Abstract

Three multiplexing schemes are presented for polarization-maintaining photonic crystal fiber based Sagnac interferometric sensors. The first technique is wavelength division multiplexing using coarse wavelength division multiplexers (CWDMs) to distinguish signals from each multiplexed sensor in different wavelength channels. The other two schemes are to multiplex sensors in series along a single fiber link and in parallel by using fiber-optic couplers. While for the CWDM scheme, the multiplexed sensing signal can be obtained by direct measurement; for the other two multiplexing techniques, the sensing signal is more complex and cannot be easily demultiplexed. Thus, some signal processing methods are required. In this regard, two mathematical transformations, namely the discrete wavelet transform and Fourier transform, have been independently and successfully implemented into these two schemes. The operating principles, experimental setup, and overall performance are discussed.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. C. Knight, T. A. Birks, P. St. J. Russell, and D. M. Atkin, “All-silica single-mode optical fiber with photonic crystal cladding,” Opt. Lett. 21(19), 1547–1549 (1996).
    [CrossRef] [PubMed]
  2. T. A. Birks, J. C. Knight, and P. S. Russell, “Endlessly single-mode photonic crystal fiber,” Opt. Lett. 22(13), 961–963 (1997).
    [CrossRef] [PubMed]
  3. P. St. J. Russell, “Photonic crystal fibers,” Science 299(5605), 358–362 (2003).
    [CrossRef] [PubMed]
  4. T. M. Monro, W. Belardi, K. Furusawa, J. C. Baggett, N. G. R. Broderick, and D. J. Richardson, “Sensing with microstructured optical fibres,” Meas. Sci. Technol. 12(7), 854–858 (2001).
    [CrossRef]
  5. B. J. Eggleton, C. Kerbage, P. S. Westbrook, R. S. Windeler, and A. Hale, “Microstructured optical fiber devices,” Opt. Express 9(13), 698–713 (2001), http://www.opticsinfobase.org/oe/abstract.cfm?URI=OPEX-9-13-698 .
    [CrossRef] [PubMed]
  6. O. Frazão, J. L. Santos, F. M. Araujo, and L. A. Ferreira, “Optical sensing with photonic crystal fibers,” Laser Photon. Rev. 2(6), 449–459 (2008).
    [CrossRef]
  7. C.-L. Zhao, X. Yang, C. Lu, W. Jin, and M. S. Demokan, “Temperature-insensitive interferometer using a highly birefringent photonic crystal fiber loop mirror,” IEEE Photon. Technol. Lett. 16(11), 2535–2537 (2004).
    [CrossRef]
  8. D.-H. Kim and J. U. Kang, “Sagnac loop interferometer based on polarization maintaining photonic crystal fiber with reduced temperature sensitivity,” Opt. Express 12(19), 4490–4495 (2004), http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-19-4490 .
    [CrossRef] [PubMed]
  9. X. Y. Dong, H. Y. Tam, and P. Shum, “Temperature-insensitive strain sensor with polarization-maintaining photonic crystal fiber based Sagnac interferometer,” Appl. Phys. Lett. 90(15), 151113–3 (2007).
    [CrossRef]
  10. O. Frazao, J. M. Baptista, and J. L. Santos, “Temperature-independent strain sensor based on a Hi-Bi photonic crystal fiber loop mirror,” IEEE Sens. J. 7(10), 1453–1455 (2007).
    [CrossRef]
  11. H. Y. Fu, H. Y. Tam, L. Y. Shao, X. Dong, P. K. Wai, C. Lu, and S. K. Khijwania, “Pressure sensor realized with polarization-maintaining photonic crystal fiber-based Sagnac interferometer,” Appl. Opt. 47(15), 2835–2839 (2008).
    [CrossRef] [PubMed]
  12. O. Frazão, J. M. Baptista, J. L. Santos, and P. Roy, “Curvature sensor using a highly birefringent photonic crystal fiber with two asymmetric hole regions in a Sagnac interferometer,” Appl. Opt. 47(13), 2520–2523 (2008).
    [CrossRef] [PubMed]
  13. G. Kim, T. Cho, K. Hwang, K. Lee, K. S. Lee, Y.-G. Han, and S. B. Lee, “Strain and temperature sensitivities of an elliptical hollow-core photonic bandgap fiber based on Sagnac interferometer,” Opt. Express 17(4), 2481–2486 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-17-4-2481 .
    [CrossRef] [PubMed]
  14. M. L. V. Tse, H. Y. Tam, L. B. Fu, B. K. Thomas, L. Dong, C. Lu, and P. K. A. Wai, “Fusion splicing holey fibers and single-mode fibers: A simple method to reduce loss and increase strength,” IEEE Photon. Technol. Lett. 21(3), 164–166 (2009).
    [CrossRef]
  15. D. B. Mortimore, “Fiber Loop Reflectors,” J. Lightwave Technol. 6(7), 1217–1224 (1988).
    [CrossRef]
  16. L. Liu, Q. Zhao, G. Zhou, H. Zhang, S. Chen, L. Zhao, Y. Yao, P. Guo, and X. Dong, “Study on an optical filter constituted by concatenated Hi-Bi fiber loop mirrors,” Microw. Opt. Technol. Lett. 43(1), 23–26 (2004).
    [CrossRef]
  17. O. Frazao, J. L. Santos, and J. M. Baptista, “Strain and temperature discrimination using concatenated high-birefringence fiber loop mirrors,” IEEE Photon. Technol. Lett. 19(16), 1260–1262 (2007).
    [CrossRef]
  18. A. C. L. Wong, P. A. Childs, and G. D. Peng, “Multiplexed fibre Fizeau interferometer and fibre Bragg grating sensor system for simultaneous measurement of quasi-static strain and temperature using discrete wavelet transform,” Meas. Sci. Technol. 17(2), 384–392 (2006).
    [CrossRef]
  19. P. A. Childs, “An FBG sensing system utilizing both WDM and a novel harmonic division scheme,” J. Lightwave Technol. 23, 348–354 (2005), “Erratum” 23, 931 (2005).
    [CrossRef]

