Abstract

We present the design, fabrication and characterization of Bragg reflectors on silicon-on-insulator rib waveguides. The fabrication is based on a new double lithographic process, combining electron-beam lithography for the grating and photolithography for the waveguides. This process allows the realization of low loss reflectors, which were fully characterized. The influence of the etching depth and of the waveguide geometry on the reflector performance is considered. We demonstrate a reflectivity larger than 80% over a bandwidth of 0.8 nm with an insertion loss of only 0.5 dB. A thermal tunability of the device is also considered, showing that a shift of the reflected wavelength of 77 pm/K is possible.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. P. Bulk, A. P. Knights, P. E. Jessop, R. Loiacono, G. Z. Mashanovich, G. T. Reed, and R. M. Williams, “Optical Filters Utilizing Ion Implanted Bragg Gratings in SOI Waveguides,” Adv. Opt. Technol. 2008, 276165 (2008).
  2. S. Homampour, M. P. Bulk, P. E. Jessop, and A. P. Knights, “Thermal tuning of planar Bragg gratings in silicon-on-insulator rib waveguides,” Phys. Status Solidi C 6, S240–S243 (2009).
    [CrossRef]
  3. J. T. Hastings, M. H. Lim, J. G. Goodberlet, and H. I. Smith, “Optical waveguides with apodized sidewall gratings via spatial-phase-locked electron-beam lithography,” J. Vac. Sci. Technol. B 20(6), 2753–2757 (2002).
    [CrossRef]
  4. D. Wiesmann, C. David, R. Germann, D. Emi, and G. L. Bona,“Apodized Surface-Corrugated Gratings With Varying Duty Cycles,” IEEE Photon. Technol. Lett. 12(6), 639–641 (2000).
    [CrossRef]
  5. S. P. Chan, V. M. N. Passaro, G. Z. Mashanovich, G. Ensell, and G. T. Reed, “Third order Bragg grating filters in small SOI waveguides,” J. Europ. Opt. Soc.-Rapid Publications 2, 07029 (2007).
    [CrossRef]
  6. D. J. Moss, V. G. Ta’eed, B. J. Eggleton, D. Freeman, S. Madden, M. Samoc, B. Luther-Davies, S. Janz, and D.-X. Xu, “Bragg gratings in silicon-on-insulator waveguides by focused ion-beam milling,” Appl. Phys. Lett. 85(21), 4860–4862 (2004).
    [CrossRef]
  7. P. Heimala, T. Aalto, S. Yliniemi, J. Simonen, M. Kuittinen, J. Turunen, and M. Leppihalme, “Fabrication of Bragg Grating Structures in Silicon,” Phys. Scr. T101(1), 92–95 (2002).
    [CrossRef]
  8. T. E. Murphy, J. T. Hastings, and H. I. Smith, “Fabrication and characterization of narrowband Bragg reflection filters in silicon-on-insulator ridge waveguides,” J. Lightwave Technol. 19(12), 1938–1942 (2001).
    [CrossRef]
  9. S. Honda, Z. Wu, J. Matsui, K. Utaka, T. Edura, M. Tokuda, K. Tsutsui, and Y. Wada, “Largely-tunable wideband Bragg gratings fabricated on SOI rib waveguides employed by deep-RIE,” Electron. Lett. 43(11), 630–631 (2007).
    [CrossRef]
  10. J. Čtyroký, S. Helfert, R. Pregla, P. Bienstman, R. Baets, R. Ridder, R. Stoffer, G. Klaasse, J. PetráČek, P. Lalanne, J. P. Hugonin, and R. M. LaRue,“Bragg waveguide grating as a 1D photonic band gap structure: COST 268 modelling task,” Opt. Quantum Electron. 34(5-6), 455–470 (2002).
    [CrossRef]
  11. I. Giuntoni, M. Krause, H. Renner, J. Bruns, A. Gajda, E. Brinkmeyer, and K. Petermann, “Numerical Survey on Bragg Reflectors in Silicon-on-Insulator Waveguides,” in 2008 5th Int. Conf. on Group IV Photonics (IEEE/LEOS 2008), pp. 285–287.
  12. J. Tidmarsh, and J. Drake, “Silicon-on-Insulator Waveguide Bragg Gratings,” in Integrated Photonics Research, Vol. 4 of OSA Technical Digest (Optical Society of America, 1998), paper ITuH4.
  13. G. Cocorullo, F. G. Della Corte, and I. Rendina, “Temperature dependence of the thermo-optic coefficient in crystalline silicon between room temperature and 550 K at the wavelength of 1523 nm,” Appl. Phys. Lett. 74(22), 3338–3340 (1999).
    [CrossRef]

2009 (1)

S. Homampour, M. P. Bulk, P. E. Jessop, and A. P. Knights, “Thermal tuning of planar Bragg gratings in silicon-on-insulator rib waveguides,” Phys. Status Solidi C 6, S240–S243 (2009).
[CrossRef]

2008 (1)

M. P. Bulk, A. P. Knights, P. E. Jessop, R. Loiacono, G. Z. Mashanovich, G. T. Reed, and R. M. Williams, “Optical Filters Utilizing Ion Implanted Bragg Gratings in SOI Waveguides,” Adv. Opt. Technol. 2008, 276165 (2008).

