Abstract

A scheme to generate return-to-zero on-off keying (RZ-OOK) high speed all-optical pseudo random bit sequence (PRBS) based on quantum-dot semiconductor optical amplifiers (QD SOA) has been studied. By analyzing the performance of the core functional unit of this system, which is composed of QD SOA-based logic XOR and AND gates, as well as considering the saturation effect of the QD device and noise level of the system, we demonstrated the system’s capability of producing stable high speed optical PRBS signals. Results show that the performance of the system depends on a number of parameters, including relaxation lifetime from QD excited state to ground state, injected current density, bit repetition rate, signal pulse width and single pulse energy. For devices with relaxation time ~1.0 ps, injected current density >1.8 kA/cm2, single pulse energy <1.0 pJ with pulse width around 1.0 ps, the system is capable of PRBS generation at speeds of ~250 Gb/s.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. E. Stubkjaer, “Semiconductor optical amplifier-based all-optical gates for high-speed optical processing,” IEEE J. Sel. Top. Quantum Electron. 6(6), 1428–1435 (2000).
    [CrossRef]
  2. S. W. Golomb, Shift Register Sequences (Holden-Day, San Francisco, 1967).
  3. K. E. Zoiros, T. Houbavlis, and M. Kalyvas, “Ultra-high speed all-optical shift registers and their applications in OTDM networks,” Opt. Quantum Electron. 36(11), 1005–1053 (2004).
    [CrossRef]
  4. J. M. Senior, Optical Fibre Communications – Principles and Practice (Prentice-Hall, London, 1985).
  5. T. Houbavlis, K. Zoiros, A. Hatziefremidis, H. Avramopoulous, L. Occhi, G. Guekos, S. Hansmann, H. Burkhard, and R. Dall’Ara, “10 Gbit/s all-optical Boolean XOR with SOA fiber Sagnac gate,” Electron. Lett. 35(19), 1650–1652 (1999).
    [CrossRef]
  6. C. Bintjas, M. Kalyvas, G. Theophilopoulos, T. Stathopoulos, H. Avramopoulous, L. Occhi, L. Schares, G. Guekos, S. Hansmann, and R. Dall’Ara, “20 Gb/s all-optical XOR with UNI gate,” IEEE Photon. Technol. Lett. 12(7), 834–836 (2000).
    [CrossRef]
  7. T. Fjelde, D. Wolfson, A. Kloch, B. Dagens, A. Coquelin, I. Guillemot, F. Gaborit, F. Poingt, M. Renaud, A. Coquelin, I. Guillemot, F. Gaborit, F. Poingt, and M. Renaud, “Demonstration of 20 Gbit/s all-optical logic XOR in integrated SOA-based interferometric wavelength converter,” Electron. Lett. 36(22), 1863–1864 (2000).
    [CrossRef]
  8. H. Chen, G. Zhu, J. Jaques, J. Leuthold, A. B. Piccirilli, and N. K. Dutta, “All-optical logic XOR using a differential scheme and Mach-Zehnder interferometer,” Electron. Lett. 38(21), 1271–1273 (2002).
    [CrossRef]
  9. H. Sun, Q. Wang, H. Dong, and N. Dutta, “XOR performance of a quantum dot semiconductor optical amplifier based Mach-Zehnder interferometer,” Opt. Express 13(6), 1892–1899 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-6-1892 .
    [CrossRef] [PubMed]
  10. M. Kalyvas, K. Yiannopoulous, T. Houbavlis, and H. Avramopoulous, “Design algorithm of all optical linear feedback shift registers,” Int. J. Electron. Commun. 57(5), 328–332 (2003).
    [CrossRef]
  11. Y. B. Ezra, B. I. Lembrikov, and M. Haridim, “Ultrafast all-optical processor based on quantum-dot semiconductor optical amplifiers,” IEEE J. Quantum Electron. 45(1), 34–41 (2009).
    [CrossRef]
  12. H. Han, M. Zhang, P. Ye, and F. Zhang, “Parameter design and performance analysis of a ultrafast all-optical XOR gate based on quantum dot semiconductor optical amplifiers in nonlinear Mach-Zehnder interferometer,” Opt. Commun. 281(20), 5140–5145 (2008).
    [CrossRef]
  13. M. Sugawara, H. Ebe, N. Hatori, M. Ishida, Y. Arakawa, T. Akiyama, K. Otsubo, and Y. Nakata, “Theory of optical signal amplification and processing by quantum-dot semiconductor optical amplifiers,” Phys. Rev. B 69(23), 235332 (2004).
    [CrossRef]
  14. N. K. Dutta and Q. Wang, Semiconductor Optical Amplifiers (World Scientific, Singapore, 2006).
  15. K. Mukai, Y. Nakata, H. Shoji, M. Sugawara, K. Ohtsubo, N. Yokoyama, and H. Ishikawa, “Lasing with low threshold current and high output power from columnar-shaped InAs-GaAs quantum dots,” Electron. Lett. 34(16), 1588 (1998).
    [CrossRef]
  16. T. Akiyama, O. Wada, H. Kuwatsuka, T. Simoyama, Y. Nakata, K. Mukai, M. Sugawara, and H. Ishikawa, “Nonlinear processes responsible for nondegenerate four-wave mixing in quantum-dot optical amplifiers,” Appl. Phys. Lett. 77(12), 1753 (2000).
    [CrossRef]
  17. T. Akiyama and M. Sugawara, “Quantum-dot semiconductor optical amplifiers,” in Proceedings of the IEEE95, (Institute of Electrical and Electronics Engineers, New York, 2007), pp. 1757–1766.
  18. P. Ridha, L. Li, M. Rossetti, G. Patriarche, and A. Fiore, “Polarization dependence of electroluminescence from closely-stacked and columnar quantum dots,” Opt. Quantum Electron. 40(2-4), 239–248 (2008).
    [CrossRef]
  19. T. Berg, S. Bischoff, I. Magnusdottir, and J. Mork, “Ultrafast gain recovery and modulation limitations in self-assembled quantum-dot devices,” IEEE Photon. Technol. Lett. 13(6), 541–543 (2001).
    [CrossRef]
  20. J. Kim and S. L. Chuang, “Small-signal cross-gain modulation of quantum-dot semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 18(23), 2538–2540 (2006).
    [CrossRef]
  21. A. Meccozi and J. Mork, “Saturation effects in nondegenerate four-wave mixing between short optical pulses in semiconductor laser amplifiers,” IEEE J. Sel. Top. Quantum Electron. 3(5), 1190–1207 (1997).
    [CrossRef]
  22. P. Borri, W. Langbein, J. M. Hvam, F. Heirichsdorff, M. Mao, and D. Bimberg, “Spectral hole-burning and carrier-heating dynamics in quantum-dot amplifiers: comparison with bulk amplifiers,” Phys. Status Solidi, B Basic Res. 224(2), 419–423 (2001).
    [CrossRef]
  23. T. Akiyama, H. Kuwatsuka, T. Simoyama, Y. Nakata, K. Mukai, M. Sugawara, O. Wada, and H. Ishikawa, “Appllication of spectral-hole burning in the inhomogeneous broadened gain of self-assembled quantum dots to a multiwavelength-channel nonlinear optical device,” IEEE Photon. Technol. Lett. 12(10), 1301–1303 (2000).
    [CrossRef]
  24. J. M. Vazquez, H. H. Nilsson, J. Zhang, and I. Galbraith, “Linewidth enhancement factor of quantum-dot optical amplifiers,” IEEE J. Quantum Electron. 42(10), 986–993 (2006).
    [CrossRef]
  25. O. Qasaimeh, “Linewidth enhancement factor of quantum-dot lasers,” Opt. Quantum Electron. 37(5), 495–507 (2005).
    [CrossRef]
  26. A. Uskov, E. O’Reilly, M. Laemmlin, N. Ledentsov, and D. Bimberg, “On gain saturation in quantum dot semiconductor optical amplifiers,” Opt. Commun. 248(1-3), 211–219 (2005).
    [CrossRef]
  27. D. Cong, A. Martinez, K. Merghem, A. Ramdane, J. Provost, M. Fischer, I. Krestnikov, and A. Kovsh, “Temperature insensitive linewidth enhancement factor of p-type doped InAs/GaAs quantum-dot lasers emitting at 1.3 μm,” Appl. Phys. Lett. 92(19), 191109 (2008).
    [CrossRef]
  28. T. Newell, D. Bossert, A. Stintz, B. Fuchs, K. Malloy, and L. Lester, “Gain and linewidth enhancement factor in InAs quantum-dot laser diodes,” IEEE Photon. Technol. Lett. 11(12), 1527–1529 (1999).
    [CrossRef]
  29. G. P. Agrawal, Fiber-Optic Communication Systems, 3rd ed. (Wiley, 2002).

