Abstract

Following the theoretical work on arbitrary waveguide bends using gradient-index and isotropic materials, a 90-degree bend structure is experimentally realized using artificial metamaterials. Broadband and low-loss unit cells, the I-shaped cells, are used in the laboratory prototype. Field mapping measurement validates the design. The method can be directly and easily extended to the design of directional cloaks, microwave lens, beam shifters, and beam-steering devices.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. G. Veselago, "The electrodynamics of substances with simultaneously negative values of ? and ?," Sov. Phys. Usp. 10, 509-14 (1968).
    [CrossRef]
  2. Q1. A. Sihvola, S. Tretyakov, A. de Baas, "Metamaterials with extreme material parameters," J. Commun. Technol. Electron. 52, 986-90 (2007).
    [CrossRef]
  3. A. Alu, M. G. Silveirinha, A. Salandnno, and N. Engheta, "Epsilon-near-zero metamaterials and electromagnetic sources: tailoring the radiation phase pattern," Phys. Rev. B 75, 155410 (2007).
    [CrossRef]
  4. X. Q. Lin, T. J. Cui, J. Y. Chin, X. M. Yang, Q. Cheng, and R. Liu, "Controlling electromagnetic waves using tunable gradient dielectric metamaterial lens," Appl. Phys. Lett. 92, 131904 (2008).
    [CrossRef]
  5. K. Aydina and E. Ozbay, "Capacitor-loaded split ring resonators as tunable metamaterial components," J. Appl. Phys. 101, 024911 (2007).
    [CrossRef]
  6. H. Chen, B. Wu, L. Ran, T. M. Grzegorczyk, and J. A. Kong, "Controllable left-handed metamaterial and its application to a steerable antenna," Appl. Phys. Lett. 89, 053509 (2006).
    [CrossRef]
  7. Q2. A. Alu, N. Engheta, A. Erentok, and R. W. Ziolkowski, "Single-negative, double-negative, and low-index metamaterials and their electromagnetic applications," IEEE Antennas Propag. Mag. 49, 23-36 (2007).
    [CrossRef]
  8. D. R. Smith, J. J. Mock, A. F. Starr, and D. Schurig, "Gradient index metamaterials," Phys. Rev. E 71, 036609 (2005).
    [CrossRef]
  9. T. Driscoll, D. N. Basov, A. F. Starr, P.M. Rye, S. Nemat-Nasser, D. Schurig, D. R. Smith, "Free-space microwave focusing by a negative-index gradient lens," Appl. Phys. Lett. 87, 081101 (2006).
    [CrossRef]
  10. J. B. Pendry, D. Schurig, and D. R. Smith, "Controlling electromagnetic fields," Science 312, 1780-2 (2006).
    [CrossRef] [PubMed]
  11. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, "Metamaterial electromagnetic cloak at microwave frequencies," Science 314, 977-80 (2006).
    [CrossRef] [PubMed]
  12. G.W. Milton, M. Briane, and J. R. Willis, "On cloaking for elasticity and physical equations with a transformation invariant form," New J. Phys. 8, 248 (2006).
    [CrossRef]
  13. Q3. W. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, "Optical cloaking with metamaterials," Nat. Photon. 1, 224-7 (2007).
    [CrossRef]
  14. W. X. Jiang, J. Y. Chin, Z. Li, Q. Cheng, R. Liu, and T. J. Cui, "Analytical design of conformally invisible cloaks for arbitrarily shaped objects," Phys. Rev. E 77, 066607 (2008).
    [CrossRef]
  15. Q4. M. Rahm, D. Schurig, D. A. Roberts, S. A. Cummer, D. R. Smith, and J. B. Pendry, "Design of electromagnetic cloaks and concentrators using form-invariant coordinate transformations of maxwell’s equations," Photonics Nanostruct. Fund. Appl. 6, 87-95 (2008).
    [CrossRef]
  16. W. X. Jiang, T. J. Cui, X. Y. Zhou, X. M. Yang, and Q. Cheng, "Arbitrary bending of electromagnetic waves using realizable inhomogeneous and anisotropic materials," Phys. Rev. E 78, 066607 (2008).
    [CrossRef]
  17. D. Schurig, J. B. Pendry, and D. R. Smith, "Transformation-designed optical elements," Opt. Express 15, 14772 (2007).
    [CrossRef] [PubMed]
  18. M. Rahm, D. A. Roberts, J. B. Pendry, and D. R. Smith, "Transformation-optical design of adaptive beam bends and beam expanders," Opt. Express 16, 11555 (2008).
    [CrossRef] [PubMed]
  19. D. A. Roberts, M. Rahm, J. B. Pendry, and D. R. Smith, "Transformation-optical design of sharp waveguide bends and corners," Appl. Phys. Lett. 93, 251111 (2008).
    [CrossRef]
  20. D. Kwon and D. H. Werner, "Transformation optical designs for wave collimators, flat lenses and right-angle bends," New J. Phys. 10, 115023 (2008).
    [CrossRef]
  21. W. Cai, U. Chettiar, A. Kildishev, and V. Shalaev, "Designs for optical cloaking with high-order transformations," Opt. Express 16, 5444-52 (2008).
    [CrossRef] [PubMed]
  22. J. Li and J. B. Pendry, "Hiding under the carpet: a new strategy for cloaking," Phys. Rev. Lett. 101, 203901 (2008).
    [CrossRef] [PubMed]
  23. R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, "Broadband ground-plane cloak," Science 323, 366-9 (2009).
    [CrossRef] [PubMed]
  24. Q5. L. H. Gabrielli, J. Cardenas, C. B. Poitras, and M. Lipson, "Silicon nanostructure cloak operating at optical frequencies," Nat. Phonotics 3, 461-3 (2009).
    [CrossRef]
  25. J. Valentine, J. Li, T. Zentgraf, G. Bartal and X. Zhang, "An optical cloak made of dielectrics," Nat. Materials 8, 568-71 (2009).
    [CrossRef]
  26. M. Born and E. Wolf, Principles of Optics, (Cambridge University Press, Cambridge, 1999).
  27. A. Mandatori, A. Benedetti, C. Sibilia, and M. Bertolotti, "Application of ray-path geometry to the design of an optical cloaking structure," J. Opt. Soc. Am. B 25, 1580-4 (2008).
    [CrossRef]
  28. Ulf Leonhardt, "Optical conformal mapping," Science 312, 1777-80 (2006).
    [CrossRef] [PubMed]
  29. Z. Jacob and E. Narimanov, "Semiclassical description of non magnetic cloaking," Opt. Express 16, 4597-604 (2008).
    [CrossRef] [PubMed]
  30. Z. Jacob, L. V. Alekseyev and E. Narimanov, "Semiclassical theory of the Hyperlens," J. Opt. Soc. Am. A 24, A52-9 (2007).
    [CrossRef]
  31. Z. L. Mei and T. J. Cui, "Arbitrary bending of electromagnetic waves using isotropic materials," J. Appl. Phys. 105, 104913 (2009).
    [CrossRef]
  32. M. Heiblum and J. H. Harris, "Analysis of curved optical waveguides by conformal transformation," IEEE J. Quantum Electron. 11, 75-83 (1975).
    [CrossRef]
  33. M. Wu, P. Fan, J. Hsu, and C. Lee, "Design of ideal structures for lossless bends in optical waveguides by conformal mapping," J. Lightwave Technol. 14, 2604-14 (1996).
    [CrossRef]
  34. E. Neumann and W. Richter, "Sharp bends with low losses in dielectric optical waveguides," Appl. Opt. 22, 1016-22 (1983).
    [CrossRef] [PubMed]
  35. C. Lee and J. Hsu, "Systematic design of full phase compensation microprism-type low-loss bent waveguides," Appl. Opt. 37, 507-9 (1998).
    [CrossRef]
  36. H. Hatami-Hanza, P. L. Chu, and J. Nayye, "Low-loss optical waveguide-bend configuration with curved corner reflector," Electron. Lett. 28, 2283-5 (1992).
    [CrossRef]
  37. C. Lee and M. Wu, "Apexes-linked circle gratings for low-loss waveguide bends," IEEE Photon. Technol. Lett. 13, 597-9 (2001).
    [CrossRef]
  38. D. R. Smith, S. Schultz, P. Markos, and C. M. Soukoulis, "Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients," Phys. Rev. B 65, 195104 (2002).
    [CrossRef]
  39. H. F. Ma, X. Chen, H. S. Xu, X. M. Yang, W. Xi. Jiang, and T. J. Cui, "Experiments on high-performance beam-scanning antennas made of gradient-index metamaterials," Appl. Phys. Lett. 95, 094107 (2009)
    [CrossRef]