2009

M. L. V. Tse, H. Y. Tam, L. B. Fu, B. K. Thomas, L. Dong, C. Lu, and P. K. A. Wai, “Fusion splicing holey fibers and single-mode fibers: A simple method to reduce loss and increase strength,” IEEE Photon. Technol. Lett. 21(3), 164–166 (2009).
[CrossRef]

G. Kim, T. Cho, K. Hwang, K. Lee, K. S. Lee, Y.-G. Han, and S. B. Lee, “Strain and temperature sensitivities of an elliptical hollow-core photonic bandgap fiber based on Sagnac interferometer,” Opt. Express 17(4), 2481–2486 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-17-4-2481 .
[CrossRef] [PubMed]

2008

2007

X. Y. Dong, H. Y. Tam, and P. Shum, “Temperature-insensitive strain sensor with polarization-maintaining photonic crystal fiber based Sagnac interferometer,” Appl. Phys. Lett. 90(15), 151113–3 (2007).
[CrossRef]

O. Frazao, J. M. Baptista, and J. L. Santos, “Temperature-independent strain sensor based on a Hi-Bi photonic crystal fiber loop mirror,” IEEE Sens. J. 7(10), 1453–1455 (2007).
[CrossRef]

O. Frazao, J. L. Santos, and J. M. Baptista, “Strain and temperature discrimination using concatenated high-birefringence fiber loop mirrors,” IEEE Photon. Technol. Lett. 19(16), 1260–1262 (2007).
[CrossRef]

2006

A. C. L. Wong, P. A. Childs, and G. D. Peng, “Multiplexed fibre Fizeau interferometer and fibre Bragg grating sensor system for simultaneous measurement of quasi-static strain and temperature using discrete wavelet transform,” Meas. Sci. Technol. 17(2), 384–392 (2006).
[CrossRef]