2009

Y. B. Ezra, B. I. Lembrikov, and M. Haridim, “Ultrafast all-optical processor based on quantum-dot semiconductor optical amplifiers,” IEEE J. Quantum Electron. 45(1), 34–41 (2009).
[CrossRef]

2008

H. Han, M. Zhang, P. Ye, and F. Zhang, “Parameter design and performance analysis of a ultrafast all-optical XOR gate based on quantum dot semiconductor optical amplifiers in nonlinear Mach-Zehnder interferometer,” Opt. Commun. 281(20), 5140–5145 (2008).
[CrossRef]

P. Ridha, L. Li, M. Rossetti, G. Patriarche, and A. Fiore, “Polarization dependence of electroluminescence from closely-stacked and columnar quantum dots,” Opt. Quantum Electron. 40(2-4), 239–248 (2008).
[CrossRef]

D. Cong, A. Martinez, K. Merghem, A. Ramdane, J. Provost, M. Fischer, I. Krestnikov, and A. Kovsh, “Temperature insensitive linewidth enhancement factor of p-type doped InAs/GaAs quantum-dot lasers emitting at 1.3 μm,” Appl. Phys. Lett. 92(19), 191109 (2008).
[CrossRef]

2006

J. M. Vazquez, H. H. Nilsson, J. Zhang, and I. Galbraith, “Linewidth enhancement factor of quantum-dot optical amplifiers,” IEEE J. Quantum Electron. 42(10), 986–993 (2006).
[CrossRef]

J. Kim and S. L. Chuang, “Small-signal cross-gain modulation of quantum-dot semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 18(23), 2538–2540 (2006).
[CrossRef]

2005

H. Sun, Q. Wang, H. Dong, and N. Dutta, “XOR performance of a quantum dot semiconductor optical amplifier based Mach-Zehnder interferometer,” Opt. Express 13(6), 1892–1899 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-6-1892 .
[CrossRef] [PubMed]

O. Qasaimeh, “Linewidth enhancement factor of quantum-dot lasers,” Opt. Quantum Electron. 37(5), 495–507 (2005).
[CrossRef]

A. Uskov, E. O’Reilly, M. Laemmlin, N. Ledentsov, and D. Bimberg, “On gain saturation in quantum dot semiconductor optical amplifiers,” Opt. Commun. 248(1-3), 211–219 (2005).
[CrossRef]

2004

K. E. Zoiros, T. Houbavlis, and M. Kalyvas, “Ultra-high speed all-optical shift registers and their applications in OTDM networks,” Opt. Quantum Electron. 36(11), 1005–1053 (2004).
[CrossRef]

M. Sugawara, H. Ebe, N. Hatori, M. Ishida, Y. Arakawa, T. Akiyama, K. Otsubo, and Y. Nakata, “Theory of optical signal amplification and processing by quantum-dot semiconductor optical amplifiers,” Phys. Rev. B 69(23), 235332 (2004).
[CrossRef]

2003

M. Kalyvas, K. Yiannopoulous, T. Houbavlis, and H. Avramopoulous, “Design algorithm of all optical linear feedback shift registers,” Int. J. Electron. Commun. 57(5), 328–332 (2003).
[CrossRef]

2002

H. Chen, G. Zhu, J. Jaques, J. Leuthold, A. B. Piccirilli, and N. K. Dutta, “All-optical logic XOR using a differential scheme and Mach-Zehnder interferometer,” Electron. Lett. 38(21), 1271–1273 (2002).
[CrossRef]

2001

T. Berg, S. Bischoff, I. Magnusdottir, and J. Mork, “Ultrafast gain recovery and modulation limitations in self-assembled quantum-dot devices,” IEEE Photon. Technol. Lett. 13(6), 541–543 (2001).
[CrossRef]

P. Borri, W. Langbein, J. M. Hvam, F. Heirichsdorff, M. Mao, and D. Bimberg, “Spectral hole-burning and carrier-heating dynamics in quantum-dot amplifiers: comparison with bulk amplifiers,” Phys. Status Solidi, B Basic Res. 224(2), 419–423 (2001).
[CrossRef]

2000

T. Akiyama, H. Kuwatsuka, T. Simoyama, Y. Nakata, K. Mukai, M. Sugawara, O. Wada, and H. Ishikawa, “Appllication of spectral-hole burning in the inhomogeneous broadened gain of self-assembled quantum dots to a multiwavelength-channel nonlinear optical device,” IEEE Photon. Technol. Lett. 12(10), 1301–1303 (2000).
[CrossRef]

T. Akiyama, O. Wada, H. Kuwatsuka, T. Simoyama, Y. Nakata, K. Mukai, M. Sugawara, and H. Ishikawa, “Nonlinear processes responsible for nondegenerate four-wave mixing in quantum-dot optical amplifiers,” Appl. Phys. Lett. 77(12), 1753 (2000).
[CrossRef]

K. E. Stubkjaer, “Semiconductor optical amplifier-based all-optical gates for high-speed optical processing,” IEEE J. Sel. Top. Quantum Electron. 6(6), 1428–1435 (2000).
[CrossRef]

C. Bintjas, M. Kalyvas, G. Theophilopoulos, T. Stathopoulos, H. Avramopoulous, L. Occhi, L. Schares, G. Guekos, S. Hansmann, and R. Dall’Ara, “20 Gb/s all-optical XOR with UNI gate,” IEEE Photon. Technol. Lett. 12(7), 834–836 (2000).
[CrossRef]

T. Fjelde, D. Wolfson, A. Kloch, B. Dagens, A. Coquelin, I. Guillemot, F. Gaborit, F. Poingt, M. Renaud, A. Coquelin, I. Guillemot, F. Gaborit, F. Poingt, and M. Renaud, “Demonstration of 20 Gbit/s all-optical logic XOR in integrated SOA-based interferometric wavelength converter,” Electron. Lett. 36(22), 1863–1864 (2000).
[CrossRef]

1999

T. Houbavlis, K. Zoiros, A. Hatziefremidis, H. Avramopoulous, L. Occhi, G. Guekos, S. Hansmann, H. Burkhard, and R. Dall’Ara, “10 Gbit/s all-optical Boolean XOR with SOA fiber Sagnac gate,” Electron. Lett. 35(19), 1650–1652 (1999).
[CrossRef]

T. Newell, D. Bossert, A. Stintz, B. Fuchs, K. Malloy, and L. Lester, “Gain and linewidth enhancement factor in InAs quantum-dot laser diodes,” IEEE Photon. Technol. Lett. 11(12), 1527–1529 (1999).
[CrossRef]

1998

K. Mukai, Y. Nakata, H. Shoji, M. Sugawara, K. Ohtsubo, N. Yokoyama, and H. Ishikawa, “Lasing with low threshold current and high output power from columnar-shaped InAs-GaAs quantum dots,” Electron. Lett. 34(16), 1588 (1998).
[CrossRef]

1997

A. Meccozi and J. Mork, “Saturation effects in nondegenerate four-wave mixing between short optical pulses in semiconductor laser amplifiers,” IEEE J. Sel. Top. Quantum Electron. 3(5), 1190–1207 (1997).
[CrossRef]

Akiyama, T.

M. Sugawara, H. Ebe, N. Hatori, M. Ishida, Y. Arakawa, T. Akiyama, K. Otsubo, and Y. Nakata, “Theory of optical signal amplification and processing by quantum-dot semiconductor optical amplifiers,” Phys. Rev. B 69(23), 235332 (2004).
[CrossRef]

T. Akiyama, O. Wada, H. Kuwatsuka, T. Simoyama, Y. Nakata, K. Mukai, M. Sugawara, and H. Ishikawa, “Nonlinear processes responsible for nondegenerate four-wave mixing in quantum-dot optical amplifiers,” Appl. Phys. Lett. 77(12), 1753 (2000).
[CrossRef]

T. Akiyama, H. Kuwatsuka, T. Simoyama, Y. Nakata, K. Mukai, M. Sugawara, O. Wada, and H. Ishikawa, “Appllication of spectral-hole burning in the inhomogeneous broadened gain of self-assembled quantum dots to a multiwavelength-channel nonlinear optical device,” IEEE Photon. Technol. Lett. 12(10), 1301–1303 (2000).
[CrossRef]

Arakawa, Y.

M. Sugawara, H. Ebe, N. Hatori, M. Ishida, Y. Arakawa, T. Akiyama, K. Otsubo, and Y. Nakata, “Theory of optical signal amplification and processing by quantum-dot semiconductor optical amplifiers,” Phys. Rev. B 69(23), 235332 (2004).
[CrossRef]

Avramopoulous, H.

