Abstract

The field properties of Fresnel zone plates with wavelength-scale focal distances were numerically investigated using the finite-difference time-domain method. The fields in the focal planes are analyzed using the angular spectrum representation, and the components of the propagating and evanescent waves are reconstructed. It was found that, in the focal plane of silver zone plates, there were more evanescent waves and the propagating waves occurred at higher spatial frequencies relative to glass zone plates. The propagating and evanescent wave components vary with the material and the number of zones in the zone plate structures. Our findings suggest that more evanescent waves and higher spatial frequency components of propagating waves can shape the field and obtain a smaller focus.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Abbe, "Beiträge zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung," Archiv für Mikroskopische Anatomie 9(1), 413-468 (1873).
    [CrossRef] [PubMed]
  2. J. B. Pendry, "Negative Refraction Makes a Perfect Lens," Phys. Rev. Lett. 85(18), 3966-3969 (2000).
    [CrossRef]
  3. D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, "Metamaterials and Negative Refractive Index," Science 305(5685), 788-792 (2004).
    [CrossRef]
  4. R. Hillenbrand, T. Taubner, and F. Keilmann, "Phonon-enhanced light-matter interaction at the nanometre scale," Nature 418(6894), 159-162 (2002).
    [CrossRef]
  5. W. Srituravanich, L. Pan, Y. Wang, C. Sun, D. B. Bogy, and X. Zhang, "Flying plasmonic lens in the near field for high-speed nanolithography," Nature Nanotechnology 3, 733-737 (2008).
    [CrossRef] [PubMed]
  6. N. Fang, H. Lee, C. Sun, and X. Zhang, "Sub-Diffraction-Limited Optical Imaging with a Silver Superlens," Science 308(5721), 534-537 (2005).
    [CrossRef]
  7. Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, "Far-Field Optical Hyperlens Magnifying Sub-Diffraction-Limited Objects," Science 315(5819), 1686 (2007).
    [CrossRef]
  8. G. Lerosey, J. de Rosny, A. Tourin, and M. Fink, "Focusing Beyond the Diffraction Limit with Far-Field Time Reversal," Science 315(5815), 1120-1122 (2007).
    [CrossRef]
  9. J. B. Pendry, "Time Reversal and Negative Refraction," Science 322(5898), 71-73 (2008).
    [CrossRef]
  10. J. H. Rice, "Beyond the diffraction limit: far-field fluorescence imaging with ultrahigh resolution," Mol. BioSyst. 3, 781-793 (2007).
    [CrossRef] [PubMed]
  11. R. Merlin, "Radiationless electromagnetic interference: evanescent-field interference lenses and perfect focusing," Science 317(5840), 927-929 (2007).
    [CrossRef]
  12. F. M. Huang and N. I. Zheludev, "Super-Resolution without Evanescent Waves," Nano Lett. 9(3), 1249-1254 (2009).
    [CrossRef]
  13. A. Grbic, L. Jiang, and R. Merlin, "Near-Field Plates: Subdiffraction Focusing with Patterned Surfaces," Science 320(5875), 511-513 (2008).
    [CrossRef]
  14. A. Grbic and R. Merlin, "Near-Field Focusing Plates and Their Design," IEEE Trans. Antennas Propag. 56(10), 3159-3165 (2008).
    [CrossRef]
  15. L. E. Helseth, "The almost perfect lens and focusing of evanescent waves," Opt. Commun. 281(8), 1981-1985 (2008).
    [CrossRef]
  16. L. E. Helseth, "Radiationless electromagnetic interference shaping of evanescent cylindrical vector waves," Phys. Rev. A 78(1), 013819 (2008).
  17. Y. Fu, W. Zhou, L. E. N. Lim, C. L. Du, and X. G. Luo, "Plasmonic microzone plate: Superfocusing at visible regime," Appl. Phys. Lett. 91(6), 061124 (2007).
  18. Y. Fu,W. Zhou, and L. E. N. Lim, "Near-field behavior of zone-plate-like plasmonic nanostructures," J. Opt. Soc. Am. A 25, 238-249 (2008).
    [CrossRef]
  19. Y. Fu, W. Zhou, and L. E. N. Lim, "Propagation properties of plasmonic micro-zone plates with and without fractals," Appl. Phys. B 90(3-4), 421-425 (2008).
    [CrossRef]
  20. R. G. Mote, S. F. Yu, B. K. Ng, W. Zhou, and S. P. Lau, "Near-field focusing properties of zone plates in visible regime - New insights," Opt. Express 16(13), 9554-9564 (2008).
    [CrossRef]
  21. F. L. Pedrotti, S. J. and L. S. Pedrotti, Introduction to Optics, 2nd ed. (Prentice-Hall International, 1993).
  22. P. B. Johnson and R. W. Christy, "Optical constants of the noble metals," Phys. Rev. B 6(12), 4370-4379 (1972).
    [CrossRef]
  23. A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd ed. (Artech House, 2005).