2007 (2)

S. Honda, Z. Wu, J. Matsui, K. Utaka, T. Edura, M. Tokuda, K. Tsutsui, and Y. Wada, “Largely-tunable wideband Bragg gratings fabricated on SOI rib waveguides employed by deep-RIE,” Electron. Lett. 43(11), 630–631 (2007).
[CrossRef]

S. P. Chan, V. M. N. Passaro, G. Z. Mashanovich, G. Ensell, and G. T. Reed, “Third order Bragg grating filters in small SOI waveguides,” J. Europ. Opt. Soc.-Rapid Publications 2, 07029 (2007).
[CrossRef]

2004 (1)

D. J. Moss, V. G. Ta’eed, B. J. Eggleton, D. Freeman, S. Madden, M. Samoc, B. Luther-Davies, S. Janz, and D.-X. Xu, “Bragg gratings in silicon-on-insulator waveguides by focused ion-beam milling,” Appl. Phys. Lett. 85(21), 4860–4862 (2004).
[CrossRef]

2002 (3)

P. Heimala, T. Aalto, S. Yliniemi, J. Simonen, M. Kuittinen, J. Turunen, and M. Leppihalme, “Fabrication of Bragg Grating Structures in Silicon,” Phys. Scr. T101(1), 92–95 (2002).
[CrossRef]

J. Čtyroký, S. Helfert, R. Pregla, P. Bienstman, R. Baets, R. Ridder, R. Stoffer, G. Klaasse, J. PetráČek, P. Lalanne, J. P. Hugonin, and R. M. LaRue,“Bragg waveguide grating as a 1D photonic band gap structure: COST 268 modelling task,” Opt. Quantum Electron. 34(5-6), 455–470 (2002).
[CrossRef]

J. T. Hastings, M. H. Lim, J. G. Goodberlet, and H. I. Smith, “Optical waveguides with apodized sidewall gratings via spatial-phase-locked electron-beam lithography,” J. Vac. Sci. Technol. B 20(6), 2753–2757 (2002).
[CrossRef]

2001 (1)

2000 (1)

D. Wiesmann, C. David, R. Germann, D. Emi, and G. L. Bona,“Apodized Surface-Corrugated Gratings With Varying Duty Cycles,” IEEE Photon. Technol. Lett. 12(6), 639–641 (2000).
[CrossRef]

1999 (1)

G. Cocorullo, F. G. Della Corte, and I. Rendina, “Temperature dependence of the thermo-optic coefficient in crystalline silicon between room temperature and 550 K at the wavelength of 1523 nm,” Appl. Phys. Lett. 74(22), 3338–3340 (1999).
[CrossRef]

Aalto, T.

P. Heimala, T. Aalto, S. Yliniemi, J. Simonen, M. Kuittinen, J. Turunen, and M. Leppihalme, “Fabrication of Bragg Grating Structures in Silicon,” Phys. Scr. T101(1), 92–95 (2002).
[CrossRef]

Baets, R.

J. Čtyroký, S. Helfert, R. Pregla, P. Bienstman, R. Baets, R. Ridder, R. Stoffer, G. Klaasse, J. PetráČek, P. Lalanne, J. P. Hugonin, and R. M. LaRue,“Bragg waveguide grating as a 1D photonic band gap structure: COST 268 modelling task,” Opt. Quantum Electron. 34(5-6), 455–470 (2002).
[CrossRef]

Bienstman, P.

J. Čtyroký, S. Helfert, R. Pregla, P. Bienstman, R. Baets, R. Ridder, R. Stoffer, G. Klaasse, J. PetráČek, P. Lalanne, J. P. Hugonin, and R. M. LaRue,“Bragg waveguide grating as a 1D photonic band gap structure: COST 268 modelling task,” Opt. Quantum Electron. 34(5-6), 455–470 (2002).
[CrossRef]

Bona, G. L.