M. Kalyvas, K. Yiannopoulous, T. Houbavlis, and H. Avramopoulous, “Design algorithm of all optical linear feedback shift registers,” Int. J. Electron. Commun. 57(5), 328–332 (2003).
[CrossRef]

C. Bintjas, M. Kalyvas, G. Theophilopoulos, T. Stathopoulos, H. Avramopoulous, L. Occhi, L. Schares, G. Guekos, S. Hansmann, and R. Dall’Ara, “20 Gb/s all-optical XOR with UNI gate,” IEEE Photon. Technol. Lett. 12(7), 834–836 (2000).
[CrossRef]

T. Houbavlis, K. Zoiros, A. Hatziefremidis, H. Avramopoulous, L. Occhi, G. Guekos, S. Hansmann, H. Burkhard, and R. Dall’Ara, “10 Gbit/s all-optical Boolean XOR with SOA fiber Sagnac gate,” Electron. Lett. 35(19), 1650–1652 (1999).
[CrossRef]

Berg, T.

T. Berg, S. Bischoff, I. Magnusdottir, and J. Mork, “Ultrafast gain recovery and modulation limitations in self-assembled quantum-dot devices,” IEEE Photon. Technol. Lett. 13(6), 541–543 (2001).
[CrossRef]

Bimberg, D.

A. Uskov, E. O’Reilly, M. Laemmlin, N. Ledentsov, and D. Bimberg, “On gain saturation in quantum dot semiconductor optical amplifiers,” Opt. Commun. 248(1-3), 211–219 (2005).
[CrossRef]

P. Borri, W. Langbein, J. M. Hvam, F. Heirichsdorff, M. Mao, and D. Bimberg, “Spectral hole-burning and carrier-heating dynamics in quantum-dot amplifiers: comparison with bulk amplifiers,” Phys. Status Solidi, B Basic Res. 224(2), 419–423 (2001).
[CrossRef]

Bintjas, C.

C. Bintjas, M. Kalyvas, G. Theophilopoulos, T. Stathopoulos, H. Avramopoulous, L. Occhi, L. Schares, G. Guekos, S. Hansmann, and R. Dall’Ara, “20 Gb/s all-optical XOR with UNI gate,” IEEE Photon. Technol. Lett. 12(7), 834–836 (2000).
[CrossRef]

Bischoff, S.

T. Berg, S. Bischoff, I. Magnusdottir, and J. Mork, “Ultrafast gain recovery and modulation limitations in self-assembled quantum-dot devices,” IEEE Photon. Technol. Lett. 13(6), 541–543 (2001).
[CrossRef]

Borri, P.

P. Borri, W. Langbein, J. M. Hvam, F. Heirichsdorff, M. Mao, and D. Bimberg, “Spectral hole-burning and carrier-heating dynamics in quantum-dot amplifiers: comparison with bulk amplifiers,” Phys. Status Solidi, B Basic Res. 224(2), 419–423 (2001).
[CrossRef]

Bossert, D.

T. Newell, D. Bossert, A. Stintz, B. Fuchs, K. Malloy, and L. Lester, “Gain and linewidth enhancement factor in InAs quantum-dot laser diodes,” IEEE Photon. Technol. Lett. 11(12), 1527–1529 (1999).
[CrossRef]

Burkhard, H.

T. Houbavlis, K. Zoiros, A. Hatziefremidis, H. Avramopoulous, L. Occhi, G. Guekos, S. Hansmann, H. Burkhard, and R. Dall’Ara, “10 Gbit/s all-optical Boolean XOR with SOA fiber Sagnac gate,” Electron. Lett. 35(19), 1650–1652 (1999).
[CrossRef]

Chen, H.

H. Chen, G. Zhu, J. Jaques, J. Leuthold, A. B. Piccirilli, and N. K. Dutta, “All-optical logic XOR using a differential scheme and Mach-Zehnder interferometer,” Electron. Lett. 38(21), 1271–1273 (2002).
[CrossRef]

Chuang, S. L.

J. Kim and S. L. Chuang, “Small-signal cross-gain modulation of quantum-dot semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 18(23), 2538–2540 (2006).
[CrossRef]

Cong, D.

D. Cong, A. Martinez, K. Merghem, A. Ramdane, J. Provost, M. Fischer, I. Krestnikov, and A. Kovsh, “Temperature insensitive linewidth enhancement factor of p-type doped InAs/GaAs quantum-dot lasers emitting at 1.3 μm,” Appl. Phys. Lett. 92(19), 191109 (2008).
[CrossRef]

Coquelin, A.

T. Fjelde, D. Wolfson, A. Kloch, B. Dagens, A. Coquelin, I. Guillemot, F. Gaborit, F. Poingt, M. Renaud, A. Coquelin, I. Guillemot, F. Gaborit, F. Poingt, and M. Renaud, “Demonstration of 20 Gbit/s all-optical logic XOR in integrated SOA-based interferometric wavelength converter,” Electron. Lett. 36(22), 1863–1864 (2000).
[CrossRef]

T. Fjelde, D. Wolfson, A. Kloch, B. Dagens, A. Coquelin, I. Guillemot, F. Gaborit, F. Poingt, M. Renaud, A. Coquelin, I. Guillemot, F. Gaborit, F. Poingt, and M. Renaud, “Demonstration of 20 Gbit/s all-optical logic XOR in integrated SOA-based interferometric wavelength converter,” Electron. Lett. 36(22), 1863–1864 (2000).
[CrossRef]

Dagens, B.

T. Fjelde, D. Wolfson, A. Kloch, B. Dagens, A. Coquelin, I. Guillemot, F. Gaborit, F. Poingt, M. Renaud, A. Coquelin, I. Guillemot, F. Gaborit, F. Poingt, and M. Renaud, “Demonstration of 20 Gbit/s all-optical logic XOR in integrated SOA-based interferometric wavelength converter,” Electron. Lett. 36(22), 1863–1864 (2000).
[CrossRef]

Dall’Ara, R.

C. Bintjas, M. Kalyvas, G. Theophilopoulos, T. Stathopoulos, H. Avramopoulous, L. Occhi, L. Schares, G. Guekos, S. Hansmann, and R. Dall’Ara, “20 Gb/s all-optical XOR with UNI gate,” IEEE Photon. Technol. Lett. 12(7), 834–836 (2000).
[CrossRef]

T. Houbavlis, K. Zoiros, A. Hatziefremidis, H. Avramopoulous, L. Occhi, G. Guekos, S. Hansmann, H. Burkhard, and R. Dall’Ara, “10 Gbit/s all-optical Boolean XOR with SOA fiber Sagnac gate,” Electron. Lett. 35(19), 1650–1652 (1999).
[CrossRef]

Dong, H.

Dutta, N.

Dutta, N. K.

H. Chen, G. Zhu, J. Jaques, J. Leuthold, A. B. Piccirilli, and N. K. Dutta, “All-optical logic XOR using a differential scheme and Mach-Zehnder interferometer,” Electron. Lett. 38(21), 1271–1273 (2002).
[CrossRef]

Ebe, H.

M. Sugawara, H. Ebe, N. Hatori, M. Ishida, Y. Arakawa, T. Akiyama, K. Otsubo, and Y. Nakata, “Theory of optical signal amplification and processing by quantum-dot semiconductor optical amplifiers,” Phys. Rev. B 69(23), 235332 (2004).
[CrossRef]

Ezra, Y. B.

Y. B. Ezra, B. I. Lembrikov, and M. Haridim, “Ultrafast all-optical processor based on quantum-dot semiconductor optical amplifiers,” IEEE J. Quantum Electron. 45(1), 34–41 (2009).
[CrossRef]

Fiore, A.

P. Ridha, L. Li, M. Rossetti, G. Patriarche, and A. Fiore, “Polarization dependence of electroluminescence from closely-stacked and columnar quantum dots,” Opt. Quantum Electron. 40(2-4), 239–248 (2008).
[CrossRef]

Fischer, M.

D. Cong, A. Martinez, K. Merghem, A. Ramdane, J. Provost, M. Fischer, I. Krestnikov, and A. Kovsh, “Temperature insensitive linewidth enhancement factor of p-type doped InAs/GaAs quantum-dot lasers emitting at 1.3 μm,” Appl. Phys. Lett. 92(19), 191109 (2008).
[CrossRef]

Fjelde, T.

T. Fjelde, D. Wolfson, A. Kloch, B. Dagens, A. Coquelin, I. Guillemot, F. Gaborit, F. Poingt, M. Renaud, A. Coquelin, I. Guillemot, F. Gaborit, F. Poingt, and M. Renaud, “Demonstration of 20 Gbit/s all-optical logic XOR in integrated SOA-based interferometric wavelength converter,” Electron. Lett. 36(22), 1863–1864 (2000).
[CrossRef]

Fuchs, B.