2005

2004

D.-H. Kim and J. U. Kang, “Sagnac loop interferometer based on polarization maintaining photonic crystal fiber with reduced temperature sensitivity,” Opt. Express 12(19), 4490–4495 (2004), http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-19-4490 .
[CrossRef] [PubMed]

L. Liu, Q. Zhao, G. Zhou, H. Zhang, S. Chen, L. Zhao, Y. Yao, P. Guo, and X. Dong, “Study on an optical filter constituted by concatenated Hi-Bi fiber loop mirrors,” Microw. Opt. Technol. Lett. 43(1), 23–26 (2004).
[CrossRef]

C.-L. Zhao, X. Yang, C. Lu, W. Jin, and M. S. Demokan, “Temperature-insensitive interferometer using a highly birefringent photonic crystal fiber loop mirror,” IEEE Photon. Technol. Lett. 16(11), 2535–2537 (2004).
[CrossRef]

2003

P. St. J. Russell, “Photonic crystal fibers,” Science 299(5605), 358–362 (2003).
[CrossRef] [PubMed]

2001

T. M. Monro, W. Belardi, K. Furusawa, J. C. Baggett, N. G. R. Broderick, and D. J. Richardson, “Sensing with microstructured optical fibres,” Meas. Sci. Technol. 12(7), 854–858 (2001).
[CrossRef]

B. J. Eggleton, C. Kerbage, P. S. Westbrook, R. S. Windeler, and A. Hale, “Microstructured optical fiber devices,” Opt. Express 9(13), 698–713 (2001), http://www.opticsinfobase.org/oe/abstract.cfm?URI=OPEX-9-13-698 .
[CrossRef] [PubMed]

1997

1996

1988

D. B. Mortimore, “Fiber Loop Reflectors,” J. Lightwave Technol. 6(7), 1217–1224 (1988).
[CrossRef]

Araujo, F. M.

O. Frazão, J. L. Santos, F. M. Araujo, and L. A. Ferreira, “Optical sensing with photonic crystal fibers,” Laser Photon. Rev. 2(6), 449–459 (2008).
[CrossRef]

Atkin, D. M.

Baggett, J. C.

T. M. Monro, W. Belardi, K. Furusawa, J. C. Baggett, N. G. R. Broderick, and D. J. Richardson, “Sensing with microstructured optical fibres,” Meas. Sci. Technol. 12(7), 854–858 (2001).
[CrossRef]

Baptista, J. M.

O. Frazão, J. M. Baptista, J. L. Santos, and P. Roy, “Curvature sensor using a highly birefringent photonic crystal fiber with two asymmetric hole regions in a Sagnac interferometer,” Appl. Opt. 47(13), 2520–2523 (2008).
[CrossRef] [PubMed]

O. Frazao, J. M. Baptista, and J. L. Santos, “Temperature-independent strain sensor based on a Hi-Bi photonic crystal fiber loop mirror,” IEEE Sens. J. 7(10), 1453–1455 (2007).
[CrossRef]

O. Frazao, J. L. Santos, and J. M. Baptista, “Strain and temperature discrimination using concatenated high-birefringence fiber loop mirrors,” IEEE Photon. Technol. Lett. 19(16), 1260–1262 (2007).
[CrossRef]

Belardi, W.

T. M. Monro, W. Belardi, K. Furusawa, J. C. Baggett, N. G. R. Broderick, and D. J. Richardson, “Sensing with microstructured optical fibres,” Meas. Sci. Technol. 12(7), 854–858 (2001).
[CrossRef]

Birks, T. A.

Broderick, N. G. R.

T. M. Monro, W. Belardi, K. Furusawa, J. C. Baggett, N. G. R. Broderick, and D. J. Richardson, “Sensing with microstructured optical fibres,” Meas. Sci. Technol. 12(7), 854–858 (2001).
[CrossRef]

Chen, S.