D. Wiesmann, C. David, R. Germann, D. Emi, and G. L. Bona,“Apodized Surface-Corrugated Gratings With Varying Duty Cycles,” IEEE Photon. Technol. Lett. 12(6), 639–641 (2000).
[CrossRef]

Bulk, M. P.

S. Homampour, M. P. Bulk, P. E. Jessop, and A. P. Knights, “Thermal tuning of planar Bragg gratings in silicon-on-insulator rib waveguides,” Phys. Status Solidi C 6, S240–S243 (2009).
[CrossRef]

M. P. Bulk, A. P. Knights, P. E. Jessop, R. Loiacono, G. Z. Mashanovich, G. T. Reed, and R. M. Williams, “Optical Filters Utilizing Ion Implanted Bragg Gratings in SOI Waveguides,” Adv. Opt. Technol. 2008, 276165 (2008).

Chan, S. P.

S. P. Chan, V. M. N. Passaro, G. Z. Mashanovich, G. Ensell, and G. T. Reed, “Third order Bragg grating filters in small SOI waveguides,” J. Europ. Opt. Soc.-Rapid Publications 2, 07029 (2007).
[CrossRef]

Cocorullo, G.

G. Cocorullo, F. G. Della Corte, and I. Rendina, “Temperature dependence of the thermo-optic coefficient in crystalline silicon between room temperature and 550 K at the wavelength of 1523 nm,” Appl. Phys. Lett. 74(22), 3338–3340 (1999).
[CrossRef]

Ctyroký, J.

J. Čtyroký, S. Helfert, R. Pregla, P. Bienstman, R. Baets, R. Ridder, R. Stoffer, G. Klaasse, J. PetráČek, P. Lalanne, J. P. Hugonin, and R. M. LaRue,“Bragg waveguide grating as a 1D photonic band gap structure: COST 268 modelling task,” Opt. Quantum Electron. 34(5-6), 455–470 (2002).
[CrossRef]

David, C.

D. Wiesmann, C. David, R. Germann, D. Emi, and G. L. Bona,“Apodized Surface-Corrugated Gratings With Varying Duty Cycles,” IEEE Photon. Technol. Lett. 12(6), 639–641 (2000).
[CrossRef]

Della Corte, F. G.

G. Cocorullo, F. G. Della Corte, and I. Rendina, “Temperature dependence of the thermo-optic coefficient in crystalline silicon between room temperature and 550 K at the wavelength of 1523 nm,” Appl. Phys. Lett. 74(22), 3338–3340 (1999).
[CrossRef]

Edura, T.

S. Honda, Z. Wu, J. Matsui, K. Utaka, T. Edura, M. Tokuda, K. Tsutsui, and Y. Wada, “Largely-tunable wideband Bragg gratings fabricated on SOI rib waveguides employed by deep-RIE,” Electron. Lett. 43(11), 630–631 (2007).
[CrossRef]

Eggleton, B. J.

D. J. Moss, V. G. Ta’eed, B. J. Eggleton, D. Freeman, S. Madden, M. Samoc, B. Luther-Davies, S. Janz, and D.-X. Xu, “Bragg gratings in silicon-on-insulator waveguides by focused ion-beam milling,” Appl. Phys. Lett. 85(21), 4860–4862 (2004).
[CrossRef]

Emi, D.

D. Wiesmann, C. David, R. Germann, D. Emi, and G. L. Bona,“Apodized Surface-Corrugated Gratings With Varying Duty Cycles,” IEEE Photon. Technol. Lett. 12(6), 639–641 (2000).
[CrossRef]

Ensell, G.

S. P. Chan, V. M. N. Passaro, G. Z. Mashanovich, G. Ensell, and G. T. Reed, “Third order Bragg grating filters in small SOI waveguides,” J. Europ. Opt. Soc.-Rapid Publications 2, 07029 (2007).
[CrossRef]

Freeman, D.

D. J. Moss, V. G. Ta’eed, B. J. Eggleton, D. Freeman, S. Madden, M. Samoc, B. Luther-Davies, S. Janz, and D.-X. Xu, “Bragg gratings in silicon-on-insulator waveguides by focused ion-beam milling,” Appl. Phys. Lett. 85(21), 4860–4862 (2004).
[CrossRef]

Germann, R.

D. Wiesmann, C. David, R. Germann, D. Emi, and G. L. Bona,“Apodized Surface-Corrugated Gratings With Varying Duty Cycles,” IEEE Photon. Technol. Lett. 12(6), 639–641 (2000).
[CrossRef]

Goodberlet, J. G.