T. Newell, D. Bossert, A. Stintz, B. Fuchs, K. Malloy, and L. Lester, “Gain and linewidth enhancement factor in InAs quantum-dot laser diodes,” IEEE Photon. Technol. Lett. 11(12), 1527–1529 (1999).
[CrossRef]

Gaborit, F.

T. Fjelde, D. Wolfson, A. Kloch, B. Dagens, A. Coquelin, I. Guillemot, F. Gaborit, F. Poingt, M. Renaud, A. Coquelin, I. Guillemot, F. Gaborit, F. Poingt, and M. Renaud, “Demonstration of 20 Gbit/s all-optical logic XOR in integrated SOA-based interferometric wavelength converter,” Electron. Lett. 36(22), 1863–1864 (2000).
[CrossRef]

T. Fjelde, D. Wolfson, A. Kloch, B. Dagens, A. Coquelin, I. Guillemot, F. Gaborit, F. Poingt, M. Renaud, A. Coquelin, I. Guillemot, F. Gaborit, F. Poingt, and M. Renaud, “Demonstration of 20 Gbit/s all-optical logic XOR in integrated SOA-based interferometric wavelength converter,” Electron. Lett. 36(22), 1863–1864 (2000).
[CrossRef]

Galbraith, I.

J. M. Vazquez, H. H. Nilsson, J. Zhang, and I. Galbraith, “Linewidth enhancement factor of quantum-dot optical amplifiers,” IEEE J. Quantum Electron. 42(10), 986–993 (2006).
[CrossRef]

Guekos, G.

C. Bintjas, M. Kalyvas, G. Theophilopoulos, T. Stathopoulos, H. Avramopoulous, L. Occhi, L. Schares, G. Guekos, S. Hansmann, and R. Dall’Ara, “20 Gb/s all-optical XOR with UNI gate,” IEEE Photon. Technol. Lett. 12(7), 834–836 (2000).
[CrossRef]

T. Houbavlis, K. Zoiros, A. Hatziefremidis, H. Avramopoulous, L. Occhi, G. Guekos, S. Hansmann, H. Burkhard, and R. Dall’Ara, “10 Gbit/s all-optical Boolean XOR with SOA fiber Sagnac gate,” Electron. Lett. 35(19), 1650–1652 (1999).
[CrossRef]

Guillemot, I.

T. Fjelde, D. Wolfson, A. Kloch, B. Dagens, A. Coquelin, I. Guillemot, F. Gaborit, F. Poingt, M. Renaud, A. Coquelin, I. Guillemot, F. Gaborit, F. Poingt, and M. Renaud, “Demonstration of 20 Gbit/s all-optical logic XOR in integrated SOA-based interferometric wavelength converter,” Electron. Lett. 36(22), 1863–1864 (2000).
[CrossRef]

T. Fjelde, D. Wolfson, A. Kloch, B. Dagens, A. Coquelin, I. Guillemot, F. Gaborit, F. Poingt, M. Renaud, A. Coquelin, I. Guillemot, F. Gaborit, F. Poingt, and M. Renaud, “Demonstration of 20 Gbit/s all-optical logic XOR in integrated SOA-based interferometric wavelength converter,” Electron. Lett. 36(22), 1863–1864 (2000).
[CrossRef]

Han, H.

H. Han, M. Zhang, P. Ye, and F. Zhang, “Parameter design and performance analysis of a ultrafast all-optical XOR gate based on quantum dot semiconductor optical amplifiers in nonlinear Mach-Zehnder interferometer,” Opt. Commun. 281(20), 5140–5145 (2008).
[CrossRef]

Hansmann, S.

C. Bintjas, M. Kalyvas, G. Theophilopoulos, T. Stathopoulos, H. Avramopoulous, L. Occhi, L. Schares, G. Guekos, S. Hansmann, and R. Dall’Ara, “20 Gb/s all-optical XOR with UNI gate,” IEEE Photon. Technol. Lett. 12(7), 834–836 (2000).
[CrossRef]

T. Houbavlis, K. Zoiros, A. Hatziefremidis, H. Avramopoulous, L. Occhi, G. Guekos, S. Hansmann, H. Burkhard, and R. Dall’Ara, “10 Gbit/s all-optical Boolean XOR with SOA fiber Sagnac gate,” Electron. Lett. 35(19), 1650–1652 (1999).
[CrossRef]

Haridim, M.

Y. B. Ezra, B. I. Lembrikov, and M. Haridim, “Ultrafast all-optical processor based on quantum-dot semiconductor optical amplifiers,” IEEE J. Quantum Electron. 45(1), 34–41 (2009).
[CrossRef]

Hatori, N.

M. Sugawara, H. Ebe, N. Hatori, M. Ishida, Y. Arakawa, T. Akiyama, K. Otsubo, and Y. Nakata, “Theory of optical signal amplification and processing by quantum-dot semiconductor optical amplifiers,” Phys. Rev. B 69(23), 235332 (2004).
[CrossRef]

Hatziefremidis, A.

T. Houbavlis, K. Zoiros, A. Hatziefremidis, H. Avramopoulous, L. Occhi, G. Guekos, S. Hansmann, H. Burkhard, and R. Dall’Ara, “10 Gbit/s all-optical Boolean XOR with SOA fiber Sagnac gate,” Electron. Lett. 35(19), 1650–1652 (1999).
[CrossRef]

Heirichsdorff, F.

P. Borri, W. Langbein, J. M. Hvam, F. Heirichsdorff, M. Mao, and D. Bimberg, “Spectral hole-burning and carrier-heating dynamics in quantum-dot amplifiers: comparison with bulk amplifiers,” Phys. Status Solidi, B Basic Res. 224(2), 419–423 (2001).
[CrossRef]

Houbavlis, T.

K. E. Zoiros, T. Houbavlis, and M. Kalyvas, “Ultra-high speed all-optical shift registers and their applications in OTDM networks,” Opt. Quantum Electron. 36(11), 1005–1053 (2004).
[CrossRef]

M. Kalyvas, K. Yiannopoulous, T. Houbavlis, and H. Avramopoulous, “Design algorithm of all optical linear feedback shift registers,” Int. J. Electron. Commun. 57(5), 328–332 (2003).
[CrossRef]

T. Houbavlis, K. Zoiros, A. Hatziefremidis, H. Avramopoulous, L. Occhi, G. Guekos, S. Hansmann, H. Burkhard, and R. Dall’Ara, “10 Gbit/s all-optical Boolean XOR with SOA fiber Sagnac gate,” Electron. Lett. 35(19), 1650–1652 (1999).
[CrossRef]

Hvam, J. M.

P. Borri, W. Langbein, J. M. Hvam, F. Heirichsdorff, M. Mao, and D. Bimberg, “Spectral hole-burning and carrier-heating dynamics in quantum-dot amplifiers: comparison with bulk amplifiers,” Phys. Status Solidi, B Basic Res. 224(2), 419–423 (2001).
[CrossRef]

Ishida, M.

M. Sugawara, H. Ebe, N. Hatori, M. Ishida, Y. Arakawa, T. Akiyama, K. Otsubo, and Y. Nakata, “Theory of optical signal amplification and processing by quantum-dot semiconductor optical amplifiers,” Phys. Rev. B 69(23), 235332 (2004).
[CrossRef]

Ishikawa, H.

T. Akiyama, H. Kuwatsuka, T. Simoyama, Y. Nakata, K. Mukai, M. Sugawara, O. Wada, and H. Ishikawa, “Appllication of spectral-hole burning in the inhomogeneous broadened gain of self-assembled quantum dots to a multiwavelength-channel nonlinear optical device,” IEEE Photon. Technol. Lett. 12(10), 1301–1303 (2000).
[CrossRef]

T. Akiyama, O. Wada, H. Kuwatsuka, T. Simoyama, Y. Nakata, K. Mukai, M. Sugawara, and H. Ishikawa, “Nonlinear processes responsible for nondegenerate four-wave mixing in quantum-dot optical amplifiers,” Appl. Phys. Lett. 77(12), 1753 (2000).
[CrossRef]

K. Mukai, Y. Nakata, H. Shoji, M. Sugawara, K. Ohtsubo, N. Yokoyama, and H. Ishikawa, “Lasing with low threshold current and high output power from columnar-shaped InAs-GaAs quantum dots,” Electron. Lett. 34(16), 1588 (1998).
[CrossRef]

Jaques, J.

H. Chen, G. Zhu, J. Jaques, J. Leuthold, A. B. Piccirilli, and N. K. Dutta, “All-optical logic XOR using a differential scheme and Mach-Zehnder interferometer,” Electron. Lett. 38(21), 1271–1273 (2002).
[CrossRef]

Kalyvas, M.

