Abstract

We present experimental and theoretical results of label-free molecular sensing using the transverse magnetic mode of a 0.22 μm thick silicon slab waveguide with a surface grating implemented in a guided mode resonance configuration. Due to the strong overlap of the evanescent field of the waveguide mode with a molecular layer attached to the surface, these sensors exhibit high sensitivity, while their fabrication and packaging requirements are modest. Experimentally, we demonstrate a resonance wavelength shift of ~1 nm when a monolayer of the protein streptavidin is attached to the surface, in good agreement with calculations based on rigorous coupled wave analysis. In our current optical setup this shift corresponds to an estimated limit of detection of 0.2% of a monolayer of streptavidin.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Act. B 54(1), 3–15 (1999).
    [CrossRef]
  2. A. Densmore, D.-X. Xu, S. Janz, P. Waldron, T. Mischki, G. Lopinski, A. Delâge, J. Lapointe, P. Cheben, B. Lamontagne, and J. H. Schmid, “Spiral-path high-sensitivity silicon photonic wire molecular sensor with temperature-independent response,” Opt. Lett. 33(6), 596–598 (2008).
    [CrossRef] [PubMed]
  3. D.-X. Xu, A. Densmore, A. Delâge, P. Waldron, R. McKinnon, S. Janz, J. Lapointe, G. Lopinski, T. Mischki, E. Post, P. Cheben, and J. H. Schmid, “Folded cavity SOI microring sensors for high sensitivity and real time measurement of biomolecular binding,” Opt. Express 16(19), 15137–15148 (2008).
    [CrossRef] [PubMed]
  4. A. Densmore, D.-X. Xu, P. Waldron, S. Janz, P. Cheben, J. Lapointe, A. Delâge, B. Lamontagne, J. H. Schmid, and E. Post, “A silicon-on-insulator photonic wire based evanescent field sensor,” IEEE Photon. Technol. Lett. 18(23), 2520–2522 (2006).
    [CrossRef]
  5. S. S. Wang, R. Magnusson, J. S. Bagby, and M. G. Moharam, “Guided mode resonances in planar dielectric-layer diffraction gratings,” J. Opt. Soc. Am. A 7(8), 1470–1474 (1990).
    [CrossRef]
  6. J. J. Wang, L. Chen, S. Kwan, F. Liu, and X. Deng, “Resonant grating filters as refractive index sensors for chemical and biological detections,” J. Vac. Sci. Technol. B 23(6), 3006–3010 (2005).
    [CrossRef]
  7. The RODIS software package, developed by the Photonics Research Group at the University of Ghent, Belgium, is available for download from the website: http://www.photonics.intec.ugent.be/research/facilities/design/rodis/default.htm
  8. M. G. Moharam and T. K. Gaylord, “Rigorous coupled-wave analysis of planar-grating diffraction,” J. Opt. Soc. Am. 71(7), 811–818 (1981).
    [CrossRef]
  9. I. M. White and X. Fan, “On the performance quantification of resonant refractive index sensors,” Opt. Express 16(2), 1020–1028 (2008).
    [CrossRef] [PubMed]
  10. J. Hu, X. Sun, A. Agarwal, and L. C. Kimerling, “Design guidelines for optical resonator biochemical sensors,” J. Opt. Soc. Am. B 26(5), 1032–1041 (2009).
    [CrossRef]
  11. D. W. Peters, S. A. Kemme, and G. R. Hadley, “Effect of finite grating, waveguide width, and end-facet geometry on resonant subwavelength grating reflectivity,” J. Opt. Soc. Am. A 21(6), 981–987 (2004).
    [CrossRef]
  12. K. De Vos, I. Bartolozzi, E. Schacht, P. Bienstman, and R. Baets, “Silicon-on-Insulator microring resonator for sensitive and label-free biosensing,” Opt. Express 15(12), 7610–7615 (2007).
    [CrossRef] [PubMed]
  13. A. Delâge, D.-X. Xu, R. W. McKinnon, E. Post, P. Waldron, J. Lapointe, C. Storey, A. Densmore, S. Janz, B. Lamontagne, P. Cheben, and J. H. Schmid, “Wavelength-dependent model of ring resonator sensor excited by a directional coupler,” J. Lightwave Technol. 27(9), 1172–1180 (2009).
    [CrossRef]
  14. J. Heebner, R. Grover, and T. Ibrahim, “Optical microresonators: theory, fabrication, and applications,” Springer Series in Optical Sciences 138, Springer, New York (2008).

2009

2008

2007

2006

A. Densmore, D.-X. Xu, P. Waldron, S. Janz, P. Cheben, J. Lapointe, A. Delâge, B. Lamontagne, J. H. Schmid, and E. Post, “A silicon-on-insulator photonic wire based evanescent field sensor,” IEEE Photon. Technol. Lett. 18(23), 2520–2522 (2006).
[CrossRef]

2005

J. J. Wang, L. Chen, S. Kwan, F. Liu, and X. Deng, “Resonant grating filters as refractive index sensors for chemical and biological detections,” J. Vac. Sci. Technol. B 23(6), 3006–3010 (2005).
[CrossRef]

2004

1999

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Act. B 54(1), 3–15 (1999).
[CrossRef]

1990

1981

Agarwal, A.

Baets, R.

Bagby, J. S.

Bartolozzi, I.

Bienstman, P.

Cheben, P.

Chen, L.

J. J. Wang, L. Chen, S. Kwan, F. Liu, and X. Deng, “Resonant grating filters as refractive index sensors for chemical and biological detections,” J. Vac. Sci. Technol. B 23(6), 3006–3010 (2005).
[CrossRef]

De Vos, K.

Delâge, A.