J. T. Hastings, M. H. Lim, J. G. Goodberlet, and H. I. Smith, “Optical waveguides with apodized sidewall gratings via spatial-phase-locked electron-beam lithography,” J. Vac. Sci. Technol. B 20(6), 2753–2757 (2002).
[CrossRef]

Hastings, J. T.

J. T. Hastings, M. H. Lim, J. G. Goodberlet, and H. I. Smith, “Optical waveguides with apodized sidewall gratings via spatial-phase-locked electron-beam lithography,” J. Vac. Sci. Technol. B 20(6), 2753–2757 (2002).
[CrossRef]

T. E. Murphy, J. T. Hastings, and H. I. Smith, “Fabrication and characterization of narrowband Bragg reflection filters in silicon-on-insulator ridge waveguides,” J. Lightwave Technol. 19(12), 1938–1942 (2001).
[CrossRef]

Heimala, P.

P. Heimala, T. Aalto, S. Yliniemi, J. Simonen, M. Kuittinen, J. Turunen, and M. Leppihalme, “Fabrication of Bragg Grating Structures in Silicon,” Phys. Scr. T101(1), 92–95 (2002).
[CrossRef]

Helfert, S.

J. Čtyroký, S. Helfert, R. Pregla, P. Bienstman, R. Baets, R. Ridder, R. Stoffer, G. Klaasse, J. PetráČek, P. Lalanne, J. P. Hugonin, and R. M. LaRue,“Bragg waveguide grating as a 1D photonic band gap structure: COST 268 modelling task,” Opt. Quantum Electron. 34(5-6), 455–470 (2002).
[CrossRef]

Homampour, S.

S. Homampour, M. P. Bulk, P. E. Jessop, and A. P. Knights, “Thermal tuning of planar Bragg gratings in silicon-on-insulator rib waveguides,” Phys. Status Solidi C 6, S240–S243 (2009).
[CrossRef]

Honda, S.

S. Honda, Z. Wu, J. Matsui, K. Utaka, T. Edura, M. Tokuda, K. Tsutsui, and Y. Wada, “Largely-tunable wideband Bragg gratings fabricated on SOI rib waveguides employed by deep-RIE,” Electron. Lett. 43(11), 630–631 (2007).
[CrossRef]

Hugonin, J. P.

J. Čtyroký, S. Helfert, R. Pregla, P. Bienstman, R. Baets, R. Ridder, R. Stoffer, G. Klaasse, J. PetráČek, P. Lalanne, J. P. Hugonin, and R. M. LaRue,“Bragg waveguide grating as a 1D photonic band gap structure: COST 268 modelling task,” Opt. Quantum Electron. 34(5-6), 455–470 (2002).
[CrossRef]

Janz, S.

D. J. Moss, V. G. Ta’eed, B. J. Eggleton, D. Freeman, S. Madden, M. Samoc, B. Luther-Davies, S. Janz, and D.-X. Xu, “Bragg gratings in silicon-on-insulator waveguides by focused ion-beam milling,” Appl. Phys. Lett. 85(21), 4860–4862 (2004).
[CrossRef]

Jessop, P. E.

S. Homampour, M. P. Bulk, P. E. Jessop, and A. P. Knights, “Thermal tuning of planar Bragg gratings in silicon-on-insulator rib waveguides,” Phys. Status Solidi C 6, S240–S243 (2009).
[CrossRef]

M. P. Bulk, A. P. Knights, P. E. Jessop, R. Loiacono, G. Z. Mashanovich, G. T. Reed, and R. M. Williams, “Optical Filters Utilizing Ion Implanted Bragg Gratings in SOI Waveguides,” Adv. Opt. Technol. 2008, 276165 (2008).

Klaasse, G.

J. Čtyroký, S. Helfert, R. Pregla, P. Bienstman, R. Baets, R. Ridder, R. Stoffer, G. Klaasse, J. PetráČek, P. Lalanne, J. P. Hugonin, and R. M. LaRue,“Bragg waveguide grating as a 1D photonic band gap structure: COST 268 modelling task,” Opt. Quantum Electron. 34(5-6), 455–470 (2002).
[CrossRef]

Knights, A. P.

S. Homampour, M. P. Bulk, P. E. Jessop, and A. P. Knights, “Thermal tuning of planar Bragg gratings in silicon-on-insulator rib waveguides,” Phys. Status Solidi C 6, S240–S243 (2009).
[CrossRef]

M. P. Bulk, A. P. Knights, P. E. Jessop, R. Loiacono, G. Z. Mashanovich, G. T. Reed, and R. M. Williams, “Optical Filters Utilizing Ion Implanted Bragg Gratings in SOI Waveguides,” Adv. Opt. Technol. 2008, 276165 (2008).