K. E. Zoiros, T. Houbavlis, and M. Kalyvas, “Ultra-high speed all-optical shift registers and their applications in OTDM networks,” Opt. Quantum Electron. 36(11), 1005–1053 (2004).
[CrossRef]

M. Kalyvas, K. Yiannopoulous, T. Houbavlis, and H. Avramopoulous, “Design algorithm of all optical linear feedback shift registers,” Int. J. Electron. Commun. 57(5), 328–332 (2003).
[CrossRef]

C. Bintjas, M. Kalyvas, G. Theophilopoulos, T. Stathopoulos, H. Avramopoulous, L. Occhi, L. Schares, G. Guekos, S. Hansmann, and R. Dall’Ara, “20 Gb/s all-optical XOR with UNI gate,” IEEE Photon. Technol. Lett. 12(7), 834–836 (2000).
[CrossRef]

Kim, J.

J. Kim and S. L. Chuang, “Small-signal cross-gain modulation of quantum-dot semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 18(23), 2538–2540 (2006).
[CrossRef]

Kloch, A.

T. Fjelde, D. Wolfson, A. Kloch, B. Dagens, A. Coquelin, I. Guillemot, F. Gaborit, F. Poingt, M. Renaud, A. Coquelin, I. Guillemot, F. Gaborit, F. Poingt, and M. Renaud, “Demonstration of 20 Gbit/s all-optical logic XOR in integrated SOA-based interferometric wavelength converter,” Electron. Lett. 36(22), 1863–1864 (2000).
[CrossRef]

Kovsh, A.

D. Cong, A. Martinez, K. Merghem, A. Ramdane, J. Provost, M. Fischer, I. Krestnikov, and A. Kovsh, “Temperature insensitive linewidth enhancement factor of p-type doped InAs/GaAs quantum-dot lasers emitting at 1.3 μm,” Appl. Phys. Lett. 92(19), 191109 (2008).
[CrossRef]

Krestnikov, I.

D. Cong, A. Martinez, K. Merghem, A. Ramdane, J. Provost, M. Fischer, I. Krestnikov, and A. Kovsh, “Temperature insensitive linewidth enhancement factor of p-type doped InAs/GaAs quantum-dot lasers emitting at 1.3 μm,” Appl. Phys. Lett. 92(19), 191109 (2008).
[CrossRef]

Kuwatsuka, H.

T. Akiyama, H. Kuwatsuka, T. Simoyama, Y. Nakata, K. Mukai, M. Sugawara, O. Wada, and H. Ishikawa, “Appllication of spectral-hole burning in the inhomogeneous broadened gain of self-assembled quantum dots to a multiwavelength-channel nonlinear optical device,” IEEE Photon. Technol. Lett. 12(10), 1301–1303 (2000).
[CrossRef]

T. Akiyama, O. Wada, H. Kuwatsuka, T. Simoyama, Y. Nakata, K. Mukai, M. Sugawara, and H. Ishikawa, “Nonlinear processes responsible for nondegenerate four-wave mixing in quantum-dot optical amplifiers,” Appl. Phys. Lett. 77(12), 1753 (2000).
[CrossRef]

Laemmlin, M.

A. Uskov, E. O’Reilly, M. Laemmlin, N. Ledentsov, and D. Bimberg, “On gain saturation in quantum dot semiconductor optical amplifiers,” Opt. Commun. 248(1-3), 211–219 (2005).
[CrossRef]

Langbein, W.

P. Borri, W. Langbein, J. M. Hvam, F. Heirichsdorff, M. Mao, and D. Bimberg, “Spectral hole-burning and carrier-heating dynamics in quantum-dot amplifiers: comparison with bulk amplifiers,” Phys. Status Solidi, B Basic Res. 224(2), 419–423 (2001).
[CrossRef]

Ledentsov, N.

A. Uskov, E. O’Reilly, M. Laemmlin, N. Ledentsov, and D. Bimberg, “On gain saturation in quantum dot semiconductor optical amplifiers,” Opt. Commun. 248(1-3), 211–219 (2005).
[CrossRef]

Lembrikov, B. I.

Y. B. Ezra, B. I. Lembrikov, and M. Haridim, “Ultrafast all-optical processor based on quantum-dot semiconductor optical amplifiers,” IEEE J. Quantum Electron. 45(1), 34–41 (2009).
[CrossRef]

Lester, L.

T. Newell, D. Bossert, A. Stintz, B. Fuchs, K. Malloy, and L. Lester, “Gain and linewidth enhancement factor in InAs quantum-dot laser diodes,” IEEE Photon. Technol. Lett. 11(12), 1527–1529 (1999).
[CrossRef]

Leuthold, J.

H. Chen, G. Zhu, J. Jaques, J. Leuthold, A. B. Piccirilli, and N. K. Dutta, “All-optical logic XOR using a differential scheme and Mach-Zehnder interferometer,” Electron. Lett. 38(21), 1271–1273 (2002).
[CrossRef]

Li, L.

P. Ridha, L. Li, M. Rossetti, G. Patriarche, and A. Fiore, “Polarization dependence of electroluminescence from closely-stacked and columnar quantum dots,” Opt. Quantum Electron. 40(2-4), 239–248 (2008).
[CrossRef]

Magnusdottir, I.

T. Berg, S. Bischoff, I. Magnusdottir, and J. Mork, “Ultrafast gain recovery and modulation limitations in self-assembled quantum-dot devices,” IEEE Photon. Technol. Lett. 13(6), 541–543 (2001).
[CrossRef]

Malloy, K.

T. Newell, D. Bossert, A. Stintz, B. Fuchs, K. Malloy, and L. Lester, “Gain and linewidth enhancement factor in InAs quantum-dot laser diodes,” IEEE Photon. Technol. Lett. 11(12), 1527–1529 (1999).
[CrossRef]

Mao, M.

P. Borri, W. Langbein, J. M. Hvam, F. Heirichsdorff, M. Mao, and D. Bimberg, “Spectral hole-burning and carrier-heating dynamics in quantum-dot amplifiers: comparison with bulk amplifiers,” Phys. Status Solidi, B Basic Res. 224(2), 419–423 (2001).
[CrossRef]

Martinez, A.

D. Cong, A. Martinez, K. Merghem, A. Ramdane, J. Provost, M. Fischer, I. Krestnikov, and A. Kovsh, “Temperature insensitive linewidth enhancement factor of p-type doped InAs/GaAs quantum-dot lasers emitting at 1.3 μm,” Appl. Phys. Lett. 92(19), 191109 (2008).
[CrossRef]

Meccozi, A.

A. Meccozi and J. Mork, “Saturation effects in nondegenerate four-wave mixing between short optical pulses in semiconductor laser amplifiers,” IEEE J. Sel. Top. Quantum Electron. 3(5), 1190–1207 (1997).
[CrossRef]

Merghem, K.

D. Cong, A. Martinez, K. Merghem, A. Ramdane, J. Provost, M. Fischer, I. Krestnikov, and A. Kovsh, “Temperature insensitive linewidth enhancement factor of p-type doped InAs/GaAs quantum-dot lasers emitting at 1.3 μm,” Appl. Phys. Lett. 92(19), 191109 (2008).
[CrossRef]

Mork, J.

T. Berg, S. Bischoff, I. Magnusdottir, and J. Mork, “Ultrafast gain recovery and modulation limitations in self-assembled quantum-dot devices,” IEEE Photon. Technol. Lett. 13(6), 541–543 (2001).
[CrossRef]

A. Meccozi and J. Mork, “Saturation effects in nondegenerate four-wave mixing between short optical pulses in semiconductor laser amplifiers,” IEEE J. Sel. Top. Quantum Electron. 3(5), 1190–1207 (1997).
[CrossRef]

Mukai, K.

T. Akiyama, H. Kuwatsuka, T. Simoyama, Y. Nakata, K. Mukai, M. Sugawara, O. Wada, and H. Ishikawa, “Appllication of spectral-hole burning in the inhomogeneous broadened gain of self-assembled quantum dots to a multiwavelength-channel nonlinear optical device,” IEEE Photon. Technol. Lett. 12(10), 1301–1303 (2000).
[CrossRef]

T. Akiyama, O. Wada, H. Kuwatsuka, T. Simoyama, Y. Nakata, K. Mukai, M. Sugawara, and H. Ishikawa, “Nonlinear processes responsible for nondegenerate four-wave mixing in quantum-dot optical amplifiers,” Appl. Phys. Lett. 77(12), 1753 (2000).
[CrossRef]

K. Mukai, Y. Nakata, H. Shoji, M. Sugawara, K. Ohtsubo, N. Yokoyama, and H. Ishikawa, “Lasing with low threshold current and high output power from columnar-shaped InAs-GaAs quantum dots,” Electron. Lett. 34(16), 1588 (1998).
[CrossRef]

Nakata, Y.