Deng, X.

J. J. Wang, L. Chen, S. Kwan, F. Liu, and X. Deng, “Resonant grating filters as refractive index sensors for chemical and biological detections,” J. Vac. Sci. Technol. B 23(6), 3006–3010 (2005).
[CrossRef]

Densmore, A.

Fan, X.

Gauglitz, G.

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Act. B 54(1), 3–15 (1999).
[CrossRef]

Gaylord, T. K.

Hadley, G. R.

Homola, J.

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Act. B 54(1), 3–15 (1999).
[CrossRef]

Hu, J.

Janz, S.

Kemme, S. A.

Kimerling, L. C.

Kwan, S.

J. J. Wang, L. Chen, S. Kwan, F. Liu, and X. Deng, “Resonant grating filters as refractive index sensors for chemical and biological detections,” J. Vac. Sci. Technol. B 23(6), 3006–3010 (2005).
[CrossRef]

Lamontagne, B.

Lapointe, J.

Liu, F.

J. J. Wang, L. Chen, S. Kwan, F. Liu, and X. Deng, “Resonant grating filters as refractive index sensors for chemical and biological detections,” J. Vac. Sci. Technol. B 23(6), 3006–3010 (2005).
[CrossRef]

Lopinski, G.

Magnusson, R.

McKinnon, R.

McKinnon, R. W.

Mischki, T.

Moharam, M. G.

Peters, D. W.

Post, E.

Schacht, E.

Schmid, J. H.

Storey, C.

Sun, X.

Waldron, P.

Wang, J. J.

J. J. Wang, L. Chen, S. Kwan, F. Liu, and X. Deng, “Resonant grating filters as refractive index sensors for chemical and biological detections,” J. Vac. Sci. Technol. B 23(6), 3006–3010 (2005).
[CrossRef]

Wang, S. S.

White, I. M.

Xu, D.-X.

Yee, S. S.

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Act. B 54(1), 3–15 (1999).
[CrossRef]

IEEE Photon. Technol. Lett.

A. Densmore, D.-X. Xu, P. Waldron, S. Janz, P. Cheben, J. Lapointe, A. Delâge, B. Lamontagne, J. H. Schmid, and E. Post, “A silicon-on-insulator photonic wire based evanescent field sensor,” IEEE Photon. Technol. Lett. 18(23), 2520–2522 (2006).
[CrossRef]

J. Lightwave Technol.

J. Opt. Soc. Am.

J. Opt. Soc. Am. A

J. Opt. Soc. Am. B

J. Vac. Sci. Technol. B

J. J. Wang, L. Chen, S. Kwan, F. Liu, and X. Deng, “Resonant grating filters as refractive index sensors for chemical and biological detections,” J. Vac. Sci. Technol. B 23(6), 3006–3010 (2005).
[CrossRef]

Opt. Express

Opt. Lett.

Sens. Act. B

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Act. B 54(1), 3–15 (1999).
[CrossRef]

Other

The RODIS software package, developed by the Photonics Research Group at the University of Ghent, Belgium, is available for download from the website: http://www.photonics.intec.ugent.be/research/facilities/design/rodis/default.htm

J. Heebner, R. Grover, and T. Ibrahim, “Optical microresonators: theory, fabrication, and applications,” Springer Series in Optical Sciences 138, Springer, New York (2008).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic side view of an SOI guided mode resonance sensor. At resonance, the laser beam incident from the wafer backside excites a slab waveguide mode in the thin silicon surface layer. The evanescent tail of this mode has a strong interaction with the sensor surface.

Fig. 2
Fig. 2

RCWA calculations of resonant grating sensors. a) Response to bulk cladding index change. b) Resonance wavelength shift induced by the attachment of a 2 nm thick organic layer on a grating surface with periodicity Λ = 1.24 μm and a thickness of 50 nm in air. c) same as b) but for a grating with a thickness of 200 nm.

Fig. 3
Fig. 3

a) Guided mode resonance wavelength shift induced by attachment of a 2 nm thick organic surface layer on a grating with periodicity Λ = 1.17 μm and a thickness of 50 nm in water. b) Same as a) for a grating with a thickness of 200 nm. c) Ratio of wavelength shift and linewidth (sensitivity figure of merit) as a function of grating depth.

Fig. 4
Fig. 4

Transmission spectra of ring resonator (finesse F = 10) (a) and Mach-Zehnder interferometer (b) evanescent field sensor, indicating resonance shift (δλ) in response to a waveguide effective index change and linewidth (Δλ).

Fig. 5
Fig. 5

a) Photograph of an SOI resonant grating sensor chip with two gratings of size 5 × 7 mm2. b) SEM micrograph of a SiO2 grating on the surface of an SOI chip fabricated using HSQ resist and electron beam lithography.

Fig. 6
Fig. 6

a) Measurements of guided mode resonance spectra in air for a clean surface, a biotin functionalized surface and after a layer of streptavidin protein is adsorbed. b) RCWA calculation of the reflection spectra for a grating with the structural parameters of the experiment with a clean surface and with an additional organic layer of 2 nm thickness.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

λ=Λ(neffsinθ)
λθ=ΛcosθΛneffλ1
Δλ=λ2πL(ngsinθ)
δλ=Λδneff1Λneffλ=λδneffngsinθ
S=1Δλ(δλδneff)=πLλ
δλring=λδneffng
Δλring=λ2ngLF
Sring=1Δλring(δλringδneff)=LFλ=πLeffλ
δλMZI=λLsδneff,sng,sLsng,rLr
ΔλMZI=λ22(ng,sLsng,rLr)
SMZI=1ΔλMZI(δλMZIδneff,s)=2Lsλ

Metrics