
[CrossRef]

W. Haske, V. W. Chen, J. M. Hales, W. T. Dong, S. Barlow, S. R. Marder, and J. W. Perry, “65 nm feature sizes using visible wavelength 3-D multiphoton lithography,” Opt. Express 15(6), 3426–3436 (2007).
[CrossRef] [PubMed]

2006 (2)

J. Leach, H. Mushfique, R. di Leonardo, M. Padgett, and J. Cooper, “An optically driven pump for microfluidics,” Lab Chip 6(6), 735–739 (2006).
[CrossRef] [PubMed]

S. Maruo and H. Inoue, “Optically driven micropump produced by three-dimensional two-photon microfabrication,” Appl. Phys. Lett. 89(14), 144101 (2006).
[CrossRef]

2005 (1)

S. L. Neale, M. P. MacDonald, K. Dholakia, and T. F. Krauss, “All-optical control of microfluidic components using form birefringence,” Nat. Mater. 4(7), 530–533 (2005).
[CrossRef] [PubMed]

2004 (1)

2003 (3)

S. Maruo, K. Ikuta, and H. Korogi, “Submicron manipulation tools driven by light in a liquid,” Appl. Phys. Lett. 82(1), 133–135 (2003).
[CrossRef]

S. Maruo, K. Ikuta, and H. Korogi, “Force-controllable, optically driven micromachines fabricated by single-step two-photon microstereolithography,” J. Microelectromech. Syst. 12(5), 533–539 (2003).
[CrossRef]

D. G. Grier, “A revolution in optical manipulation,” Nature 424(6950), 810–816 (2003).
[CrossRef] [PubMed]

2002 (4)

S. Ito, H. Yoshikawa, and H. Masuhara, “Laser manipulation and fixation of single gold nanoparticles in solution at room temperature,” Appl. Phys. Lett. 80(3), 482–484 (2002).
[CrossRef]

A. Terray, J. Oakey, and D. W. M. Marr, “Microfluidic control using colloidal devices,” Science 296(5574), 1841–1844 (2002).
[CrossRef] [PubMed]

A. Terray, J. Oakey, and D. W. M. Marr, “Fabrication of linear colloidal structures for microfluidic applications,” Appl. Phys. Lett. 81(9), 1555–1557 (2002).
[CrossRef]

P. Galajda and P. Ormos, “Rotors produced and driven in laser tweezers with reversed direction of rotation,” Appl. Phys. Lett. 80(24), 4653–4655 (2002).
[CrossRef]

2001 (2)

S. Kawata, H.-B. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices,” Nature 412(6848), 697–698 (2001).
[CrossRef] [PubMed]

P. Galajda and P. Ormos, “Complex micromachines produced and driven by light,” Appl. Phys. Lett. 78(2), 249–251 (2001).
[CrossRef]

1997 (1)

1994 (1)

E. Higurashi, H. Ukita, H. Tanaka, and O. Ohguchi, “Optically induced rotation of anisotropic micro-objects fabricated by surface micromachining,” Appl. Phys. Lett. 64(17), 2209–2210 (1994).
[CrossRef]

1986 (1)

Alonzo, C. A.

Ashkin, A.

Barlow, S.

Bjorkholm, J. E.

Chen, V. W.

Chu, S.

Cooper, J.

J. Leach, H. Mushfique, R. di Leonardo, M. Padgett, and J. Cooper, “An optically driven pump for microfluidics,” Lab Chip 6(6), 735–739 (2006).
[CrossRef] [PubMed]

Dholakia, K.

S. L. Neale, M. P. MacDonald, K. Dholakia, and T. F. Krauss, “All-optical control of microfluidic components using form birefringence,” Nat. Mater. 4(7), 530–533 (2005).
[CrossRef] [PubMed]

di Leonardo, R.

J. Leach, H. Mushfique, R. di Leonardo, M. Padgett, and J. Cooper, “An optically driven pump for microfluidics,” Lab Chip 6(6), 735–739 (2006).
[CrossRef] [PubMed]

Dong, W. T.

Dziedzic, J. M.

Fourkas, J. T.

L. Li, R. R. Gattass, E. Gershgoren, H. Hwang, and J. T. Fourkas, “Achieving λ/20 resolution by one-color initiation and deactivation of polymerization,” Science 324(5929), 910–913 (2009).
[CrossRef] [PubMed]

S. Maruo and J. T. Fourkas, “Recent progress in multiphoton microfabrication,” Lasers Photon Reviews 2(1-2), 100–111 (2008).
[CrossRef]

Galajda, P.