2009 (5)

R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, "Broadband ground-plane cloak," Science 323, 366-9 (2009).
[CrossRef] [PubMed]

Q5. L. H. Gabrielli, J. Cardenas, C. B. Poitras, and M. Lipson, "Silicon nanostructure cloak operating at optical frequencies," Nat. Phonotics 3, 461-3 (2009).
[CrossRef]

J. Valentine, J. Li, T. Zentgraf, G. Bartal and X. Zhang, "An optical cloak made of dielectrics," Nat. Materials 8, 568-71 (2009).
[CrossRef]

Z. L. Mei and T. J. Cui, "Arbitrary bending of electromagnetic waves using isotropic materials," J. Appl. Phys. 105, 104913 (2009).
[CrossRef]

H. F. Ma, X. Chen, H. S. Xu, X. M. Yang, W. Xi. Jiang, and T. J. Cui, "Experiments on high-performance beam-scanning antennas made of gradient-index metamaterials," Appl. Phys. Lett. 95, 094107 (2009)
[CrossRef]

2008 (11)

Z. Jacob and E. Narimanov, "Semiclassical description of non magnetic cloaking," Opt. Express 16, 4597-604 (2008).
[CrossRef] [PubMed]

W. Cai, U. Chettiar, A. Kildishev, and V. Shalaev, "Designs for optical cloaking with high-order transformations," Opt. Express 16, 5444-52 (2008).
[CrossRef] [PubMed]