M. Sugawara, H. Ebe, N. Hatori, M. Ishida, Y. Arakawa, T. Akiyama, K. Otsubo, and Y. Nakata, “Theory of optical signal amplification and processing by quantum-dot semiconductor optical amplifiers,” Phys. Rev. B 69(23), 235332 (2004).
[CrossRef]

T. Akiyama, O. Wada, H. Kuwatsuka, T. Simoyama, Y. Nakata, K. Mukai, M. Sugawara, and H. Ishikawa, “Nonlinear processes responsible for nondegenerate four-wave mixing in quantum-dot optical amplifiers,” Appl. Phys. Lett. 77(12), 1753 (2000).
[CrossRef]

T. Akiyama, H. Kuwatsuka, T. Simoyama, Y. Nakata, K. Mukai, M. Sugawara, O. Wada, and H. Ishikawa, “Appllication of spectral-hole burning in the inhomogeneous broadened gain of self-assembled quantum dots to a multiwavelength-channel nonlinear optical device,” IEEE Photon. Technol. Lett. 12(10), 1301–1303 (2000).
[CrossRef]

K. Mukai, Y. Nakata, H. Shoji, M. Sugawara, K. Ohtsubo, N. Yokoyama, and H. Ishikawa, “Lasing with low threshold current and high output power from columnar-shaped InAs-GaAs quantum dots,” Electron. Lett. 34(16), 1588 (1998).
[CrossRef]

Newell, T.

T. Newell, D. Bossert, A. Stintz, B. Fuchs, K. Malloy, and L. Lester, “Gain and linewidth enhancement factor in InAs quantum-dot laser diodes,” IEEE Photon. Technol. Lett. 11(12), 1527–1529 (1999).
[CrossRef]

Nilsson, H. H.

J. M. Vazquez, H. H. Nilsson, J. Zhang, and I. Galbraith, “Linewidth enhancement factor of quantum-dot optical amplifiers,” IEEE J. Quantum Electron. 42(10), 986–993 (2006).
[CrossRef]

O’Reilly, E.

A. Uskov, E. O’Reilly, M. Laemmlin, N. Ledentsov, and D. Bimberg, “On gain saturation in quantum dot semiconductor optical amplifiers,” Opt. Commun. 248(1-3), 211–219 (2005).
[CrossRef]

Occhi, L.

C. Bintjas, M. Kalyvas, G. Theophilopoulos, T. Stathopoulos, H. Avramopoulous, L. Occhi, L. Schares, G. Guekos, S. Hansmann, and R. Dall’Ara, “20 Gb/s all-optical XOR with UNI gate,” IEEE Photon. Technol. Lett. 12(7), 834–836 (2000).
[CrossRef]

T. Houbavlis, K. Zoiros, A. Hatziefremidis, H. Avramopoulous, L. Occhi, G. Guekos, S. Hansmann, H. Burkhard, and R. Dall’Ara, “10 Gbit/s all-optical Boolean XOR with SOA fiber Sagnac gate,” Electron. Lett. 35(19), 1650–1652 (1999).
[CrossRef]

Ohtsubo, K.

K. Mukai, Y. Nakata, H. Shoji, M. Sugawara, K. Ohtsubo, N. Yokoyama, and H. Ishikawa, “Lasing with low threshold current and high output power from columnar-shaped InAs-GaAs quantum dots,” Electron. Lett. 34(16), 1588 (1998).
[CrossRef]

Otsubo, K.

M. Sugawara, H. Ebe, N. Hatori, M. Ishida, Y. Arakawa, T. Akiyama, K. Otsubo, and Y. Nakata, “Theory of optical signal amplification and processing by quantum-dot semiconductor optical amplifiers,” Phys. Rev. B 69(23), 235332 (2004).
[CrossRef]

Patriarche, G.

P. Ridha, L. Li, M. Rossetti, G. Patriarche, and A. Fiore, “Polarization dependence of electroluminescence from closely-stacked and columnar quantum dots,” Opt. Quantum Electron. 40(2-4), 239–248 (2008).
[CrossRef]

Piccirilli, A. B.

H. Chen, G. Zhu, J. Jaques, J. Leuthold, A. B. Piccirilli, and N. K. Dutta, “All-optical logic XOR using a differential scheme and Mach-Zehnder interferometer,” Electron. Lett. 38(21), 1271–1273 (2002).
[CrossRef]

Poingt, F.

T. Fjelde, D. Wolfson, A. Kloch, B. Dagens, A. Coquelin, I. Guillemot, F. Gaborit, F. Poingt, M. Renaud, A. Coquelin, I. Guillemot, F. Gaborit, F. Poingt, and M. Renaud, “Demonstration of 20 Gbit/s all-optical logic XOR in integrated SOA-based interferometric wavelength converter,” Electron. Lett. 36(22), 1863–1864 (2000).
[CrossRef]

T. Fjelde, D. Wolfson, A. Kloch, B. Dagens, A. Coquelin, I. Guillemot, F. Gaborit, F. Poingt, M. Renaud, A. Coquelin, I. Guillemot, F. Gaborit, F. Poingt, and M. Renaud, “Demonstration of 20 Gbit/s all-optical logic XOR in integrated SOA-based interferometric wavelength converter,” Electron. Lett. 36(22), 1863–1864 (2000).
[CrossRef]

Provost, J.

D. Cong, A. Martinez, K. Merghem, A. Ramdane, J. Provost, M. Fischer, I. Krestnikov, and A. Kovsh, “Temperature insensitive linewidth enhancement factor of p-type doped InAs/GaAs quantum-dot lasers emitting at 1.3 μm,” Appl. Phys. Lett. 92(19), 191109 (2008).
[CrossRef]

Qasaimeh, O.

O. Qasaimeh, “Linewidth enhancement factor of quantum-dot lasers,” Opt. Quantum Electron. 37(5), 495–507 (2005).
[CrossRef]

Ramdane, A.

D. Cong, A. Martinez, K. Merghem, A. Ramdane, J. Provost, M. Fischer, I. Krestnikov, and A. Kovsh, “Temperature insensitive linewidth enhancement factor of p-type doped InAs/GaAs quantum-dot lasers emitting at 1.3 μm,” Appl. Phys. Lett. 92(19), 191109 (2008).
[CrossRef]

Renaud, M.

T. Fjelde, D. Wolfson, A. Kloch, B. Dagens, A. Coquelin, I. Guillemot, F. Gaborit, F. Poingt, M. Renaud, A. Coquelin, I. Guillemot, F. Gaborit, F. Poingt, and M. Renaud, “Demonstration of 20 Gbit/s all-optical logic XOR in integrated SOA-based interferometric wavelength converter,” Electron. Lett. 36(22), 1863–1864 (2000).
[CrossRef]

T. Fjelde, D. Wolfson, A. Kloch, B. Dagens, A. Coquelin, I. Guillemot, F. Gaborit, F. Poingt, M. Renaud, A. Coquelin, I. Guillemot, F. Gaborit, F. Poingt, and M. Renaud, “Demonstration of 20 Gbit/s all-optical logic XOR in integrated SOA-based interferometric wavelength converter,” Electron. Lett. 36(22), 1863–1864 (2000).
[CrossRef]

Ridha, P.

P. Ridha, L. Li, M. Rossetti, G. Patriarche, and A. Fiore, “Polarization dependence of electroluminescence from closely-stacked and columnar quantum dots,” Opt. Quantum Electron. 40(2-4), 239–248 (2008).
[CrossRef]

Rossetti, M.

P. Ridha, L. Li, M. Rossetti, G. Patriarche, and A. Fiore, “Polarization dependence of electroluminescence from closely-stacked and columnar quantum dots,” Opt. Quantum Electron. 40(2-4), 239–248 (2008).
[CrossRef]

Schares, L.

C. Bintjas, M. Kalyvas, G. Theophilopoulos, T. Stathopoulos, H. Avramopoulous, L. Occhi, L. Schares, G. Guekos, S. Hansmann, and R. Dall’Ara, “20 Gb/s all-optical XOR with UNI gate,” IEEE Photon. Technol. Lett. 12(7), 834–836 (2000).
[CrossRef]

Shoji, H.

K. Mukai, Y. Nakata, H. Shoji, M. Sugawara, K. Ohtsubo, N. Yokoyama, and H. Ishikawa, “Lasing with low threshold current and high output power from columnar-shaped InAs-GaAs quantum dots,” Electron. Lett. 34(16), 1588 (1998).
[CrossRef]

Simoyama, T.

T. Akiyama, O. Wada, H. Kuwatsuka, T. Simoyama, Y. Nakata, K. Mukai, M. Sugawara, and H. Ishikawa, “Nonlinear processes responsible for nondegenerate four-wave mixing in quantum-dot optical amplifiers,” Appl. Phys. Lett. 77(12), 1753 (2000).
[CrossRef]

T. Akiyama, H. Kuwatsuka, T. Simoyama, Y. Nakata, K. Mukai, M. Sugawara, O. Wada, and H. Ishikawa, “Appllication of spectral-hole burning in the inhomogeneous broadened gain of self-assembled quantum dots to a multiwavelength-channel nonlinear optical device,” IEEE Photon. Technol. Lett. 12(10), 1301–1303 (2000).
[CrossRef]

Stathopoulos, T.