P. Galajda and P. Ormos, “Rotors produced and driven in laser tweezers with reversed direction of rotation,” Appl. Phys. Lett. 80(24), 4653–4655 (2002).
[CrossRef]

P. Galajda and P. Ormos, “Complex micromachines produced and driven by light,” Appl. Phys. Lett. 78(2), 249–251 (2001).
[CrossRef]

Gattass, R. R.

L. Li, R. R. Gattass, E. Gershgoren, H. Hwang, and J. T. Fourkas, “Achieving λ/20 resolution by one-color initiation and deactivation of polymerization,” Science 324(5929), 910–913 (2009).
[CrossRef] [PubMed]

Gershgoren, E.

L. Li, R. R. Gattass, E. Gershgoren, H. Hwang, and J. T. Fourkas, “Achieving λ/20 resolution by one-color initiation and deactivation of polymerization,” Science 324(5929), 910–913 (2009).
[CrossRef] [PubMed]

Glückstad, J.

Grier, D.

Grier, D. G.

D. G. Grier, “A revolution in optical manipulation,” Nature 424(6950), 810–816 (2003).
[CrossRef] [PubMed]

Hales, J. M.

Hasegawa, T.

T. Hasegawa and S. Maruo, ““Two-photon microfabrication with a supercritical CO2 drying process toward replication of three-dimensional microstructures,” Proc. of Int,” Symp. on Micro-nanomechatronics and Human Science 2007, 12–15 (2007) (MHS).
[CrossRef]

Haske, W.

Higurashi, E.

E. Higurashi, H. Ukita, H. Tanaka, and O. Ohguchi, “Optically induced rotation of anisotropic micro-objects fabricated by surface micromachining,” Appl. Phys. Lett. 64(17), 2209–2210 (1994).
[CrossRef]

Hiratsuka, Y.

S. Maruo and Y. Hiratsuka, “Optically driven micromanipulators with rotating arms,” J. Rob. Mechatronics 19, 565–568 (2007).

Hwang, H.

L. Li, R. R. Gattass, E. Gershgoren, H. Hwang, and J. T. Fourkas, “Achieving λ/20 resolution by one-color initiation and deactivation of polymerization,” Science 324(5929), 910–913 (2009).
[CrossRef] [PubMed]

Ikuta, K.

S. Maruo, K. Ikuta, and H. Korogi, “Force-controllable, optically driven micromachines fabricated by single-step two-photon microstereolithography,” J. Microelectromech. Syst. 12(5), 533–539 (2003).
[CrossRef]

S. Maruo, K. Ikuta, and H. Korogi, “Submicron manipulation tools driven by light in a liquid,” Appl. Phys. Lett. 82(1), 133–135 (2003).
[CrossRef]

Inoue, H.

A. Takaura, H. Inoue, and S. Maruo, ““Laser-driven viscous micropump using a single microrotor,” Proc. of Int,” Symp. on Micro-nanomechatronics and Human Science 2007, 16–20 (2007) (MHS).
[CrossRef]

S. Maruo and H. Inoue, “Optically driven viscous micropump using a rotating microdisk,” Appl. Phys. Lett. 91(8), 084101 (2007).
[CrossRef]

S. Maruo and H. Inoue, “Optically driven micropump produced by three-dimensional two-photon microfabrication,” Appl. Phys. Lett. 89(14), 144101 (2006).
[CrossRef]

Ito, S.

S. Ito, H. Yoshikawa, and H. Masuhara, “Laser manipulation and fixation of single gold nanoparticles in solution at room temperature,” Appl. Phys. Lett. 80(3), 482–484 (2002).
[CrossRef]

Kawata, S.

S. Kawata, H.-B. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices,” Nature 412(6848), 697–698 (2001).
[CrossRef] [PubMed]

S. Maruo, O. Nakamura, and S. Kawata, “Three-dimensional microfabrication with two-photon-absorbed photopolymerization,” Opt. Lett. 22(2), 132–134 (1997).
[CrossRef] [PubMed]

Kelemen, L.

Korogi, H.

S. Maruo, K. Ikuta, and H. Korogi, “Force-controllable, optically driven micromachines fabricated by single-step two-photon microstereolithography,” J. Microelectromech. Syst. 12(5), 533–539 (2003).
[CrossRef]

S. Maruo, K. Ikuta, and H. Korogi, “Submicron manipulation tools driven by light in a liquid,” Appl. Phys. Lett. 82(1), 133–135 (2003).
[CrossRef]

Krauss, T. F.