M. Rahm, D. A. Roberts, J. B. Pendry, and D. R. Smith, "Transformation-optical design of adaptive beam bends and beam expanders," Opt. Express 16, 11555 (2008).
[CrossRef] [PubMed]

A. Mandatori, A. Benedetti, C. Sibilia, and M. Bertolotti, "Application of ray-path geometry to the design of an optical cloaking structure," J. Opt. Soc. Am. B 25, 1580-4 (2008).
[CrossRef]

D. A. Roberts, M. Rahm, J. B. Pendry, and D. R. Smith, "Transformation-optical design of sharp waveguide bends and corners," Appl. Phys. Lett. 93, 251111 (2008).
[CrossRef]

D. Kwon and D. H. Werner, "Transformation optical designs for wave collimators, flat lenses and right-angle bends," New J. Phys. 10, 115023 (2008).
[CrossRef]

X. Q. Lin, T. J. Cui, J. Y. Chin, X. M. Yang, Q. Cheng, and R. Liu, "Controlling electromagnetic waves using tunable gradient dielectric metamaterial lens," Appl. Phys. Lett. 92, 131904 (2008).
[CrossRef]

W. X. Jiang, J. Y. Chin, Z. Li, Q. Cheng, R. Liu, and T. J. Cui, "Analytical design of conformally invisible cloaks for arbitrarily shaped objects," Phys. Rev. E 77, 066607 (2008).
[CrossRef]

Q4. M. Rahm, D. Schurig, D. A. Roberts, S. A. Cummer, D. R. Smith, and J. B. Pendry, "Design of electromagnetic cloaks and concentrators using form-invariant coordinate transformations of maxwell’s equations," Photonics Nanostruct. Fund. Appl. 6, 87-95 (2008).
[CrossRef]

W. X. Jiang, T. J. Cui, X. Y. Zhou, X. M. Yang, and Q. Cheng, "Arbitrary bending of electromagnetic waves using realizable inhomogeneous and anisotropic materials," Phys. Rev. E 78, 066607 (2008).
[CrossRef]

J. Li and J. B. Pendry, "Hiding under the carpet: a new strategy for cloaking," Phys. Rev. Lett. 101, 203901 (2008).
[CrossRef] [PubMed]

2007 (7)

Q2. A. Alu, N. Engheta, A. Erentok, and R. W. Ziolkowski, "Single-negative, double-negative, and low-index metamaterials and their electromagnetic applications," IEEE Antennas Propag. Mag. 49, 23-36 (2007).
[CrossRef]

Q3. W. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, "Optical cloaking with metamaterials," Nat. Photon. 1, 224-7 (2007).
[CrossRef]

K. Aydina and E. Ozbay, "Capacitor-loaded split ring resonators as tunable metamaterial components," J. Appl. Phys. 101, 024911 (2007).
[CrossRef]

Q1. A. Sihvola, S. Tretyakov, A. de Baas, "Metamaterials with extreme material parameters," J. Commun. Technol. Electron. 52, 986-90 (2007).
[CrossRef]

A. Alu, M. G. Silveirinha, A. Salandnno, and N. Engheta, "Epsilon-near-zero metamaterials and electromagnetic sources: tailoring the radiation phase pattern," Phys. Rev. B 75, 155410 (2007).
[CrossRef]

Z. Jacob, L. V. Alekseyev and E. Narimanov, "Semiclassical theory of the Hyperlens," J. Opt. Soc. Am. A 24, A52-9 (2007).
[CrossRef]

D. Schurig, J. B. Pendry, and D. R. Smith, "Transformation-designed optical elements," Opt. Express 15, 14772 (2007).
[CrossRef] [PubMed]

2006 (6)

H. Chen, B. Wu, L. Ran, T. M. Grzegorczyk, and J. A. Kong, "Controllable left-handed metamaterial and its application to a steerable antenna," Appl. Phys. Lett. 89, 053509 (2006).
[CrossRef]

T. Driscoll, D. N. Basov, A. F. Starr, P.M. Rye, S. Nemat-Nasser, D. Schurig, D. R. Smith, "Free-space microwave focusing by a negative-index gradient lens," Appl. Phys. Lett. 87, 081101 (2006).
[CrossRef]

J. B. Pendry, D. Schurig, and D. R. Smith, "Controlling electromagnetic fields," Science 312, 1780-2 (2006).
[CrossRef] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, "Metamaterial electromagnetic cloak at microwave frequencies," Science 314, 977-80 (2006).
[CrossRef] [PubMed]

G.W. Milton, M. Briane, and J. R. Willis, "On cloaking for elasticity and physical equations with a transformation invariant form," New J. Phys. 8, 248 (2006).
[CrossRef]

Ulf Leonhardt, "Optical conformal mapping," Science 312, 1777-80 (2006).
[CrossRef] [PubMed]

2005 (1)

D. R. Smith, J. J. Mock, A. F. Starr, and D. Schurig, "Gradient index metamaterials," Phys. Rev. E 71, 036609 (2005).
[CrossRef]