C. Bintjas, M. Kalyvas, G. Theophilopoulos, T. Stathopoulos, H. Avramopoulous, L. Occhi, L. Schares, G. Guekos, S. Hansmann, and R. Dall’Ara, “20 Gb/s all-optical XOR with UNI gate,” IEEE Photon. Technol. Lett. 12(7), 834–836 (2000).
[CrossRef]

Stintz, A.

T. Newell, D. Bossert, A. Stintz, B. Fuchs, K. Malloy, and L. Lester, “Gain and linewidth enhancement factor in InAs quantum-dot laser diodes,” IEEE Photon. Technol. Lett. 11(12), 1527–1529 (1999).
[CrossRef]

Stubkjaer, K. E.

K. E. Stubkjaer, “Semiconductor optical amplifier-based all-optical gates for high-speed optical processing,” IEEE J. Sel. Top. Quantum Electron. 6(6), 1428–1435 (2000).
[CrossRef]

Sugawara, M.

M. Sugawara, H. Ebe, N. Hatori, M. Ishida, Y. Arakawa, T. Akiyama, K. Otsubo, and Y. Nakata, “Theory of optical signal amplification and processing by quantum-dot semiconductor optical amplifiers,” Phys. Rev. B 69(23), 235332 (2004).
[CrossRef]

T. Akiyama, H. Kuwatsuka, T. Simoyama, Y. Nakata, K. Mukai, M. Sugawara, O. Wada, and H. Ishikawa, “Appllication of spectral-hole burning in the inhomogeneous broadened gain of self-assembled quantum dots to a multiwavelength-channel nonlinear optical device,” IEEE Photon. Technol. Lett. 12(10), 1301–1303 (2000).
[CrossRef]

T. Akiyama, O. Wada, H. Kuwatsuka, T. Simoyama, Y. Nakata, K. Mukai, M. Sugawara, and H. Ishikawa, “Nonlinear processes responsible for nondegenerate four-wave mixing in quantum-dot optical amplifiers,” Appl. Phys. Lett. 77(12), 1753 (2000).
[CrossRef]

K. Mukai, Y. Nakata, H. Shoji, M. Sugawara, K. Ohtsubo, N. Yokoyama, and H. Ishikawa, “Lasing with low threshold current and high output power from columnar-shaped InAs-GaAs quantum dots,” Electron. Lett. 34(16), 1588 (1998).
[CrossRef]

Sun, H.

Theophilopoulos, G.

C. Bintjas, M. Kalyvas, G. Theophilopoulos, T. Stathopoulos, H. Avramopoulous, L. Occhi, L. Schares, G. Guekos, S. Hansmann, and R. Dall’Ara, “20 Gb/s all-optical XOR with UNI gate,” IEEE Photon. Technol. Lett. 12(7), 834–836 (2000).
[CrossRef]

Uskov, A.

A. Uskov, E. O’Reilly, M. Laemmlin, N. Ledentsov, and D. Bimberg, “On gain saturation in quantum dot semiconductor optical amplifiers,” Opt. Commun. 248(1-3), 211–219 (2005).
[CrossRef]

Vazquez, J. M.

J. M. Vazquez, H. H. Nilsson, J. Zhang, and I. Galbraith, “Linewidth enhancement factor of quantum-dot optical amplifiers,” IEEE J. Quantum Electron. 42(10), 986–993 (2006).
[CrossRef]

Wada, O.

T. Akiyama, H. Kuwatsuka, T. Simoyama, Y. Nakata, K. Mukai, M. Sugawara, O. Wada, and H. Ishikawa, “Appllication of spectral-hole burning in the inhomogeneous broadened gain of self-assembled quantum dots to a multiwavelength-channel nonlinear optical device,” IEEE Photon. Technol. Lett. 12(10), 1301–1303 (2000).
[CrossRef]

T. Akiyama, O. Wada, H. Kuwatsuka, T. Simoyama, Y. Nakata, K. Mukai, M. Sugawara, and H. Ishikawa, “Nonlinear processes responsible for nondegenerate four-wave mixing in quantum-dot optical amplifiers,” Appl. Phys. Lett. 77(12), 1753 (2000).
[CrossRef]

Wang, Q.

Wolfson, D.

T. Fjelde, D. Wolfson, A. Kloch, B. Dagens, A. Coquelin, I. Guillemot, F. Gaborit, F. Poingt, M. Renaud, A. Coquelin, I. Guillemot, F. Gaborit, F. Poingt, and M. Renaud, “Demonstration of 20 Gbit/s all-optical logic XOR in integrated SOA-based interferometric wavelength converter,” Electron. Lett. 36(22), 1863–1864 (2000).
[CrossRef]

Ye, P.

H. Han, M. Zhang, P. Ye, and F. Zhang, “Parameter design and performance analysis of a ultrafast all-optical XOR gate based on quantum dot semiconductor optical amplifiers in nonlinear Mach-Zehnder interferometer,” Opt. Commun. 281(20), 5140–5145 (2008).
[CrossRef]

Yiannopoulous, K.

M. Kalyvas, K. Yiannopoulous, T. Houbavlis, and H. Avramopoulous, “Design algorithm of all optical linear feedback shift registers,” Int. J. Electron. Commun. 57(5), 328–332 (2003).
[CrossRef]

Yokoyama, N.

K. Mukai, Y. Nakata, H. Shoji, M. Sugawara, K. Ohtsubo, N. Yokoyama, and H. Ishikawa, “Lasing with low threshold current and high output power from columnar-shaped InAs-GaAs quantum dots,” Electron. Lett. 34(16), 1588 (1998).
[CrossRef]

Zhang, F.

H. Han, M. Zhang, P. Ye, and F. Zhang, “Parameter design and performance analysis of a ultrafast all-optical XOR gate based on quantum dot semiconductor optical amplifiers in nonlinear Mach-Zehnder interferometer,” Opt. Commun. 281(20), 5140–5145 (2008).
[CrossRef]

Zhang, J.

J. M. Vazquez, H. H. Nilsson, J. Zhang, and I. Galbraith, “Linewidth enhancement factor of quantum-dot optical amplifiers,” IEEE J. Quantum Electron. 42(10), 986–993 (2006).
[CrossRef]

Zhang, M.

H. Han, M. Zhang, P. Ye, and F. Zhang, “Parameter design and performance analysis of a ultrafast all-optical XOR gate based on quantum dot semiconductor optical amplifiers in nonlinear Mach-Zehnder interferometer,” Opt. Commun. 281(20), 5140–5145 (2008).
[CrossRef]

Zhu, G.

H. Chen, G. Zhu, J. Jaques, J. Leuthold, A. B. Piccirilli, and N. K. Dutta, “All-optical logic XOR using a differential scheme and Mach-Zehnder interferometer,” Electron. Lett. 38(21), 1271–1273 (2002).
[CrossRef]

Zoiros, K.

T. Houbavlis, K. Zoiros, A. Hatziefremidis, H. Avramopoulous, L. Occhi, G. Guekos, S. Hansmann, H. Burkhard, and R. Dall’Ara, “10 Gbit/s all-optical Boolean XOR with SOA fiber Sagnac gate,” Electron. Lett. 35(19), 1650–1652 (1999).
[CrossRef]

Zoiros, K. E.

K. E. Zoiros, T. Houbavlis, and M. Kalyvas, “Ultra-high speed all-optical shift registers and their applications in OTDM networks,” Opt. Quantum Electron. 36(11), 1005–1053 (2004).
[CrossRef]

Appl. Phys. Lett.

T. Akiyama, O. Wada, H. Kuwatsuka, T. Simoyama, Y. Nakata, K. Mukai, M. Sugawara, and H. Ishikawa, “Nonlinear processes responsible for nondegenerate four-wave mixing in quantum-dot optical amplifiers,” Appl. Phys. Lett. 77(12), 1753 (2000).
[CrossRef]

D. Cong, A. Martinez, K. Merghem, A. Ramdane, J. Provost, M. Fischer, I. Krestnikov, and A. Kovsh, “Temperature insensitive linewidth enhancement factor of p-type doped InAs/GaAs quantum-dot lasers emitting at 1.3 μm,” Appl. Phys. Lett. 92(19), 191109 (2008).
[CrossRef]

Electron. Lett.