2009 (1)

F. M. Huang and N. I. Zheludev, "Super-Resolution without Evanescent Waves," Nano Lett. 9(3), 1249-1254 (2009).
[CrossRef]

2008 (9)

A. Grbic, L. Jiang, and R. Merlin, "Near-Field Plates: Subdiffraction Focusing with Patterned Surfaces," Science 320(5875), 511-513 (2008).
[CrossRef]

A. Grbic and R. Merlin, "Near-Field Focusing Plates and Their Design," IEEE Trans. Antennas Propag. 56(10), 3159-3165 (2008).
[CrossRef]

L. E. Helseth, "The almost perfect lens and focusing of evanescent waves," Opt. Commun. 281(8), 1981-1985 (2008).
[CrossRef]

L. E. Helseth, "Radiationless electromagnetic interference shaping of evanescent cylindrical vector waves," Phys. Rev. A 78(1), 013819 (2008).

Y. Fu,W. Zhou, and L. E. N. Lim, "Near-field behavior of zone-plate-like plasmonic nanostructures," J. Opt. Soc. Am. A 25, 238-249 (2008).
[CrossRef]

Y. Fu, W. Zhou, and L. E. N. Lim, "Propagation properties of plasmonic micro-zone plates with and without fractals," Appl. Phys. B 90(3-4), 421-425 (2008).
[CrossRef]

R. G. Mote, S. F. Yu, B. K. Ng, W. Zhou, and S. P. Lau, "Near-field focusing properties of zone plates in visible regime - New insights," Opt. Express 16(13), 9554-9564 (2008).
[CrossRef]

W. Srituravanich, L. Pan, Y. Wang, C. Sun, D. B. Bogy, and X. Zhang, "Flying plasmonic lens in the near field for high-speed nanolithography," Nature Nanotechnology 3, 733-737 (2008).
[CrossRef] [PubMed]

J. B. Pendry, "Time Reversal and Negative Refraction," Science 322(5898), 71-73 (2008).
[CrossRef]

2007 (5)

J. H. Rice, "Beyond the diffraction limit: far-field fluorescence imaging with ultrahigh resolution," Mol. BioSyst. 3, 781-793 (2007).
[CrossRef] [PubMed]

R. Merlin, "Radiationless electromagnetic interference: evanescent-field interference lenses and perfect focusing," Science 317(5840), 927-929 (2007).
[CrossRef]

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, "Far-Field Optical Hyperlens Magnifying Sub-Diffraction-Limited Objects," Science 315(5819), 1686 (2007).
[CrossRef]

G. Lerosey, J. de Rosny, A. Tourin, and M. Fink, "Focusing Beyond the Diffraction Limit with Far-Field Time Reversal," Science 315(5815), 1120-1122 (2007).
[CrossRef]

Y. Fu, W. Zhou, L. E. N. Lim, C. L. Du, and X. G. Luo, "Plasmonic microzone plate: Superfocusing at visible regime," Appl. Phys. Lett. 91(6), 061124 (2007).

2005 (1)

N. Fang, H. Lee, C. Sun, and X. Zhang, "Sub-Diffraction-Limited Optical Imaging with a Silver Superlens," Science 308(5721), 534-537 (2005).
[CrossRef]

2004 (1)

D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, "Metamaterials and Negative Refractive Index," Science 305(5685), 788-792 (2004).
[CrossRef]

2002 (1)

R. Hillenbrand, T. Taubner, and F. Keilmann, "Phonon-enhanced light-matter interaction at the nanometre scale," Nature 418(6894), 159-162 (2002).
[CrossRef]

2000 (1)

J. B. Pendry, "Negative Refraction Makes a Perfect Lens," Phys. Rev. Lett. 85(18), 3966-3969 (2000).
[CrossRef]

1972 (1)

P. B. Johnson and R. W. Christy, "Optical constants of the noble metals," Phys. Rev. B 6(12), 4370-4379 (1972).
[CrossRef]

1873 (1)

E. Abbe, "Beiträge zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung," Archiv für Mikroskopische Anatomie 9(1), 413-468 (1873).
[CrossRef] [PubMed]

Abbe, E.