2002 (1)

D. R. Smith, S. Schultz, P. Markos, and C. M. Soukoulis, "Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients," Phys. Rev. B 65, 195104 (2002).
[CrossRef]

2001 (1)

C. Lee and M. Wu, "Apexes-linked circle gratings for low-loss waveguide bends," IEEE Photon. Technol. Lett. 13, 597-9 (2001).
[CrossRef]

1998 (1)

1996 (1)

M. Wu, P. Fan, J. Hsu, and C. Lee, "Design of ideal structures for lossless bends in optical waveguides by conformal mapping," J. Lightwave Technol. 14, 2604-14 (1996).
[CrossRef]

1992 (1)

H. Hatami-Hanza, P. L. Chu, and J. Nayye, "Low-loss optical waveguide-bend configuration with curved corner reflector," Electron. Lett. 28, 2283-5 (1992).
[CrossRef]

1983 (1)

1975 (1)

M. Heiblum and J. H. Harris, "Analysis of curved optical waveguides by conformal transformation," IEEE J. Quantum Electron. 11, 75-83 (1975).
[CrossRef]

1968 (1)

V. G. Veselago, "The electrodynamics of substances with simultaneously negative values of ? and ?," Sov. Phys. Usp. 10, 509-14 (1968).
[CrossRef]

Alekseyev, L. V.

Alu, A.

A. Alu, M. G. Silveirinha, A. Salandnno, and N. Engheta, "Epsilon-near-zero metamaterials and electromagnetic sources: tailoring the radiation phase pattern," Phys. Rev. B 75, 155410 (2007).
[CrossRef]

Q2. A. Alu, N. Engheta, A. Erentok, and R. W. Ziolkowski, "Single-negative, double-negative, and low-index metamaterials and their electromagnetic applications," IEEE Antennas Propag. Mag. 49, 23-36 (2007).
[CrossRef]

Aydina, K.

K. Aydina and E. Ozbay, "Capacitor-loaded split ring resonators as tunable metamaterial components," J. Appl. Phys. 101, 024911 (2007).
[CrossRef]

Bartal, G.

J. Valentine, J. Li, T. Zentgraf, G. Bartal and X. Zhang, "An optical cloak made of dielectrics," Nat. Materials 8, 568-71 (2009).
[CrossRef]

Basov, D. N.

T. Driscoll, D. N. Basov, A. F. Starr, P.M. Rye, S. Nemat-Nasser, D. Schurig, D. R. Smith, "Free-space microwave focusing by a negative-index gradient lens," Appl. Phys. Lett. 87, 081101 (2006).
[CrossRef]

Benedetti, A.

Bertolotti, M.

Briane, M.

G.W. Milton, M. Briane, and J. R. Willis, "On cloaking for elasticity and physical equations with a transformation invariant form," New J. Phys. 8, 248 (2006).
[CrossRef]

Cai, W.

W. Cai, U. Chettiar, A. Kildishev, and V. Shalaev, "Designs for optical cloaking with high-order transformations," Opt. Express 16, 5444-52 (2008).
[CrossRef] [PubMed]

Q3. W. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, "Optical cloaking with metamaterials," Nat. Photon. 1, 224-7 (2007).
[CrossRef]

Cardenas, J.

Q5. L. H. Gabrielli, J. Cardenas, C. B. Poitras, and M. Lipson, "Silicon nanostructure cloak operating at optical frequencies," Nat. Phonotics 3, 461-3 (2009).
[CrossRef]

Chen, H.

H. Chen, B. Wu, L. Ran, T. M. Grzegorczyk, and J. A. Kong, "Controllable left-handed metamaterial and its application to a steerable antenna," Appl. Phys. Lett. 89, 053509 (2006).
[CrossRef]

Chen, X.

H. F. Ma, X. Chen, H. S. Xu, X. M. Yang, W. Xi. Jiang, and T. J. Cui, "Experiments on high-performance beam-scanning antennas made of gradient-index metamaterials," Appl. Phys. Lett. 95, 094107 (2009)
[CrossRef]

Cheng, Q.

X. Q. Lin, T. J. Cui, J. Y. Chin, X. M. Yang, Q. Cheng, and R. Liu, "Controlling electromagnetic waves using tunable gradient dielectric metamaterial lens," Appl. Phys. Lett. 92, 131904 (2008).
[CrossRef]

W. X. Jiang, J. Y. Chin, Z. Li, Q. Cheng, R. Liu, and T. J. Cui, "Analytical design of conformally invisible cloaks for arbitrarily shaped objects," Phys. Rev. E 77, 066607 (2008).
[CrossRef]

W. X. Jiang, T. J. Cui, X. Y. Zhou, X. M. Yang, and Q. Cheng, "Arbitrary bending of electromagnetic waves using realizable inhomogeneous and anisotropic materials," Phys. Rev. E 78, 066607 (2008).
[CrossRef]

Chettiar, U.

Chettiar, U. K.