Kuittinen, M.

P. Heimala, T. Aalto, S. Yliniemi, J. Simonen, M. Kuittinen, J. Turunen, and M. Leppihalme, “Fabrication of Bragg Grating Structures in Silicon,” Phys. Scr. T101(1), 92–95 (2002).
[CrossRef]

Lalanne, P.

J. Čtyroký, S. Helfert, R. Pregla, P. Bienstman, R. Baets, R. Ridder, R. Stoffer, G. Klaasse, J. PetráČek, P. Lalanne, J. P. Hugonin, and R. M. LaRue,“Bragg waveguide grating as a 1D photonic band gap structure: COST 268 modelling task,” Opt. Quantum Electron. 34(5-6), 455–470 (2002).
[CrossRef]

LaRue, R. M.

J. Čtyroký, S. Helfert, R. Pregla, P. Bienstman, R. Baets, R. Ridder, R. Stoffer, G. Klaasse, J. PetráČek, P. Lalanne, J. P. Hugonin, and R. M. LaRue,“Bragg waveguide grating as a 1D photonic band gap structure: COST 268 modelling task,” Opt. Quantum Electron. 34(5-6), 455–470 (2002).
[CrossRef]

Leppihalme, M.

P. Heimala, T. Aalto, S. Yliniemi, J. Simonen, M. Kuittinen, J. Turunen, and M. Leppihalme, “Fabrication of Bragg Grating Structures in Silicon,” Phys. Scr. T101(1), 92–95 (2002).
[CrossRef]

Lim, M. H.

J. T. Hastings, M. H. Lim, J. G. Goodberlet, and H. I. Smith, “Optical waveguides with apodized sidewall gratings via spatial-phase-locked electron-beam lithography,” J. Vac. Sci. Technol. B 20(6), 2753–2757 (2002).
[CrossRef]

Loiacono, R.

M. P. Bulk, A. P. Knights, P. E. Jessop, R. Loiacono, G. Z. Mashanovich, G. T. Reed, and R. M. Williams, “Optical Filters Utilizing Ion Implanted Bragg Gratings in SOI Waveguides,” Adv. Opt. Technol. 2008, 276165 (2008).

Luther-Davies, B.

D. J. Moss, V. G. Ta’eed, B. J. Eggleton, D. Freeman, S. Madden, M. Samoc, B. Luther-Davies, S. Janz, and D.-X. Xu, “Bragg gratings in silicon-on-insulator waveguides by focused ion-beam milling,” Appl. Phys. Lett. 85(21), 4860–4862 (2004).
[CrossRef]

Madden, S.

D. J. Moss, V. G. Ta’eed, B. J. Eggleton, D. Freeman, S. Madden, M. Samoc, B. Luther-Davies, S. Janz, and D.-X. Xu, “Bragg gratings in silicon-on-insulator waveguides by focused ion-beam milling,” Appl. Phys. Lett. 85(21), 4860–4862 (2004).
[CrossRef]

Mashanovich, G. Z.

M. P. Bulk, A. P. Knights, P. E. Jessop, R. Loiacono, G. Z. Mashanovich, G. T. Reed, and R. M. Williams, “Optical Filters Utilizing Ion Implanted Bragg Gratings in SOI Waveguides,” Adv. Opt. Technol. 2008, 276165 (2008).

S. P. Chan, V. M. N. Passaro, G. Z. Mashanovich, G. Ensell, and G. T. Reed, “Third order Bragg grating filters in small SOI waveguides,” J. Europ. Opt. Soc.-Rapid Publications 2, 07029 (2007).
[CrossRef]

Matsui, J.

S. Honda, Z. Wu, J. Matsui, K. Utaka, T. Edura, M. Tokuda, K. Tsutsui, and Y. Wada, “Largely-tunable wideband Bragg gratings fabricated on SOI rib waveguides employed by deep-RIE,” Electron. Lett. 43(11), 630–631 (2007).
[CrossRef]

Moss, D. J.

D. J. Moss, V. G. Ta’eed, B. J. Eggleton, D. Freeman, S. Madden, M. Samoc, B. Luther-Davies, S. Janz, and D.-X. Xu, “Bragg gratings in silicon-on-insulator waveguides by focused ion-beam milling,” Appl. Phys. Lett. 85(21), 4860–4862 (2004).
[CrossRef]

Murphy, T. E.

Passaro, V. M. N.

S. P. Chan, V. M. N. Passaro, G. Z. Mashanovich, G. Ensell, and G. T. Reed, “Third order Bragg grating filters in small SOI waveguides,” J. Europ. Opt. Soc.-Rapid Publications 2, 07029 (2007).
[CrossRef]

PetráCek, J.