E. Abbe, "Beiträge zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung," Archiv für Mikroskopische Anatomie 9(1), 413-468 (1873).
[CrossRef] [PubMed]

Bogy, D. B.

W. Srituravanich, L. Pan, Y. Wang, C. Sun, D. B. Bogy, and X. Zhang, "Flying plasmonic lens in the near field for high-speed nanolithography," Nature Nanotechnology 3, 733-737 (2008).
[CrossRef] [PubMed]

Christy, R. W.

P. B. Johnson and R. W. Christy, "Optical constants of the noble metals," Phys. Rev. B 6(12), 4370-4379 (1972).
[CrossRef]

de Rosny, J.

G. Lerosey, J. de Rosny, A. Tourin, and M. Fink, "Focusing Beyond the Diffraction Limit with Far-Field Time Reversal," Science 315(5815), 1120-1122 (2007).
[CrossRef]

Du, C. L.

Y. Fu, W. Zhou, L. E. N. Lim, C. L. Du, and X. G. Luo, "Plasmonic microzone plate: Superfocusing at visible regime," Appl. Phys. Lett. 91(6), 061124 (2007).

Fang, N.

N. Fang, H. Lee, C. Sun, and X. Zhang, "Sub-Diffraction-Limited Optical Imaging with a Silver Superlens," Science 308(5721), 534-537 (2005).
[CrossRef]

Fink, M.

G. Lerosey, J. de Rosny, A. Tourin, and M. Fink, "Focusing Beyond the Diffraction Limit with Far-Field Time Reversal," Science 315(5815), 1120-1122 (2007).
[CrossRef]

Fu, Y.

Y. Fu,W. Zhou, and L. E. N. Lim, "Near-field behavior of zone-plate-like plasmonic nanostructures," J. Opt. Soc. Am. A 25, 238-249 (2008).
[CrossRef]

Y. Fu, W. Zhou, and L. E. N. Lim, "Propagation properties of plasmonic micro-zone plates with and without fractals," Appl. Phys. B 90(3-4), 421-425 (2008).
[CrossRef]

Y. Fu, W. Zhou, L. E. N. Lim, C. L. Du, and X. G. Luo, "Plasmonic microzone plate: Superfocusing at visible regime," Appl. Phys. Lett. 91(6), 061124 (2007).

Grbic, A.

A. Grbic and R. Merlin, "Near-Field Focusing Plates and Their Design," IEEE Trans. Antennas Propag. 56(10), 3159-3165 (2008).
[CrossRef]

A. Grbic, L. Jiang, and R. Merlin, "Near-Field Plates: Subdiffraction Focusing with Patterned Surfaces," Science 320(5875), 511-513 (2008).
[CrossRef]

Helseth, L. E.

L. E. Helseth, "The almost perfect lens and focusing of evanescent waves," Opt. Commun. 281(8), 1981-1985 (2008).
[CrossRef]

L. E. Helseth, "Radiationless electromagnetic interference shaping of evanescent cylindrical vector waves," Phys. Rev. A 78(1), 013819 (2008).

Hillenbrand, R.

R. Hillenbrand, T. Taubner, and F. Keilmann, "Phonon-enhanced light-matter interaction at the nanometre scale," Nature 418(6894), 159-162 (2002).
[CrossRef]

Huang, F. M.

F. M. Huang and N. I. Zheludev, "Super-Resolution without Evanescent Waves," Nano Lett. 9(3), 1249-1254 (2009).
[CrossRef]

Jiang, L.

A. Grbic, L. Jiang, and R. Merlin, "Near-Field Plates: Subdiffraction Focusing with Patterned Surfaces," Science 320(5875), 511-513 (2008).
[CrossRef]

Johnson, P. B.

P. B. Johnson and R. W. Christy, "Optical constants of the noble metals," Phys. Rev. B 6(12), 4370-4379 (1972).
[CrossRef]

Keilmann, F.

R. Hillenbrand, T. Taubner, and F. Keilmann, "Phonon-enhanced light-matter interaction at the nanometre scale," Nature 418(6894), 159-162 (2002).
[CrossRef]

Lau, S. P.

Lee, H.

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, "Far-Field Optical Hyperlens Magnifying Sub-Diffraction-Limited Objects," Science 315(5819), 1686 (2007).
[CrossRef]

N. Fang, H. Lee, C. Sun, and X. Zhang, "Sub-Diffraction-Limited Optical Imaging with a Silver Superlens," Science 308(5721), 534-537 (2005).
[CrossRef]

Lerosey, G.