Q3. W. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, "Optical cloaking with metamaterials," Nat. Photon. 1, 224-7 (2007).
[CrossRef]

Chin, J. Y.

R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, "Broadband ground-plane cloak," Science 323, 366-9 (2009).
[CrossRef] [PubMed]

W. X. Jiang, J. Y. Chin, Z. Li, Q. Cheng, R. Liu, and T. J. Cui, "Analytical design of conformally invisible cloaks for arbitrarily shaped objects," Phys. Rev. E 77, 066607 (2008).
[CrossRef]

X. Q. Lin, T. J. Cui, J. Y. Chin, X. M. Yang, Q. Cheng, and R. Liu, "Controlling electromagnetic waves using tunable gradient dielectric metamaterial lens," Appl. Phys. Lett. 92, 131904 (2008).
[CrossRef]

Chu, P. L.

H. Hatami-Hanza, P. L. Chu, and J. Nayye, "Low-loss optical waveguide-bend configuration with curved corner reflector," Electron. Lett. 28, 2283-5 (1992).
[CrossRef]

Cui, T. J.

Z. L. Mei and T. J. Cui, "Arbitrary bending of electromagnetic waves using isotropic materials," J. Appl. Phys. 105, 104913 (2009).
[CrossRef]

R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, "Broadband ground-plane cloak," Science 323, 366-9 (2009).
[CrossRef] [PubMed]

X. Q. Lin, T. J. Cui, J. Y. Chin, X. M. Yang, Q. Cheng, and R. Liu, "Controlling electromagnetic waves using tunable gradient dielectric metamaterial lens," Appl. Phys. Lett. 92, 131904 (2008).
[CrossRef]

W. X. Jiang, J. Y. Chin, Z. Li, Q. Cheng, R. Liu, and T. J. Cui, "Analytical design of conformally invisible cloaks for arbitrarily shaped objects," Phys. Rev. E 77, 066607 (2008).
[CrossRef]

W. X. Jiang, T. J. Cui, X. Y. Zhou, X. M. Yang, and Q. Cheng, "Arbitrary bending of electromagnetic waves using realizable inhomogeneous and anisotropic materials," Phys. Rev. E 78, 066607 (2008).
[CrossRef]

Cummer, S. A.

Q4. M. Rahm, D. Schurig, D. A. Roberts, S. A. Cummer, D. R. Smith, and J. B. Pendry, "Design of electromagnetic cloaks and concentrators using form-invariant coordinate transformations of maxwell’s equations," Photonics Nanostruct. Fund. Appl. 6, 87-95 (2008).
[CrossRef]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, "Metamaterial electromagnetic cloak at microwave frequencies," Science 314, 977-80 (2006).
[CrossRef] [PubMed]

de Baas, A.

Q1. A. Sihvola, S. Tretyakov, A. de Baas, "Metamaterials with extreme material parameters," J. Commun. Technol. Electron. 52, 986-90 (2007).
[CrossRef]

Driscoll, T.

T. Driscoll, D. N. Basov, A. F. Starr, P.M. Rye, S. Nemat-Nasser, D. Schurig, D. R. Smith, "Free-space microwave focusing by a negative-index gradient lens," Appl. Phys. Lett. 87, 081101 (2006).
[CrossRef]

Engheta, N.

Q2. A. Alu, N. Engheta, A. Erentok, and R. W. Ziolkowski, "Single-negative, double-negative, and low-index metamaterials and their electromagnetic applications," IEEE Antennas Propag. Mag. 49, 23-36 (2007).
[CrossRef]

A. Alu, M. G. Silveirinha, A. Salandnno, and N. Engheta, "Epsilon-near-zero metamaterials and electromagnetic sources: tailoring the radiation phase pattern," Phys. Rev. B 75, 155410 (2007).
[CrossRef]

Erentok, A.

Q2. A. Alu, N. Engheta, A. Erentok, and R. W. Ziolkowski, "Single-negative, double-negative, and low-index metamaterials and their electromagnetic applications," IEEE Antennas Propag. Mag. 49, 23-36 (2007).
[CrossRef]

Fan, P.

M. Wu, P. Fan, J. Hsu, and C. Lee, "Design of ideal structures for lossless bends in optical waveguides by conformal mapping," J. Lightwave Technol. 14, 2604-14 (1996).
[CrossRef]

Gabrielli, L. H.

Q5. L. H. Gabrielli, J. Cardenas, C. B. Poitras, and M. Lipson, "Silicon nanostructure cloak operating at optical frequencies," Nat. Phonotics 3, 461-3 (2009).
[CrossRef]

Grzegorczyk, T. M.

H. Chen, B. Wu, L. Ran, T. M. Grzegorczyk, and J. A. Kong, "Controllable left-handed metamaterial and its application to a steerable antenna," Appl. Phys. Lett. 89, 053509 (2006).
[CrossRef]

Harris, J. H.

M. Heiblum and J. H. Harris, "Analysis of curved optical waveguides by conformal transformation," IEEE J. Quantum Electron. 11, 75-83 (1975).
[CrossRef]

Hatami-Hanza, H.