L. Liu, Q. Zhao, G. Zhou, H. Zhang, S. Chen, L. Zhao, Y. Yao, P. Guo, and X. Dong, “Study on an optical filter constituted by concatenated Hi-Bi fiber loop mirrors,” Microw. Opt. Technol. Lett. 43(1), 23–26 (2004).
[CrossRef]

Childs, P. A.

A. C. L. Wong, P. A. Childs, and G. D. Peng, “Multiplexed fibre Fizeau interferometer and fibre Bragg grating sensor system for simultaneous measurement of quasi-static strain and temperature using discrete wavelet transform,” Meas. Sci. Technol. 17(2), 384–392 (2006).
[CrossRef]

P. A. Childs, “An FBG sensing system utilizing both WDM and a novel harmonic division scheme,” J. Lightwave Technol. 23, 348–354 (2005), “Erratum” 23, 931 (2005).
[CrossRef]

Cho, T.

Demokan, M. S.

C.-L. Zhao, X. Yang, C. Lu, W. Jin, and M. S. Demokan, “Temperature-insensitive interferometer using a highly birefringent photonic crystal fiber loop mirror,” IEEE Photon. Technol. Lett. 16(11), 2535–2537 (2004).
[CrossRef]

Dong, L.

M. L. V. Tse, H. Y. Tam, L. B. Fu, B. K. Thomas, L. Dong, C. Lu, and P. K. A. Wai, “Fusion splicing holey fibers and single-mode fibers: A simple method to reduce loss and increase strength,” IEEE Photon. Technol. Lett. 21(3), 164–166 (2009).
[CrossRef]

Dong, X.

H. Y. Fu, H. Y. Tam, L. Y. Shao, X. Dong, P. K. Wai, C. Lu, and S. K. Khijwania, “Pressure sensor realized with polarization-maintaining photonic crystal fiber-based Sagnac interferometer,” Appl. Opt. 47(15), 2835–2839 (2008).
[CrossRef] [PubMed]

L. Liu, Q. Zhao, G. Zhou, H. Zhang, S. Chen, L. Zhao, Y. Yao, P. Guo, and X. Dong, “Study on an optical filter constituted by concatenated Hi-Bi fiber loop mirrors,” Microw. Opt. Technol. Lett. 43(1), 23–26 (2004).
[CrossRef]

Dong, X. Y.

X. Y. Dong, H. Y. Tam, and P. Shum, “Temperature-insensitive strain sensor with polarization-maintaining photonic crystal fiber based Sagnac interferometer,” Appl. Phys. Lett. 90(15), 151113–3 (2007).
[CrossRef]

Eggleton, B. J.

Ferreira, L. A.

O. Frazão, J. L. Santos, F. M. Araujo, and L. A. Ferreira, “Optical sensing with photonic crystal fibers,” Laser Photon. Rev. 2(6), 449–459 (2008).
[CrossRef]

Frazao, O.

O. Frazao, J. M. Baptista, and J. L. Santos, “Temperature-independent strain sensor based on a Hi-Bi photonic crystal fiber loop mirror,” IEEE Sens. J. 7(10), 1453–1455 (2007).
[CrossRef]

O. Frazao, J. L. Santos, and J. M. Baptista, “Strain and temperature discrimination using concatenated high-birefringence fiber loop mirrors,” IEEE Photon. Technol. Lett. 19(16), 1260–1262 (2007).
[CrossRef]

Frazão, O.

Fu, H. Y.

Fu, L. B.

M. L. V. Tse, H. Y. Tam, L. B. Fu, B. K. Thomas, L. Dong, C. Lu, and P. K. A. Wai, “Fusion splicing holey fibers and single-mode fibers: A simple method to reduce loss and increase strength,” IEEE Photon. Technol. Lett. 21(3), 164–166 (2009).
[CrossRef]

Furusawa, K.