S. L. Neale, M. P. MacDonald, K. Dholakia, and T. F. Krauss, “All-optical control of microfluidic components using form birefringence,” Nat. Mater. 4(7), 530–533 (2005).
[CrossRef] [PubMed]

Ladavac, K.

Leach, J.

J. Leach, H. Mushfique, R. di Leonardo, M. Padgett, and J. Cooper, “An optically driven pump for microfluidics,” Lab Chip 6(6), 735–739 (2006).
[CrossRef] [PubMed]

Li, L.

L. Li, R. R. Gattass, E. Gershgoren, H. Hwang, and J. T. Fourkas, “Achieving λ/20 resolution by one-color initiation and deactivation of polymerization,” Science 324(5929), 910–913 (2009).
[CrossRef] [PubMed]

MacDonald, M. P.

S. L. Neale, M. P. MacDonald, K. Dholakia, and T. F. Krauss, “All-optical control of microfluidic components using form birefringence,” Nat. Mater. 4(7), 530–533 (2005).
[CrossRef] [PubMed]

Marder, S. R.

Marr, D. W. M.

A. Terray, J. Oakey, and D. W. M. Marr, “Microfluidic control using colloidal devices,” Science 296(5574), 1841–1844 (2002).
[CrossRef] [PubMed]

A. Terray, J. Oakey, and D. W. M. Marr, “Fabrication of linear colloidal structures for microfluidic applications,” Appl. Phys. Lett. 81(9), 1555–1557 (2002).
[CrossRef]

Maruo, S.

S. Maruo and J. T. Fourkas, “Recent progress in multiphoton microfabrication,” Lasers Photon Reviews 2(1-2), 100–111 (2008).
[CrossRef]

A. Takaura, H. Inoue, and S. Maruo, ““Laser-driven viscous micropump using a single microrotor,” Proc. of Int,” Symp. on Micro-nanomechatronics and Human Science 2007, 16–20 (2007) (MHS).
[CrossRef]

S. Maruo and H. Inoue, “Optically driven viscous micropump using a rotating microdisk,” Appl. Phys. Lett. 91(8), 084101 (2007).
[CrossRef]

S. Maruo and Y. Hiratsuka, “Optically driven micromanipulators with rotating arms,” J. Rob. Mechatronics 19, 565–568 (2007).

T. Hasegawa and S. Maruo, ““Two-photon microfabrication with a supercritical CO2 drying process toward replication of three-dimensional microstructures,” Proc. of Int,” Symp. on Micro-nanomechatronics and Human Science 2007, 12–15 (2007) (MHS).
[CrossRef]

S. Maruo and H. Inoue, “Optically driven micropump produced by three-dimensional two-photon microfabrication,” Appl. Phys. Lett. 89(14), 144101 (2006).
[CrossRef]

S. Maruo, K. Ikuta, and H. Korogi, “Submicron manipulation tools driven by light in a liquid,” Appl. Phys. Lett. 82(1), 133–135 (2003).
[CrossRef]

S. Maruo, K. Ikuta, and H. Korogi, “Force-controllable, optically driven micromachines fabricated by single-step two-photon microstereolithography,” J. Microelectromech. Syst. 12(5), 533–539 (2003).
[CrossRef]

S. Maruo, O. Nakamura, and S. Kawata, “Three-dimensional microfabrication with two-photon-absorbed photopolymerization,” Opt. Lett. 22(2), 132–134 (1997).
[CrossRef] [PubMed]

Masuhara, H.

S. Ito, H. Yoshikawa, and H. Masuhara, “Laser manipulation and fixation of single gold nanoparticles in solution at room temperature,” Appl. Phys. Lett. 80(3), 482–484 (2002).
[CrossRef]

Mushfique, H.

J. Leach, H. Mushfique, R. di Leonardo, M. Padgett, and J. Cooper, “An optically driven pump for microfluidics,” Lab Chip 6(6), 735–739 (2006).
[CrossRef] [PubMed]

Nakamura, O.

Neale, S. L.

S. L. Neale, M. P. MacDonald, K. Dholakia, and T. F. Krauss, “All-optical control of microfluidic components using form birefringence,” Nat. Mater. 4(7), 530–533 (2005).
[CrossRef] [PubMed]

Oakey, J.

A. Terray, J. Oakey, and D. W. M. Marr, “Microfluidic control using colloidal devices,” Science 296(5574), 1841–1844 (2002).
[CrossRef] [PubMed]

A. Terray, J. Oakey, and D. W. M. Marr, “Fabrication of linear colloidal structures for microfluidic applications,” Appl. Phys. Lett. 81(9), 1555–1557 (2002).
[CrossRef]

Ohguchi, O.