H. Hatami-Hanza, P. L. Chu, and J. Nayye, "Low-loss optical waveguide-bend configuration with curved corner reflector," Electron. Lett. 28, 2283-5 (1992).
[CrossRef]

Heiblum, M.

M. Heiblum and J. H. Harris, "Analysis of curved optical waveguides by conformal transformation," IEEE J. Quantum Electron. 11, 75-83 (1975).
[CrossRef]

Hsu, J.

C. Lee and J. Hsu, "Systematic design of full phase compensation microprism-type low-loss bent waveguides," Appl. Opt. 37, 507-9 (1998).
[CrossRef]

M. Wu, P. Fan, J. Hsu, and C. Lee, "Design of ideal structures for lossless bends in optical waveguides by conformal mapping," J. Lightwave Technol. 14, 2604-14 (1996).
[CrossRef]

Jacob, Z.

Ji, C.

R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, "Broadband ground-plane cloak," Science 323, 366-9 (2009).
[CrossRef] [PubMed]

Jiang, W. X.

W. X. Jiang, J. Y. Chin, Z. Li, Q. Cheng, R. Liu, and T. J. Cui, "Analytical design of conformally invisible cloaks for arbitrarily shaped objects," Phys. Rev. E 77, 066607 (2008).
[CrossRef]

W. X. Jiang, T. J. Cui, X. Y. Zhou, X. M. Yang, and Q. Cheng, "Arbitrary bending of electromagnetic waves using realizable inhomogeneous and anisotropic materials," Phys. Rev. E 78, 066607 (2008).
[CrossRef]

Justice, B. J.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, "Metamaterial electromagnetic cloak at microwave frequencies," Science 314, 977-80 (2006).
[CrossRef] [PubMed]

Kildishev, A.

Kildishev, A. V.

Q3. W. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, "Optical cloaking with metamaterials," Nat. Photon. 1, 224-7 (2007).
[CrossRef]

Kong, J. A.

H. Chen, B. Wu, L. Ran, T. M. Grzegorczyk, and J. A. Kong, "Controllable left-handed metamaterial and its application to a steerable antenna," Appl. Phys. Lett. 89, 053509 (2006).
[CrossRef]

Kwon, D.

D. Kwon and D. H. Werner, "Transformation optical designs for wave collimators, flat lenses and right-angle bends," New J. Phys. 10, 115023 (2008).
[CrossRef]

Lee, C.

C. Lee and M. Wu, "Apexes-linked circle gratings for low-loss waveguide bends," IEEE Photon. Technol. Lett. 13, 597-9 (2001).
[CrossRef]

C. Lee and J. Hsu, "Systematic design of full phase compensation microprism-type low-loss bent waveguides," Appl. Opt. 37, 507-9 (1998).
[CrossRef]

M. Wu, P. Fan, J. Hsu, and C. Lee, "Design of ideal structures for lossless bends in optical waveguides by conformal mapping," J. Lightwave Technol. 14, 2604-14 (1996).
[CrossRef]

Li, J.

J. Valentine, J. Li, T. Zentgraf, G. Bartal and X. Zhang, "An optical cloak made of dielectrics," Nat. Materials 8, 568-71 (2009).
[CrossRef]

J. Li and J. B. Pendry, "Hiding under the carpet: a new strategy for cloaking," Phys. Rev. Lett. 101, 203901 (2008).
[CrossRef] [PubMed]

Li, Z.

W. X. Jiang, J. Y. Chin, Z. Li, Q. Cheng, R. Liu, and T. J. Cui, "Analytical design of conformally invisible cloaks for arbitrarily shaped objects," Phys. Rev. E 77, 066607 (2008).
[CrossRef]

Lin, X. Q.

X. Q. Lin, T. J. Cui, J. Y. Chin, X. M. Yang, Q. Cheng, and R. Liu, "Controlling electromagnetic waves using tunable gradient dielectric metamaterial lens," Appl. Phys. Lett. 92, 131904 (2008).
[CrossRef]

Lipson, M.

Q5. L. H. Gabrielli, J. Cardenas, C. B. Poitras, and M. Lipson, "Silicon nanostructure cloak operating at optical frequencies," Nat. Phonotics 3, 461-3 (2009).
[CrossRef]

Liu, R.

R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, "Broadband ground-plane cloak," Science 323, 366-9 (2009).
[CrossRef] [PubMed]

X. Q. Lin, T. J. Cui, J. Y. Chin, X. M. Yang, Q. Cheng, and R. Liu, "Controlling electromagnetic waves using tunable gradient dielectric metamaterial lens," Appl. Phys. Lett. 92, 131904 (2008).
[CrossRef]

W. X. Jiang, J. Y. Chin, Z. Li, Q. Cheng, R. Liu, and T. J. Cui, "Analytical design of conformally invisible cloaks for arbitrarily shaped objects," Phys. Rev. E 77, 066607 (2008).
[CrossRef]

Ma, H. F.