T. M. Monro, W. Belardi, K. Furusawa, J. C. Baggett, N. G. R. Broderick, and D. J. Richardson, “Sensing with microstructured optical fibres,” Meas. Sci. Technol. 12(7), 854–858 (2001).
[CrossRef]

Guo, P.

L. Liu, Q. Zhao, G. Zhou, H. Zhang, S. Chen, L. Zhao, Y. Yao, P. Guo, and X. Dong, “Study on an optical filter constituted by concatenated Hi-Bi fiber loop mirrors,” Microw. Opt. Technol. Lett. 43(1), 23–26 (2004).
[CrossRef]

Hale, A.

Han, Y.-G.

Hwang, K.

Jin, W.

C.-L. Zhao, X. Yang, C. Lu, W. Jin, and M. S. Demokan, “Temperature-insensitive interferometer using a highly birefringent photonic crystal fiber loop mirror,” IEEE Photon. Technol. Lett. 16(11), 2535–2537 (2004).
[CrossRef]

Kang, J. U.

Kerbage, C.

Khijwania, S. K.

Kim, D.-H.

Kim, G.

Knight, J. C.

Lee, K.

Lee, K. S.

Lee, S. B.

Liu, L.

L. Liu, Q. Zhao, G. Zhou, H. Zhang, S. Chen, L. Zhao, Y. Yao, P. Guo, and X. Dong, “Study on an optical filter constituted by concatenated Hi-Bi fiber loop mirrors,” Microw. Opt. Technol. Lett. 43(1), 23–26 (2004).
[CrossRef]

Lu, C.

M. L. V. Tse, H. Y. Tam, L. B. Fu, B. K. Thomas, L. Dong, C. Lu, and P. K. A. Wai, “Fusion splicing holey fibers and single-mode fibers: A simple method to reduce loss and increase strength,” IEEE Photon. Technol. Lett. 21(3), 164–166 (2009).
[CrossRef]

H. Y. Fu, H. Y. Tam, L. Y. Shao, X. Dong, P. K. Wai, C. Lu, and S. K. Khijwania, “Pressure sensor realized with polarization-maintaining photonic crystal fiber-based Sagnac interferometer,” Appl. Opt. 47(15), 2835–2839 (2008).
[CrossRef] [PubMed]

C.-L. Zhao, X. Yang, C. Lu, W. Jin, and M. S. Demokan, “Temperature-insensitive interferometer using a highly birefringent photonic crystal fiber loop mirror,” IEEE Photon. Technol. Lett. 16(11), 2535–2537 (2004).
[CrossRef]

Monro, T. M.

T. M. Monro, W. Belardi, K. Furusawa, J. C. Baggett, N. G. R. Broderick, and D. J. Richardson, “Sensing with microstructured optical fibres,” Meas. Sci. Technol. 12(7), 854–858 (2001).
[CrossRef]

Mortimore, D. B.

D. B. Mortimore, “Fiber Loop Reflectors,” J. Lightwave Technol. 6(7), 1217–1224 (1988).
[CrossRef]

Peng, G. D.

A. C. L. Wong, P. A. Childs, and G. D. Peng, “Multiplexed fibre Fizeau interferometer and fibre Bragg grating sensor system for simultaneous measurement of quasi-static strain and temperature using discrete wavelet transform,” Meas. Sci. Technol. 17(2), 384–392 (2006).
[CrossRef]

Richardson, D. J.

T. M. Monro, W. Belardi, K. Furusawa, J. C. Baggett, N. G. R. Broderick, and D. J. Richardson, “Sensing with microstructured optical fibres,” Meas. Sci. Technol. 12(7), 854–858 (2001).
[CrossRef]

Roy, P.

Russell, P. S.

Russell, P. St. J.

Santos, J. L.