G. Lerosey, J. de Rosny, A. Tourin, and M. Fink, "Focusing Beyond the Diffraction Limit with Far-Field Time Reversal," Science 315(5815), 1120-1122 (2007).
[CrossRef]

Lim, L. E. N.

Y. Fu, W. Zhou, and L. E. N. Lim, "Propagation properties of plasmonic micro-zone plates with and without fractals," Appl. Phys. B 90(3-4), 421-425 (2008).
[CrossRef]

Y. Fu,W. Zhou, and L. E. N. Lim, "Near-field behavior of zone-plate-like plasmonic nanostructures," J. Opt. Soc. Am. A 25, 238-249 (2008).
[CrossRef]

Y. Fu, W. Zhou, L. E. N. Lim, C. L. Du, and X. G. Luo, "Plasmonic microzone plate: Superfocusing at visible regime," Appl. Phys. Lett. 91(6), 061124 (2007).

Liu, Z.

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, "Far-Field Optical Hyperlens Magnifying Sub-Diffraction-Limited Objects," Science 315(5819), 1686 (2007).
[CrossRef]

Luo, X. G.

Y. Fu, W. Zhou, L. E. N. Lim, C. L. Du, and X. G. Luo, "Plasmonic microzone plate: Superfocusing at visible regime," Appl. Phys. Lett. 91(6), 061124 (2007).

Merlin, R.

A. Grbic and R. Merlin, "Near-Field Focusing Plates and Their Design," IEEE Trans. Antennas Propag. 56(10), 3159-3165 (2008).
[CrossRef]

A. Grbic, L. Jiang, and R. Merlin, "Near-Field Plates: Subdiffraction Focusing with Patterned Surfaces," Science 320(5875), 511-513 (2008).
[CrossRef]

R. Merlin, "Radiationless electromagnetic interference: evanescent-field interference lenses and perfect focusing," Science 317(5840), 927-929 (2007).
[CrossRef]

Mote, R. G.

Ng, B. K.

Pan, L.

W. Srituravanich, L. Pan, Y. Wang, C. Sun, D. B. Bogy, and X. Zhang, "Flying plasmonic lens in the near field for high-speed nanolithography," Nature Nanotechnology 3, 733-737 (2008).
[CrossRef] [PubMed]

Pendry, J. B.

J. B. Pendry, "Time Reversal and Negative Refraction," Science 322(5898), 71-73 (2008).
[CrossRef]

D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, "Metamaterials and Negative Refractive Index," Science 305(5685), 788-792 (2004).
[CrossRef]

J. B. Pendry, "Negative Refraction Makes a Perfect Lens," Phys. Rev. Lett. 85(18), 3966-3969 (2000).
[CrossRef]

Rice, J. H.

J. H. Rice, "Beyond the diffraction limit: far-field fluorescence imaging with ultrahigh resolution," Mol. BioSyst. 3, 781-793 (2007).
[CrossRef] [PubMed]

Smith, D. R.

D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, "Metamaterials and Negative Refractive Index," Science 305(5685), 788-792 (2004).
[CrossRef]

Srituravanich, W.

W. Srituravanich, L. Pan, Y. Wang, C. Sun, D. B. Bogy, and X. Zhang, "Flying plasmonic lens in the near field for high-speed nanolithography," Nature Nanotechnology 3, 733-737 (2008).
[CrossRef] [PubMed]

Sun, C.

W. Srituravanich, L. Pan, Y. Wang, C. Sun, D. B. Bogy, and X. Zhang, "Flying plasmonic lens in the near field for high-speed nanolithography," Nature Nanotechnology 3, 733-737 (2008).
[CrossRef] [PubMed]

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, "Far-Field Optical Hyperlens Magnifying Sub-Diffraction-Limited Objects," Science 315(5819), 1686 (2007).
[CrossRef]

N. Fang, H. Lee, C. Sun, and X. Zhang, "Sub-Diffraction-Limited Optical Imaging with a Silver Superlens," Science 308(5721), 534-537 (2005).
[CrossRef]

Taubner, T.

R. Hillenbrand, T. Taubner, and F. Keilmann, "Phonon-enhanced light-matter interaction at the nanometre scale," Nature 418(6894), 159-162 (2002).
[CrossRef]

Tourin, A.

G. Lerosey, J. de Rosny, A. Tourin, and M. Fink, "Focusing Beyond the Diffraction Limit with Far-Field Time Reversal," Science 315(5815), 1120-1122 (2007).
[CrossRef]

Wang, Y.