J. Čtyroký, S. Helfert, R. Pregla, P. Bienstman, R. Baets, R. Ridder, R. Stoffer, G. Klaasse, J. PetráČek, P. Lalanne, J. P. Hugonin, and R. M. LaRue,“Bragg waveguide grating as a 1D photonic band gap structure: COST 268 modelling task,” Opt. Quantum Electron. 34(5-6), 455–470 (2002).
[CrossRef]

Pregla, R.

J. Čtyroký, S. Helfert, R. Pregla, P. Bienstman, R. Baets, R. Ridder, R. Stoffer, G. Klaasse, J. PetráČek, P. Lalanne, J. P. Hugonin, and R. M. LaRue,“Bragg waveguide grating as a 1D photonic band gap structure: COST 268 modelling task,” Opt. Quantum Electron. 34(5-6), 455–470 (2002).
[CrossRef]

Reed, G. T.

M. P. Bulk, A. P. Knights, P. E. Jessop, R. Loiacono, G. Z. Mashanovich, G. T. Reed, and R. M. Williams, “Optical Filters Utilizing Ion Implanted Bragg Gratings in SOI Waveguides,” Adv. Opt. Technol. 2008, 276165 (2008).

S. P. Chan, V. M. N. Passaro, G. Z. Mashanovich, G. Ensell, and G. T. Reed, “Third order Bragg grating filters in small SOI waveguides,” J. Europ. Opt. Soc.-Rapid Publications 2, 07029 (2007).
[CrossRef]

Rendina, I.

G. Cocorullo, F. G. Della Corte, and I. Rendina, “Temperature dependence of the thermo-optic coefficient in crystalline silicon between room temperature and 550 K at the wavelength of 1523 nm,” Appl. Phys. Lett. 74(22), 3338–3340 (1999).
[CrossRef]

Ridder, R.

J. Čtyroký, S. Helfert, R. Pregla, P. Bienstman, R. Baets, R. Ridder, R. Stoffer, G. Klaasse, J. PetráČek, P. Lalanne, J. P. Hugonin, and R. M. LaRue,“Bragg waveguide grating as a 1D photonic band gap structure: COST 268 modelling task,” Opt. Quantum Electron. 34(5-6), 455–470 (2002).
[CrossRef]

Samoc, M.

D. J. Moss, V. G. Ta’eed, B. J. Eggleton, D. Freeman, S. Madden, M. Samoc, B. Luther-Davies, S. Janz, and D.-X. Xu, “Bragg gratings in silicon-on-insulator waveguides by focused ion-beam milling,” Appl. Phys. Lett. 85(21), 4860–4862 (2004).
[CrossRef]

Simonen, J.

P. Heimala, T. Aalto, S. Yliniemi, J. Simonen, M. Kuittinen, J. Turunen, and M. Leppihalme, “Fabrication of Bragg Grating Structures in Silicon,” Phys. Scr. T101(1), 92–95 (2002).
[CrossRef]

Smith, H. I.

J. T. Hastings, M. H. Lim, J. G. Goodberlet, and H. I. Smith, “Optical waveguides with apodized sidewall gratings via spatial-phase-locked electron-beam lithography,” J. Vac. Sci. Technol. B 20(6), 2753–2757 (2002).
[CrossRef]

T. E. Murphy, J. T. Hastings, and H. I. Smith, “Fabrication and characterization of narrowband Bragg reflection filters in silicon-on-insulator ridge waveguides,” J. Lightwave Technol. 19(12), 1938–1942 (2001).
[CrossRef]

Stoffer, R.

J. Čtyroký, S. Helfert, R. Pregla, P. Bienstman, R. Baets, R. Ridder, R. Stoffer, G. Klaasse, J. PetráČek, P. Lalanne, J. P. Hugonin, and R. M. LaRue,“Bragg waveguide grating as a 1D photonic band gap structure: COST 268 modelling task,” Opt. Quantum Electron. 34(5-6), 455–470 (2002).
[CrossRef]

Ta’eed, V. G.

D. J. Moss, V. G. Ta’eed, B. J. Eggleton, D. Freeman, S. Madden, M. Samoc, B. Luther-Davies, S. Janz, and D.-X. Xu, “Bragg gratings in silicon-on-insulator waveguides by focused ion-beam milling,” Appl. Phys. Lett. 85(21), 4860–4862 (2004).
[CrossRef]

Tokuda, M.