O. Frazão, J. M. Baptista, J. L. Santos, and P. Roy, “Curvature sensor using a highly birefringent photonic crystal fiber with two asymmetric hole regions in a Sagnac interferometer,” Appl. Opt. 47(13), 2520–2523 (2008).
[CrossRef] [PubMed]

O. Frazão, J. L. Santos, F. M. Araujo, and L. A. Ferreira, “Optical sensing with photonic crystal fibers,” Laser Photon. Rev. 2(6), 449–459 (2008).
[CrossRef]

O. Frazao, J. M. Baptista, and J. L. Santos, “Temperature-independent strain sensor based on a Hi-Bi photonic crystal fiber loop mirror,” IEEE Sens. J. 7(10), 1453–1455 (2007).
[CrossRef]

O. Frazao, J. L. Santos, and J. M. Baptista, “Strain and temperature discrimination using concatenated high-birefringence fiber loop mirrors,” IEEE Photon. Technol. Lett. 19(16), 1260–1262 (2007).
[CrossRef]

Shao, L. Y.

Shum, P.

X. Y. Dong, H. Y. Tam, and P. Shum, “Temperature-insensitive strain sensor with polarization-maintaining photonic crystal fiber based Sagnac interferometer,” Appl. Phys. Lett. 90(15), 151113–3 (2007).
[CrossRef]

Tam, H. Y.

M. L. V. Tse, H. Y. Tam, L. B. Fu, B. K. Thomas, L. Dong, C. Lu, and P. K. A. Wai, “Fusion splicing holey fibers and single-mode fibers: A simple method to reduce loss and increase strength,” IEEE Photon. Technol. Lett. 21(3), 164–166 (2009).
[CrossRef]

H. Y. Fu, H. Y. Tam, L. Y. Shao, X. Dong, P. K. Wai, C. Lu, and S. K. Khijwania, “Pressure sensor realized with polarization-maintaining photonic crystal fiber-based Sagnac interferometer,” Appl. Opt. 47(15), 2835–2839 (2008).
[CrossRef] [PubMed]

X. Y. Dong, H. Y. Tam, and P. Shum, “Temperature-insensitive strain sensor with polarization-maintaining photonic crystal fiber based Sagnac interferometer,” Appl. Phys. Lett. 90(15), 151113–3 (2007).
[CrossRef]

Thomas, B. K.

M. L. V. Tse, H. Y. Tam, L. B. Fu, B. K. Thomas, L. Dong, C. Lu, and P. K. A. Wai, “Fusion splicing holey fibers and single-mode fibers: A simple method to reduce loss and increase strength,” IEEE Photon. Technol. Lett. 21(3), 164–166 (2009).
[CrossRef]

Tse, M. L. V.

M. L. V. Tse, H. Y. Tam, L. B. Fu, B. K. Thomas, L. Dong, C. Lu, and P. K. A. Wai, “Fusion splicing holey fibers and single-mode fibers: A simple method to reduce loss and increase strength,” IEEE Photon. Technol. Lett. 21(3), 164–166 (2009).
[CrossRef]

Wai, P. K.

Wai, P. K. A.

M. L. V. Tse, H. Y. Tam, L. B. Fu, B. K. Thomas, L. Dong, C. Lu, and P. K. A. Wai, “Fusion splicing holey fibers and single-mode fibers: A simple method to reduce loss and increase strength,” IEEE Photon. Technol. Lett. 21(3), 164–166 (2009).
[CrossRef]

Westbrook, P. S.

Windeler, R. S.

Wong, A. C. L.

A. C. L. Wong, P. A. Childs, and G. D. Peng, “Multiplexed fibre Fizeau interferometer and fibre Bragg grating sensor system for simultaneous measurement of quasi-static strain and temperature using discrete wavelet transform,” Meas. Sci. Technol. 17(2), 384–392 (2006).
[CrossRef]

Yang, X.

C.-L. Zhao, X. Yang, C. Lu, W. Jin, and M. S. Demokan, “Temperature-insensitive interferometer using a highly birefringent photonic crystal fiber loop mirror,” IEEE Photon. Technol. Lett. 16(11), 2535–2537 (2004).
[CrossRef]

Yao, Y.