K. Mukai, Y. Nakata, H. Shoji, M. Sugawara, K. Ohtsubo, N. Yokoyama, and H. Ishikawa, “Lasing with low threshold current and high output power from columnar-shaped InAs-GaAs quantum dots,” Electron. Lett. 34(16), 1588 (1998).
[CrossRef]

T. Houbavlis, K. Zoiros, A. Hatziefremidis, H. Avramopoulous, L. Occhi, G. Guekos, S. Hansmann, H. Burkhard, and R. Dall’Ara, “10 Gbit/s all-optical Boolean XOR with SOA fiber Sagnac gate,” Electron. Lett. 35(19), 1650–1652 (1999).
[CrossRef]

T. Fjelde, D. Wolfson, A. Kloch, B. Dagens, A. Coquelin, I. Guillemot, F. Gaborit, F. Poingt, M. Renaud, A. Coquelin, I. Guillemot, F. Gaborit, F. Poingt, and M. Renaud, “Demonstration of 20 Gbit/s all-optical logic XOR in integrated SOA-based interferometric wavelength converter,” Electron. Lett. 36(22), 1863–1864 (2000).
[CrossRef]

H. Chen, G. Zhu, J. Jaques, J. Leuthold, A. B. Piccirilli, and N. K. Dutta, “All-optical logic XOR using a differential scheme and Mach-Zehnder interferometer,” Electron. Lett. 38(21), 1271–1273 (2002).
[CrossRef]

IEEE J. Quantum Electron.

Y. B. Ezra, B. I. Lembrikov, and M. Haridim, “Ultrafast all-optical processor based on quantum-dot semiconductor optical amplifiers,” IEEE J. Quantum Electron. 45(1), 34–41 (2009).
[CrossRef]

J. M. Vazquez, H. H. Nilsson, J. Zhang, and I. Galbraith, “Linewidth enhancement factor of quantum-dot optical amplifiers,” IEEE J. Quantum Electron. 42(10), 986–993 (2006).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

A. Meccozi and J. Mork, “Saturation effects in nondegenerate four-wave mixing between short optical pulses in semiconductor laser amplifiers,” IEEE J. Sel. Top. Quantum Electron. 3(5), 1190–1207 (1997).
[CrossRef]

K. E. Stubkjaer, “Semiconductor optical amplifier-based all-optical gates for high-speed optical processing,” IEEE J. Sel. Top. Quantum Electron. 6(6), 1428–1435 (2000).
[CrossRef]

IEEE Photon. Technol. Lett.

C. Bintjas, M. Kalyvas, G. Theophilopoulos, T. Stathopoulos, H. Avramopoulous, L. Occhi, L. Schares, G. Guekos, S. Hansmann, and R. Dall’Ara, “20 Gb/s all-optical XOR with UNI gate,” IEEE Photon. Technol. Lett. 12(7), 834–836 (2000).
[CrossRef]

T. Berg, S. Bischoff, I. Magnusdottir, and J. Mork, “Ultrafast gain recovery and modulation limitations in self-assembled quantum-dot devices,” IEEE Photon. Technol. Lett. 13(6), 541–543 (2001).
[CrossRef]

J. Kim and S. L. Chuang, “Small-signal cross-gain modulation of quantum-dot semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 18(23), 2538–2540 (2006).
[CrossRef]

T. Akiyama, H. Kuwatsuka, T. Simoyama, Y. Nakata, K. Mukai, M. Sugawara, O. Wada, and H. Ishikawa, “Appllication of spectral-hole burning in the inhomogeneous broadened gain of self-assembled quantum dots to a multiwavelength-channel nonlinear optical device,” IEEE Photon. Technol. Lett. 12(10), 1301–1303 (2000).
[CrossRef]

T. Newell, D. Bossert, A. Stintz, B. Fuchs, K. Malloy, and L. Lester, “Gain and linewidth enhancement factor in InAs quantum-dot laser diodes,” IEEE Photon. Technol. Lett. 11(12), 1527–1529 (1999).
[CrossRef]

Int. J. Electron. Commun.

M. Kalyvas, K. Yiannopoulous, T. Houbavlis, and H. Avramopoulous, “Design algorithm of all optical linear feedback shift registers,” Int. J. Electron. Commun. 57(5), 328–332 (2003).
[CrossRef]

Opt. Commun.

H. Han, M. Zhang, P. Ye, and F. Zhang, “Parameter design and performance analysis of a ultrafast all-optical XOR gate based on quantum dot semiconductor optical amplifiers in nonlinear Mach-Zehnder interferometer,” Opt. Commun. 281(20), 5140–5145 (2008).
[CrossRef]

A. Uskov, E. O’Reilly, M. Laemmlin, N. Ledentsov, and D. Bimberg, “On gain saturation in quantum dot semiconductor optical amplifiers,” Opt. Commun. 248(1-3), 211–219 (2005).
[CrossRef]

Opt. Express

Opt. Quantum Electron.

K. E. Zoiros, T. Houbavlis, and M. Kalyvas, “Ultra-high speed all-optical shift registers and their applications in OTDM networks,” Opt. Quantum Electron. 36(11), 1005–1053 (2004).
[CrossRef]

P. Ridha, L. Li, M. Rossetti, G. Patriarche, and A. Fiore, “Polarization dependence of electroluminescence from closely-stacked and columnar quantum dots,” Opt. Quantum Electron. 40(2-4), 239–248 (2008).
[CrossRef]

O. Qasaimeh, “Linewidth enhancement factor of quantum-dot lasers,” Opt. Quantum Electron. 37(5), 495–507 (2005).
[CrossRef]

Phys. Rev. B

M. Sugawara, H. Ebe, N. Hatori, M. Ishida, Y. Arakawa, T. Akiyama, K. Otsubo, and Y. Nakata, “Theory of optical signal amplification and processing by quantum-dot semiconductor optical amplifiers,” Phys. Rev. B 69(23), 235332 (2004).
[CrossRef]

Phys. Status Solidi, B Basic Res.

P. Borri, W. Langbein, J. M. Hvam, F. Heirichsdorff, M. Mao, and D. Bimberg, “Spectral hole-burning and carrier-heating dynamics in quantum-dot amplifiers: comparison with bulk amplifiers,” Phys. Status Solidi, B Basic Res. 224(2), 419–423 (2001).
[CrossRef]

Other

G. P. Agrawal, Fiber-Optic Communication Systems, 3rd ed. (Wiley, 2002).

N. K. Dutta and Q. Wang, Semiconductor Optical Amplifiers (World Scientific, Singapore, 2006).

T. Akiyama and M. Sugawara, “Quantum-dot semiconductor optical amplifiers,” in Proceedings of the IEEE95, (Institute of Electrical and Electronics Engineers, New York, 2007), pp. 1757–1766.

J. M. Senior, Optical Fibre Communications – Principles and Practice (Prentice-Hall, London, 1985).

S. W. Golomb, Shift Register Sequences (Holden-Day, San Francisco, 1967).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Design of PRBS generator. (a): Block diagram of a LFSR (b): functional unit, including two QD-SOA MZIs operating as XOR and AND gate.

Fig. 2
Fig. 2

The transition diagram of InAs/GaAs QD-SOA.

Fig. 3
Fig. 3

(a) Simulation result of PRBS sequences generated using 7-bit LFSR, operating at 250 Gb/s; (b) The eye-diagram of this result. FWHM pulse width is 1.0 ps, injected current density is 1.8 kA/cm2

Fig. 4
Fig. 4

(a) Calculated Q factor values of the output at 250 Gb/s. Q values for different trigger pulse widths as the injected current density changed are shown, single pulse energy is fixed at 0.8 pJ, τe-g is set at 1.0 ps. (b) Calculated Q factors of PRBS operation as τe-g varies between 200 fs and 5.0 ps, injected current density is fixed at 1.8 kA/cm2, single pulse energy is 0.8 pJ. (c) Calculated Q values as single pulse energy of the initial input data vary between 0.1 pJ and 1.6 pJ, injected current density is 1.8 kA/cm2 and τe-g is taken as 1.0 ps.

Tables (1)

Tables Icon

Table 1 Values of parameters used in simulation

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

dwdt=IeVNwmwτwrwτwe(1h)+NesmNwmhτew(1w)
dhdt=hτesr+NwmNesmwτwe(1h)hτew(1w)+NgsmNesmfτge(1h)hτeg(1f)
dfdt=fτgsrfτge(1h)+NesmNgsmhτeg(1f)ΓdAda(2f1)1NgsmS(t)ω
gl=Γda(NgNt)
g(t)=gl+ΔgCH+ΔgSHB
ΔgCH=εCHgS(t)
ΔgSHB=εSHBgS(t)
g(t)=Γda(NNt)1+(εCH+εSHB)S(t)
ϕ(t)=12(αGl(t)+αCHΔGCH(t))
Pout(t)=Pclk(t)4[G1(t)+G2(t)+2G1(t)G2(t))cos(ϕ1(t)ϕ2(t)+ϕ0)]
SNR(l)=FSNR(0)

Metrics