S. Honda, Z. Wu, J. Matsui, K. Utaka, T. Edura, M. Tokuda, K. Tsutsui, and Y. Wada, “Largely-tunable wideband Bragg gratings fabricated on SOI rib waveguides employed by deep-RIE,” Electron. Lett. 43(11), 630–631 (2007).
[CrossRef]

Tsutsui, K.

S. Honda, Z. Wu, J. Matsui, K. Utaka, T. Edura, M. Tokuda, K. Tsutsui, and Y. Wada, “Largely-tunable wideband Bragg gratings fabricated on SOI rib waveguides employed by deep-RIE,” Electron. Lett. 43(11), 630–631 (2007).
[CrossRef]

Turunen, J.

P. Heimala, T. Aalto, S. Yliniemi, J. Simonen, M. Kuittinen, J. Turunen, and M. Leppihalme, “Fabrication of Bragg Grating Structures in Silicon,” Phys. Scr. T101(1), 92–95 (2002).
[CrossRef]

Utaka, K.

S. Honda, Z. Wu, J. Matsui, K. Utaka, T. Edura, M. Tokuda, K. Tsutsui, and Y. Wada, “Largely-tunable wideband Bragg gratings fabricated on SOI rib waveguides employed by deep-RIE,” Electron. Lett. 43(11), 630–631 (2007).
[CrossRef]

Wada, Y.

S. Honda, Z. Wu, J. Matsui, K. Utaka, T. Edura, M. Tokuda, K. Tsutsui, and Y. Wada, “Largely-tunable wideband Bragg gratings fabricated on SOI rib waveguides employed by deep-RIE,” Electron. Lett. 43(11), 630–631 (2007).
[CrossRef]

Wiesmann, D.

D. Wiesmann, C. David, R. Germann, D. Emi, and G. L. Bona,“Apodized Surface-Corrugated Gratings With Varying Duty Cycles,” IEEE Photon. Technol. Lett. 12(6), 639–641 (2000).
[CrossRef]

Williams, R. M.

M. P. Bulk, A. P. Knights, P. E. Jessop, R. Loiacono, G. Z. Mashanovich, G. T. Reed, and R. M. Williams, “Optical Filters Utilizing Ion Implanted Bragg Gratings in SOI Waveguides,” Adv. Opt. Technol. 2008, 276165 (2008).

Wu, Z.

S. Honda, Z. Wu, J. Matsui, K. Utaka, T. Edura, M. Tokuda, K. Tsutsui, and Y. Wada, “Largely-tunable wideband Bragg gratings fabricated on SOI rib waveguides employed by deep-RIE,” Electron. Lett. 43(11), 630–631 (2007).
[CrossRef]

Xu, D.-X.

D. J. Moss, V. G. Ta’eed, B. J. Eggleton, D. Freeman, S. Madden, M. Samoc, B. Luther-Davies, S. Janz, and D.-X. Xu, “Bragg gratings in silicon-on-insulator waveguides by focused ion-beam milling,” Appl. Phys. Lett. 85(21), 4860–4862 (2004).
[CrossRef]

Yliniemi, S.

P. Heimala, T. Aalto, S. Yliniemi, J. Simonen, M. Kuittinen, J. Turunen, and M. Leppihalme, “Fabrication of Bragg Grating Structures in Silicon,” Phys. Scr. T101(1), 92–95 (2002).
[CrossRef]

Adv. Opt. Technol. (1)

M. P. Bulk, A. P. Knights, P. E. Jessop, R. Loiacono, G. Z. Mashanovich, G. T. Reed, and R. M. Williams, “Optical Filters Utilizing Ion Implanted Bragg Gratings in SOI Waveguides,” Adv. Opt. Technol. 2008, 276165 (2008).

Appl. Phys. Lett. (2)

D. J. Moss, V. G. Ta’eed, B. J. Eggleton, D. Freeman, S. Madden, M. Samoc, B. Luther-Davies, S. Janz, and D.-X. Xu, “Bragg gratings in silicon-on-insulator waveguides by focused ion-beam milling,” Appl. Phys. Lett. 85(21), 4860–4862 (2004).
[CrossRef]

G. Cocorullo, F. G. Della Corte, and I. Rendina, “Temperature dependence of the thermo-optic coefficient in crystalline silicon between room temperature and 550 K at the wavelength of 1523 nm,” Appl. Phys. Lett. 74(22), 3338–3340 (1999).
[CrossRef]

Electron. Lett. (1)

S. Honda, Z. Wu, J. Matsui, K. Utaka, T. Edura, M. Tokuda, K. Tsutsui, and Y. Wada, “Largely-tunable wideband Bragg gratings fabricated on SOI rib waveguides employed by deep-RIE,” Electron. Lett. 43(11), 630–631 (2007).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