L. Liu, Q. Zhao, G. Zhou, H. Zhang, S. Chen, L. Zhao, Y. Yao, P. Guo, and X. Dong, “Study on an optical filter constituted by concatenated Hi-Bi fiber loop mirrors,” Microw. Opt. Technol. Lett. 43(1), 23–26 (2004).
[CrossRef]

Zhang, H.

L. Liu, Q. Zhao, G. Zhou, H. Zhang, S. Chen, L. Zhao, Y. Yao, P. Guo, and X. Dong, “Study on an optical filter constituted by concatenated Hi-Bi fiber loop mirrors,” Microw. Opt. Technol. Lett. 43(1), 23–26 (2004).
[CrossRef]

Zhao, C.-L.

C.-L. Zhao, X. Yang, C. Lu, W. Jin, and M. S. Demokan, “Temperature-insensitive interferometer using a highly birefringent photonic crystal fiber loop mirror,” IEEE Photon. Technol. Lett. 16(11), 2535–2537 (2004).
[CrossRef]

Zhao, L.

L. Liu, Q. Zhao, G. Zhou, H. Zhang, S. Chen, L. Zhao, Y. Yao, P. Guo, and X. Dong, “Study on an optical filter constituted by concatenated Hi-Bi fiber loop mirrors,” Microw. Opt. Technol. Lett. 43(1), 23–26 (2004).
[CrossRef]

Zhao, Q.

L. Liu, Q. Zhao, G. Zhou, H. Zhang, S. Chen, L. Zhao, Y. Yao, P. Guo, and X. Dong, “Study on an optical filter constituted by concatenated Hi-Bi fiber loop mirrors,” Microw. Opt. Technol. Lett. 43(1), 23–26 (2004).
[CrossRef]

Zhou, G.

L. Liu, Q. Zhao, G. Zhou, H. Zhang, S. Chen, L. Zhao, Y. Yao, P. Guo, and X. Dong, “Study on an optical filter constituted by concatenated Hi-Bi fiber loop mirrors,” Microw. Opt. Technol. Lett. 43(1), 23–26 (2004).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

X. Y. Dong, H. Y. Tam, and P. Shum, “Temperature-insensitive strain sensor with polarization-maintaining photonic crystal fiber based Sagnac interferometer,” Appl. Phys. Lett. 90(15), 151113–3 (2007).
[CrossRef]

IEEE Photon. Technol. Lett.

M. L. V. Tse, H. Y. Tam, L. B. Fu, B. K. Thomas, L. Dong, C. Lu, and P. K. A. Wai, “Fusion splicing holey fibers and single-mode fibers: A simple method to reduce loss and increase strength,” IEEE Photon. Technol. Lett. 21(3), 164–166 (2009).
[CrossRef]

C.-L. Zhao, X. Yang, C. Lu, W. Jin, and M. S. Demokan, “Temperature-insensitive interferometer using a highly birefringent photonic crystal fiber loop mirror,” IEEE Photon. Technol. Lett. 16(11), 2535–2537 (2004).
[CrossRef]

O. Frazao, J. L. Santos, and J. M. Baptista, “Strain and temperature discrimination using concatenated high-birefringence fiber loop mirrors,” IEEE Photon. Technol. Lett. 19(16), 1260–1262 (2007).
[CrossRef]

IEEE Sens. J.

O. Frazao, J. M. Baptista, and J. L. Santos, “Temperature-independent strain sensor based on a Hi-Bi photonic crystal fiber loop mirror,” IEEE Sens. J. 7(10), 1453–1455 (2007).
[CrossRef]

J. Lightwave Technol.

Laser Photon. Rev.

O. Frazão, J. L. Santos, F. M. Araujo, and L. A. Ferreira, “Optical sensing with photonic crystal fibers,” Laser Photon. Rev. 2(6), 449–459 (2008).
[CrossRef]

Meas. Sci. Technol.