E. Higurashi, H. Ukita, H. Tanaka, and O. Ohguchi, “Optically induced rotation of anisotropic micro-objects fabricated by surface micromachining,” Appl. Phys. Lett. 64(17), 2209–2210 (1994).
[CrossRef]

Ormos, P.

P. J. Rodrigo, L. Kelemen, D. Palima, C. A. Alonzo, P. Ormos, and J. Glückstad, “Optical microassembly platform for constructing reconfigurable microenvironments for biomedical studies,” Opt. Express 17(8), 6578–6583 (2009).
[CrossRef] [PubMed]

P. Galajda and P. Ormos, “Rotors produced and driven in laser tweezers with reversed direction of rotation,” Appl. Phys. Lett. 80(24), 4653–4655 (2002).
[CrossRef]

P. Galajda and P. Ormos, “Complex micromachines produced and driven by light,” Appl. Phys. Lett. 78(2), 249–251 (2001).
[CrossRef]

Padgett, M.

J. Leach, H. Mushfique, R. di Leonardo, M. Padgett, and J. Cooper, “An optically driven pump for microfluidics,” Lab Chip 6(6), 735–739 (2006).
[CrossRef] [PubMed]

Palima, D.

Perry, J. W.

Rodrigo, P. J.

Sun, H.-B.

S. Kawata, H.-B. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices,” Nature 412(6848), 697–698 (2001).
[CrossRef] [PubMed]

Takada, K.

S. Kawata, H.-B. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices,” Nature 412(6848), 697–698 (2001).
[CrossRef] [PubMed]

Takaura, A.

A. Takaura, H. Inoue, and S. Maruo, ““Laser-driven viscous micropump using a single microrotor,” Proc. of Int,” Symp. on Micro-nanomechatronics and Human Science 2007, 16–20 (2007) (MHS).
[CrossRef]

Tanaka, H.

E. Higurashi, H. Ukita, H. Tanaka, and O. Ohguchi, “Optically induced rotation of anisotropic micro-objects fabricated by surface micromachining,” Appl. Phys. Lett. 64(17), 2209–2210 (1994).
[CrossRef]

Tanaka, T.

S. Kawata, H.-B. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices,” Nature 412(6848), 697–698 (2001).
[CrossRef] [PubMed]

Terray, A.

A. Terray, J. Oakey, and D. W. M. Marr, “Fabrication of linear colloidal structures for microfluidic applications,” Appl. Phys. Lett. 81(9), 1555–1557 (2002).
[CrossRef]

A. Terray, J. Oakey, and D. W. M. Marr, “Microfluidic control using colloidal devices,” Science 296(5574), 1841–1844 (2002).
[CrossRef] [PubMed]

Ukita, H.

E. Higurashi, H. Ukita, H. Tanaka, and O. Ohguchi, “Optically induced rotation of anisotropic micro-objects fabricated by surface micromachining,” Appl. Phys. Lett. 64(17), 2209–2210 (1994).
[CrossRef]

Yoshikawa, H.

S. Ito, H. Yoshikawa, and H. Masuhara, “Laser manipulation and fixation of single gold nanoparticles in solution at room temperature,” Appl. Phys. Lett. 80(3), 482–484 (2002).
[CrossRef]

Appl. Phys. Lett. (8)

S. Ito, H. Yoshikawa, and H. Masuhara, “Laser manipulation and fixation of single gold nanoparticles in solution at room temperature,” Appl. Phys. Lett. 80(3), 482–484 (2002).
[CrossRef]

E. Higurashi, H. Ukita, H. Tanaka, and O. Ohguchi, “Optically induced rotation of anisotropic micro-objects fabricated by surface micromachining,” Appl. Phys. Lett. 64(17), 2209–2210 (1994).
[CrossRef]

P. Galajda and P. Ormos, “Complex micromachines produced and driven by light,” Appl. Phys. Lett. 78(2), 249–251 (2001).
[CrossRef]

S. Maruo, K. Ikuta, and H. Korogi, “Submicron manipulation tools driven by light in a liquid,” Appl. Phys. Lett. 82(1), 133–135 (2003).
[CrossRef]

S. Maruo and H. Inoue, “Optically driven micropump produced by three-dimensional two-photon microfabrication,” Appl. Phys. Lett. 89(14), 144101 (2006).
[CrossRef]