D. Wiesmann, C. David, R. Germann, D. Emi, and G. L. Bona,“Apodized Surface-Corrugated Gratings With Varying Duty Cycles,” IEEE Photon. Technol. Lett. 12(6), 639–641 (2000).
[CrossRef]

J. Europ. Opt. Soc.-Rapid Publications (1)

S. P. Chan, V. M. N. Passaro, G. Z. Mashanovich, G. Ensell, and G. T. Reed, “Third order Bragg grating filters in small SOI waveguides,” J. Europ. Opt. Soc.-Rapid Publications 2, 07029 (2007).
[CrossRef]

J. Lightwave Technol. (1)

J. Vac. Sci. Technol. B (1)

J. T. Hastings, M. H. Lim, J. G. Goodberlet, and H. I. Smith, “Optical waveguides with apodized sidewall gratings via spatial-phase-locked electron-beam lithography,” J. Vac. Sci. Technol. B 20(6), 2753–2757 (2002).
[CrossRef]

Opt. Quantum Electron. (1)

J. Čtyroký, S. Helfert, R. Pregla, P. Bienstman, R. Baets, R. Ridder, R. Stoffer, G. Klaasse, J. PetráČek, P. Lalanne, J. P. Hugonin, and R. M. LaRue,“Bragg waveguide grating as a 1D photonic band gap structure: COST 268 modelling task,” Opt. Quantum Electron. 34(5-6), 455–470 (2002).
[CrossRef]

Phys. Scr. (1)

P. Heimala, T. Aalto, S. Yliniemi, J. Simonen, M. Kuittinen, J. Turunen, and M. Leppihalme, “Fabrication of Bragg Grating Structures in Silicon,” Phys. Scr. T101(1), 92–95 (2002).
[CrossRef]

Phys. Status Solidi C (1)

S. Homampour, M. P. Bulk, P. E. Jessop, and A. P. Knights, “Thermal tuning of planar Bragg gratings in silicon-on-insulator rib waveguides,” Phys. Status Solidi C 6, S240–S243 (2009).
[CrossRef]

Other (2)

I. Giuntoni, M. Krause, H. Renner, J. Bruns, A. Gajda, E. Brinkmeyer, and K. Petermann, “Numerical Survey on Bragg Reflectors in Silicon-on-Insulator Waveguides,” in 2008 5th Int. Conf. on Group IV Photonics (IEEE/LEOS 2008), pp. 285–287.

J. Tidmarsh, and J. Drake, “Silicon-on-Insulator Waveguide Bragg Gratings,” in Integrated Photonics Research, Vol. 4 of OSA Technical Digest (Optical Society of America, 1998), paper ITuH4.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Geometrical parameters of a silicon-on-insulator rib waveguide Bragg grating: L overall length, d grating depth, a grating trench, Λ grating period, w waveguide width, t rib height, h rib etching depth.

Fig. 2
Fig. 2

Calculated reflectivity R and transmissivity T spectra of a Bragg reflector with d = 150 nm, D = 0.3 and L = 800 µm. The grating period is Λ = 225 nm.

Fig. 3
Fig. 3

SEM micrograph with a tilted top view of the fabricated Bragg reflector with an etching depth of 80 nm on a 1.6 µm wide rib waveguide.

Fig. 4
Fig. 4

Scheme of the measurement setup used for the characterization of the fabricated Bragg reflectors.

Fig. 5
Fig. 5

Transmission and reflection spectra for Bragg reflectors fabricated on a 1.6 µm wide rib waveguide. The grating depth is (a,c) 150 nm and (b,d) 80 nm, the period 225 nm (a,c) 226 nm (b,d) and the length 800 µm.

Fig. 6
Fig. 6

Comparison between computed and experimentally measured (a) transmission and (b) reflection spectra. The grating depth is d = 80 nm, the period Λ = 226 nm and the overall length L = 800 µm. TE polarization is considered. All spectra are in linear scale.

Fig. 7
Fig. 7

Dependence between the peak reflected wavelength and the width of the waveguide. The points represent the measured data, the dashed line is a linear fit.

Fig. 8
Fig. 8

Reflection spectra a Bragg reflector on a 2.2 µm wide rib waveguide for three different temperatures for both TE and TM polarization. The grating depth is 150 nm, the duty cycle 0.3 and the overall length 800 µm.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

R=Pgrat-PwgPinKη2exp(-2αL)
Λ(T)=Λ0(1+γΔT)
n(T)=n0+dndTΔT .
dλdT=2n0γΛ0+2Λ0dndT.

Metrics