W. Srituravanich, L. Pan, Y. Wang, C. Sun, D. B. Bogy, and X. Zhang, "Flying plasmonic lens in the near field for high-speed nanolithography," Nature Nanotechnology 3, 733-737 (2008).
[CrossRef] [PubMed]

Wiltshire, M. C. K.

D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, "Metamaterials and Negative Refractive Index," Science 305(5685), 788-792 (2004).
[CrossRef]

Xiong, Y.

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, "Far-Field Optical Hyperlens Magnifying Sub-Diffraction-Limited Objects," Science 315(5819), 1686 (2007).
[CrossRef]

Yu, S. F.

Zhang, X.

W. Srituravanich, L. Pan, Y. Wang, C. Sun, D. B. Bogy, and X. Zhang, "Flying plasmonic lens in the near field for high-speed nanolithography," Nature Nanotechnology 3, 733-737 (2008).
[CrossRef] [PubMed]

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, "Far-Field Optical Hyperlens Magnifying Sub-Diffraction-Limited Objects," Science 315(5819), 1686 (2007).
[CrossRef]

N. Fang, H. Lee, C. Sun, and X. Zhang, "Sub-Diffraction-Limited Optical Imaging with a Silver Superlens," Science 308(5721), 534-537 (2005).
[CrossRef]

Zheludev, N. I.

F. M. Huang and N. I. Zheludev, "Super-Resolution without Evanescent Waves," Nano Lett. 9(3), 1249-1254 (2009).
[CrossRef]

Zhou, W.

Y. Fu, W. Zhou, and L. E. N. Lim, "Propagation properties of plasmonic micro-zone plates with and without fractals," Appl. Phys. B 90(3-4), 421-425 (2008).
[CrossRef]

Y. Fu,W. Zhou, and L. E. N. Lim, "Near-field behavior of zone-plate-like plasmonic nanostructures," J. Opt. Soc. Am. A 25, 238-249 (2008).
[CrossRef]

R. G. Mote, S. F. Yu, B. K. Ng, W. Zhou, and S. P. Lau, "Near-field focusing properties of zone plates in visible regime - New insights," Opt. Express 16(13), 9554-9564 (2008).
[CrossRef]

Y. Fu, W. Zhou, L. E. N. Lim, C. L. Du, and X. G. Luo, "Plasmonic microzone plate: Superfocusing at visible regime," Appl. Phys. Lett. 91(6), 061124 (2007).

Appl. Phys. B (1)

Y. Fu, W. Zhou, and L. E. N. Lim, "Propagation properties of plasmonic micro-zone plates with and without fractals," Appl. Phys. B 90(3-4), 421-425 (2008).
[CrossRef]

Appl. Phys. Lett. (1)

Y. Fu, W. Zhou, L. E. N. Lim, C. L. Du, and X. G. Luo, "Plasmonic microzone plate: Superfocusing at visible regime," Appl. Phys. Lett. 91(6), 061124 (2007).

Archiv für Mikroskopische Anatomie (1)

E. Abbe, "Beiträge zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung," Archiv für Mikroskopische Anatomie 9(1), 413-468 (1873).
[CrossRef] [PubMed]

IEEE Trans. Antennas Propag. (1)

A. Grbic and R. Merlin, "Near-Field Focusing Plates and Their Design," IEEE Trans. Antennas Propag. 56(10), 3159-3165 (2008).
[CrossRef]

J. Opt. Soc. Am. A (1)

Mol. BioSyst. (1)

J. H. Rice, "Beyond the diffraction limit: far-field fluorescence imaging with ultrahigh resolution," Mol. BioSyst. 3, 781-793 (2007).
[CrossRef] [PubMed]

Nano Lett. (1)

F. M. Huang and N. I. Zheludev, "Super-Resolution without Evanescent Waves," Nano Lett. 9(3), 1249-1254 (2009).
[CrossRef]

Nature (1)

R. Hillenbrand, T. Taubner, and F. Keilmann, "Phonon-enhanced light-matter interaction at the nanometre scale," Nature 418(6894), 159-162 (2002).
[CrossRef]

Nature Nanotechnology (1)

W. Srituravanich, L. Pan, Y. Wang, C. Sun, D. B. Bogy, and X. Zhang, "Flying plasmonic lens in the near field for high-speed nanolithography," Nature Nanotechnology 3, 733-737 (2008).
[CrossRef] [PubMed]

Opt. Commun. (1)

L. E. Helseth, "The almost perfect lens and focusing of evanescent waves," Opt. Commun. 281(8), 1981-1985 (2008).
[CrossRef]

Opt. Express (1)

Phys. Rev. A (1)

L. E. Helseth, "Radiationless electromagnetic interference shaping of evanescent cylindrical vector waves," Phys. Rev. A 78(1), 013819 (2008).