H. F. Ma, X. Chen, H. S. Xu, X. M. Yang, W. Xi. Jiang, and T. J. Cui, "Experiments on high-performance beam-scanning antennas made of gradient-index metamaterials," Appl. Phys. Lett. 95, 094107 (2009)
[CrossRef]

Mandatori, A.

Markos, P.

D. R. Smith, S. Schultz, P. Markos, and C. M. Soukoulis, "Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients," Phys. Rev. B 65, 195104 (2002).
[CrossRef]

Mei, Z. L.

Z. L. Mei and T. J. Cui, "Arbitrary bending of electromagnetic waves using isotropic materials," J. Appl. Phys. 105, 104913 (2009).
[CrossRef]

Milton, G.W.

G.W. Milton, M. Briane, and J. R. Willis, "On cloaking for elasticity and physical equations with a transformation invariant form," New J. Phys. 8, 248 (2006).
[CrossRef]

Mock, J. J.

R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, "Broadband ground-plane cloak," Science 323, 366-9 (2009).
[CrossRef] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, "Metamaterial electromagnetic cloak at microwave frequencies," Science 314, 977-80 (2006).
[CrossRef] [PubMed]

D. R. Smith, J. J. Mock, A. F. Starr, and D. Schurig, "Gradient index metamaterials," Phys. Rev. E 71, 036609 (2005).
[CrossRef]

Narimanov, E.

Nayye, J.

H. Hatami-Hanza, P. L. Chu, and J. Nayye, "Low-loss optical waveguide-bend configuration with curved corner reflector," Electron. Lett. 28, 2283-5 (1992).
[CrossRef]

Nemat-Nasser, S.

T. Driscoll, D. N. Basov, A. F. Starr, P.M. Rye, S. Nemat-Nasser, D. Schurig, D. R. Smith, "Free-space microwave focusing by a negative-index gradient lens," Appl. Phys. Lett. 87, 081101 (2006).
[CrossRef]

Neumann, E.

Ozbay, E.

K. Aydina and E. Ozbay, "Capacitor-loaded split ring resonators as tunable metamaterial components," J. Appl. Phys. 101, 024911 (2007).
[CrossRef]

Pendry, J. B.

Q4. M. Rahm, D. Schurig, D. A. Roberts, S. A. Cummer, D. R. Smith, and J. B. Pendry, "Design of electromagnetic cloaks and concentrators using form-invariant coordinate transformations of maxwell’s equations," Photonics Nanostruct. Fund. Appl. 6, 87-95 (2008).
[CrossRef]

J. Li and J. B. Pendry, "Hiding under the carpet: a new strategy for cloaking," Phys. Rev. Lett. 101, 203901 (2008).
[CrossRef] [PubMed]

D. A. Roberts, M. Rahm, J. B. Pendry, and D. R. Smith, "Transformation-optical design of sharp waveguide bends and corners," Appl. Phys. Lett. 93, 251111 (2008).
[CrossRef]

M. Rahm, D. A. Roberts, J. B. Pendry, and D. R. Smith, "Transformation-optical design of adaptive beam bends and beam expanders," Opt. Express 16, 11555 (2008).
[CrossRef] [PubMed]

D. Schurig, J. B. Pendry, and D. R. Smith, "Transformation-designed optical elements," Opt. Express 15, 14772 (2007).
[CrossRef] [PubMed]

J. B. Pendry, D. Schurig, and D. R. Smith, "Controlling electromagnetic fields," Science 312, 1780-2 (2006).
[CrossRef] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, "Metamaterial electromagnetic cloak at microwave frequencies," Science 314, 977-80 (2006).
[CrossRef] [PubMed]

Poitras, C. B.

Q5. L. H. Gabrielli, J. Cardenas, C. B. Poitras, and M. Lipson, "Silicon nanostructure cloak operating at optical frequencies," Nat. Phonotics 3, 461-3 (2009).
[CrossRef]

Rahm, M.

D. A. Roberts, M. Rahm, J. B. Pendry, and D. R. Smith, "Transformation-optical design of sharp waveguide bends and corners," Appl. Phys. Lett. 93, 251111 (2008).
[CrossRef]

M. Rahm, D. A. Roberts, J. B. Pendry, and D. R. Smith, "Transformation-optical design of adaptive beam bends and beam expanders," Opt. Express 16, 11555 (2008).
[CrossRef] [PubMed]

Q4. M. Rahm, D. Schurig, D. A. Roberts, S. A. Cummer, D. R. Smith, and J. B. Pendry, "Design of electromagnetic cloaks and concentrators using form-invariant coordinate transformations of maxwell’s equations," Photonics Nanostruct. Fund. Appl. 6, 87-95 (2008).
[CrossRef]

Ran, L.

H. Chen, B. Wu, L. Ran, T. M. Grzegorczyk, and J. A. Kong, "Controllable left-handed metamaterial and its application to a steerable antenna," Appl. Phys. Lett. 89, 053509 (2006).
[CrossRef]

Richter, W.

Roberts, D. A.