A. Terray, J. Oakey, and D. W. M. Marr, “Fabrication of linear colloidal structures for microfluidic applications,” Appl. Phys. Lett. 81(9), 1555–1557 (2002).
[CrossRef]

S. Maruo and H. Inoue, “Optically driven viscous micropump using a rotating microdisk,” Appl. Phys. Lett. 91(8), 084101 (2007).
[CrossRef]

P. Galajda and P. Ormos, “Rotors produced and driven in laser tweezers with reversed direction of rotation,” Appl. Phys. Lett. 80(24), 4653–4655 (2002).
[CrossRef]

J. Microelectromech. Syst. (1)

S. Maruo, K. Ikuta, and H. Korogi, “Force-controllable, optically driven micromachines fabricated by single-step two-photon microstereolithography,” J. Microelectromech. Syst. 12(5), 533–539 (2003).
[CrossRef]

J. Rob. Mechatronics (1)

S. Maruo and Y. Hiratsuka, “Optically driven micromanipulators with rotating arms,” J. Rob. Mechatronics 19, 565–568 (2007).

Lab Chip (1)

J. Leach, H. Mushfique, R. di Leonardo, M. Padgett, and J. Cooper, “An optically driven pump for microfluidics,” Lab Chip 6(6), 735–739 (2006).
[CrossRef] [PubMed]

Lasers Photon Reviews (1)

S. Maruo and J. T. Fourkas, “Recent progress in multiphoton microfabrication,” Lasers Photon Reviews 2(1-2), 100–111 (2008).
[CrossRef]

Nat. Mater. (1)

S. L. Neale, M. P. MacDonald, K. Dholakia, and T. F. Krauss, “All-optical control of microfluidic components using form birefringence,” Nat. Mater. 4(7), 530–533 (2005).
[CrossRef] [PubMed]

Nature (2)

D. G. Grier, “A revolution in optical manipulation,” Nature 424(6950), 810–816 (2003).
[CrossRef] [PubMed]

S. Kawata, H.-B. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices,” Nature 412(6848), 697–698 (2001).
[CrossRef] [PubMed]

Opt. Express (3)

Opt. Lett. (2)

Science (2)

L. Li, R. R. Gattass, E. Gershgoren, H. Hwang, and J. T. Fourkas, “Achieving λ/20 resolution by one-color initiation and deactivation of polymerization,” Science 324(5929), 910–913 (2009).
[CrossRef] [PubMed]

A. Terray, J. Oakey, and D. W. M. Marr, “Microfluidic control using colloidal devices,” Science 296(5574), 1841–1844 (2002).
[CrossRef] [PubMed]

Symp. on Micro-nanomechatronics and Human Science (2)

A. Takaura, H. Inoue, and S. Maruo, ““Laser-driven viscous micropump using a single microrotor,” Proc. of Int,” Symp. on Micro-nanomechatronics and Human Science 2007, 16–20 (2007) (MHS).
[CrossRef]

T. Hasegawa and S. Maruo, ““Two-photon microfabrication with a supercritical CO2 drying process toward replication of three-dimensional microstructures,” Proc. of Int,” Symp. on Micro-nanomechatronics and Human Science 2007, 12–15 (2007) (MHS).
[CrossRef]

Other (1)

S. Maruo, T. Hasegawa and N. Yoshimura “Replication of three-dimensional rotary micromechanism by membrane-assisted transfer molding,” Jpn. J. Appl. Phys. 48, 06FH05 (2009).

Supplementary Material (4)

» Media 1: MPG (1544 KB)     
» Media 2: MPG (1466 KB)     
» Media 3: MPG (892 KB)     
» Media 4: MPG (1568 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Optically driven viscous micropump using a twin spiral microrotor.

Fig. 2
Fig. 2

Scanning electron microscope image of a twin spiral microrotor with an outer cylinder. (a) Top view (Media 1) (b) Side view (Media 2).

Fig. 3
Fig. 3

Microrotor rotation speeds dependence on laser power.

Fig. 4
Fig. 4

Dependence of the maximum flow velocity of the laminar flow on channel width.

Fig. 5
Fig. 5

Simulation results for the flow velocity and streamlines of a micropump with a 10 µm-width microchannel. (a) Flow velocity (b) Streamlines.

Fig. 6
Fig. 6

Particle transportation in a viscous micropump using a twin spiral microrotor (Media 3).

Fig. 7
Fig. 7

Optical microscope image of a tandem micropump driven by dual optical trapping (Media 4).

Metrics