T. M. Monro, W. Belardi, K. Furusawa, J. C. Baggett, N. G. R. Broderick, and D. J. Richardson, “Sensing with microstructured optical fibres,” Meas. Sci. Technol. 12(7), 854–858 (2001).
[CrossRef]

A. C. L. Wong, P. A. Childs, and G. D. Peng, “Multiplexed fibre Fizeau interferometer and fibre Bragg grating sensor system for simultaneous measurement of quasi-static strain and temperature using discrete wavelet transform,” Meas. Sci. Technol. 17(2), 384–392 (2006).
[CrossRef]

Microw. Opt. Technol. Lett.

L. Liu, Q. Zhao, G. Zhou, H. Zhang, S. Chen, L. Zhao, Y. Yao, P. Guo, and X. Dong, “Study on an optical filter constituted by concatenated Hi-Bi fiber loop mirrors,” Microw. Opt. Technol. Lett. 43(1), 23–26 (2004).
[CrossRef]

Opt. Express

Opt. Lett.

Science

P. St. J. Russell, “Photonic crystal fibers,” Science 299(5605), 358–362 (2003).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (17)

Fig. 1
Fig. 1

Schematic of a PM-PCF based Sagnac interferometric sensor (PM-PCF indicated with dot line, the inset shows the SEM-image).

Fig. 2
Fig. 2

Experimental setup of FWDM multiplexing technique for two PM-PCF based Sagnac interferometric sensors.

Fig. 3
Fig. 3

Output Spectrum of the CWDM multiplexing technique for PM-PCF based Sagnac interferometric sensor.

Fig. 4
Fig. 4

Experimental setup of in series multiplexing technique for PM-PCF based Sagnac interferometric sensor.

Fig. 5
Fig. 5

Output transmission spectra of the two multiplexed Sagnac interferometric sensors in series with one sensor under applied pressure variations.

Fig. 6
Fig. 6

Sensing signals of the two Sagnac interferometric sensors extracted using the wavelet method.

Fig. 7
Fig. 7

(a) The wavelength shift as a function of pressure variation for the two Sagnac interferometric sensors, (b) sensing signal crosstalk of the two Sagnac interferometric sensors.

Fig. 8
Fig. 8

Magnitude spectra and phase spectra of the sensing signal under Fourier transformation.

Fig. 9
Fig. 9

Phase shift of the sensing signal from the two Sagnac interferometric sensors.

Fig. 10
Fig. 10

(a) The wavelength shifts as a function of pressure variation for the two Sagnac interferometric sensors, (b) sensing signal crosstalk of the two Sagnac interferometric sensors.

Fig. 11
Fig. 11

Experimental setup of in parallel multiplexing technique for PM-PCF based Sagnac interferometric sensors.

Fig. 12
Fig. 12

Output transmission spectra of the two multiplexed Sagnac interferometric sensors in parallel with one sensor under applied pressure variations.

Fig. 13
Fig. 13

Sensing signals of the two Sagnac interferometric sensors extracted using the wavelet method.

Fig. 14
Fig. 14

(a) The wavelength shifts as a function of pressure variation for the two Sagnac interferometric sensors, (b) sensing signal crosstalk of the two Sagnac interferometric sensors.

Fig. 15
Fig. 15

Magnitude spectrum and phase spectrum of the sensing signal under Fourier transformation.

Fig. 16
Fig. 16

Phase shift of the sensing signal from the two Sagnac interferometric sensors.

Fig. 17
Fig. 17

(a) The wavelength shifts as a function of pressure variation for the two Sagnac interferometric sensors, (b) sensing signal crosstalk of the two Sagnac interferometric sensors.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

T=12[1cos(δ)].
δ=2πBLλ.
PoutputPinput=10Log10k=1K(12Lk[1cos(2πSkλ+θk)])[dB],
PoutputPinput=10Log10k=1K(12RkLk[1+cos(2πSk+θk)])[dB],

Metrics