Phys. Rev. B (1)

P. B. Johnson and R. W. Christy, "Optical constants of the noble metals," Phys. Rev. B 6(12), 4370-4379 (1972).
[CrossRef]

Phys. Rev. Lett. (1)

J. B. Pendry, "Negative Refraction Makes a Perfect Lens," Phys. Rev. Lett. 85(18), 3966-3969 (2000).
[CrossRef]

Science (7)

D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, "Metamaterials and Negative Refractive Index," Science 305(5685), 788-792 (2004).
[CrossRef]

R. Merlin, "Radiationless electromagnetic interference: evanescent-field interference lenses and perfect focusing," Science 317(5840), 927-929 (2007).
[CrossRef]

N. Fang, H. Lee, C. Sun, and X. Zhang, "Sub-Diffraction-Limited Optical Imaging with a Silver Superlens," Science 308(5721), 534-537 (2005).
[CrossRef]

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, "Far-Field Optical Hyperlens Magnifying Sub-Diffraction-Limited Objects," Science 315(5819), 1686 (2007).
[CrossRef]

G. Lerosey, J. de Rosny, A. Tourin, and M. Fink, "Focusing Beyond the Diffraction Limit with Far-Field Time Reversal," Science 315(5815), 1120-1122 (2007).
[CrossRef]

J. B. Pendry, "Time Reversal and Negative Refraction," Science 322(5898), 71-73 (2008).
[CrossRef]

A. Grbic, L. Jiang, and R. Merlin, "Near-Field Plates: Subdiffraction Focusing with Patterned Surfaces," Science 320(5875), 511-513 (2008).
[CrossRef]

Other (2)

F. L. Pedrotti, S. J. and L. S. Pedrotti, Introduction to Optics, 2nd ed. (Prentice-Hall International, 1993).

A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd ed. (Artech House, 2005).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

A cartoon plot of the investigated Fresnel zone plate structure with fourteen zones (N=14).

Fig. 2.
Fig. 2.

The predicted results for the silver Fresnel zone plate with N=14: (a) |Ex (x,y)| in the focal plane at z=1 µm, and (b) |Ê x (kx,ky )| the Fourier transform of (a). For better visualization, the scale for |Ê x (kx ,ky )| in (b) has been saturated at 10.

Fig. 3.
Fig. 3.

The predicted results for the glass Fresnel zone plate with N=14: (a) |Ex (x,y)| in the focal plane at z=1 µm, and (b) |Ê x (kx,ky )| the Fourier transform of (a). For better visualization, the scale for |Êx(kx,ky )| in (b) has been saturated at 10.

Fig. 4.
Fig. 4.

The predicted values of |Ex (x,y)| for the propagating waves and evanescent waves along the lines (a) y=0 and (b) x=0 in the focal planes of silver and glass Fresnel zone plates.

Fig. 5.
Fig. 5.

The predicted values of |Ê x (kx,ky )| along the lines (a) ky =0 and (b) kx =0 in the focal plane (z=1 µm) for the Fresnel zone plates with different N values. The thick solid line is for the case in Fig. 2, and the thin solid line is for the case in Fig. 3.

Fig. 6.
Fig. 6.

The predicted values of normalized |Ex (x,y=0)| along the line y=0 for different combinations of in-phase fields in the k-domain. These include case 1 (black line): 0≤k 2 x +k 2 y ≤(0.1k 0)2, case 2 (magenta line): k 2 0k 2 x +k 2 y ≤(1.1k 0)2, case 3 (green line): (0.9k 0)2k 2 x +k 2 y k 2 0, case 4 (red line): 90% of case 1 and 10% of case 2, case 5 (yellow line): 90% of case 1 and 10% of case 3, and case 6 (blue line), which is the diffraction-limited case: 0≤k 2 x +k 2 y k 2 0.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Ê (kx,ky;z)14π2E(x,y,z)ei(kxx+kyy)dxdy.
E (x,y,z) = Ê(kxky;z)ei(kxx+kyy)dkxdky.
E(x,y,z)2dxdy=Ê(kxky;z)2dkxdky.

Metrics