M. Rahm, D. A. Roberts, J. B. Pendry, and D. R. Smith, "Transformation-optical design of adaptive beam bends and beam expanders," Opt. Express 16, 11555 (2008).
[CrossRef] [PubMed]

D. A. Roberts, M. Rahm, J. B. Pendry, and D. R. Smith, "Transformation-optical design of sharp waveguide bends and corners," Appl. Phys. Lett. 93, 251111 (2008).
[CrossRef]

Q4. M. Rahm, D. Schurig, D. A. Roberts, S. A. Cummer, D. R. Smith, and J. B. Pendry, "Design of electromagnetic cloaks and concentrators using form-invariant coordinate transformations of maxwell’s equations," Photonics Nanostruct. Fund. Appl. 6, 87-95 (2008).
[CrossRef]

Rye, P.M.

T. Driscoll, D. N. Basov, A. F. Starr, P.M. Rye, S. Nemat-Nasser, D. Schurig, D. R. Smith, "Free-space microwave focusing by a negative-index gradient lens," Appl. Phys. Lett. 87, 081101 (2006).
[CrossRef]

Salandnno, A.

A. Alu, M. G. Silveirinha, A. Salandnno, and N. Engheta, "Epsilon-near-zero metamaterials and electromagnetic sources: tailoring the radiation phase pattern," Phys. Rev. B 75, 155410 (2007).
[CrossRef]

Schultz, S.

D. R. Smith, S. Schultz, P. Markos, and C. M. Soukoulis, "Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients," Phys. Rev. B 65, 195104 (2002).
[CrossRef]

Schurig, D.

Q4. M. Rahm, D. Schurig, D. A. Roberts, S. A. Cummer, D. R. Smith, and J. B. Pendry, "Design of electromagnetic cloaks and concentrators using form-invariant coordinate transformations of maxwell’s equations," Photonics Nanostruct. Fund. Appl. 6, 87-95 (2008).
[CrossRef]

D. Schurig, J. B. Pendry, and D. R. Smith, "Transformation-designed optical elements," Opt. Express 15, 14772 (2007).
[CrossRef] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, "Metamaterial electromagnetic cloak at microwave frequencies," Science 314, 977-80 (2006).
[CrossRef] [PubMed]

J. B. Pendry, D. Schurig, and D. R. Smith, "Controlling electromagnetic fields," Science 312, 1780-2 (2006).
[CrossRef] [PubMed]

T. Driscoll, D. N. Basov, A. F. Starr, P.M. Rye, S. Nemat-Nasser, D. Schurig, D. R. Smith, "Free-space microwave focusing by a negative-index gradient lens," Appl. Phys. Lett. 87, 081101 (2006).
[CrossRef]

D. R. Smith, J. J. Mock, A. F. Starr, and D. Schurig, "Gradient index metamaterials," Phys. Rev. E 71, 036609 (2005).
[CrossRef]

Shalaev, V.

Shalaev, V. M.

Q3. W. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, "Optical cloaking with metamaterials," Nat. Photon. 1, 224-7 (2007).
[CrossRef]

Sibilia, C.

Sihvola, A.

Q1. A. Sihvola, S. Tretyakov, A. de Baas, "Metamaterials with extreme material parameters," J. Commun. Technol. Electron. 52, 986-90 (2007).
[CrossRef]

Silveirinha, M. G.

A. Alu, M. G. Silveirinha, A. Salandnno, and N. Engheta, "Epsilon-near-zero metamaterials and electromagnetic sources: tailoring the radiation phase pattern," Phys. Rev. B 75, 155410 (2007).
[CrossRef]

Smith, D. R.

R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, "Broadband ground-plane cloak," Science 323, 366-9 (2009).
[CrossRef] [PubMed]

D. A. Roberts, M. Rahm, J. B. Pendry, and D. R. Smith, "Transformation-optical design of sharp waveguide bends and corners," Appl. Phys. Lett. 93, 251111 (2008).
[CrossRef]

M. Rahm, D. A. Roberts, J. B. Pendry, and D. R. Smith, "Transformation-optical design of adaptive beam bends and beam expanders," Opt. Express 16, 11555 (2008).
[CrossRef] [PubMed]

Q4. M. Rahm, D. Schurig, D. A. Roberts, S. A. Cummer, D. R. Smith, and J. B. Pendry, "Design of electromagnetic cloaks and concentrators using form-invariant coordinate transformations of maxwell’s equations," Photonics Nanostruct. Fund. Appl. 6, 87-95 (2008).
[CrossRef]

D. Schurig, J. B. Pendry, and D. R. Smith, "Transformation-designed optical elements," Opt. Express 15, 14772 (2007).
[CrossRef] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, "Metamaterial electromagnetic cloak at microwave frequencies," Science 314, 977-80 (2006).
[CrossRef] [PubMed]

T. Driscoll, D. N. Basov, A. F. Starr, P.M. Rye, S. Nemat-Nasser, D. Schurig, D. R. Smith, "Free-space microwave focusing by a negative-index gradient lens," Appl. Phys. Lett. 87, 081101 (2006).
[CrossRef]

J. B. Pendry, D. Schurig, and D. R. Smith, "Controlling electromagnetic fields," Science 312, 1780-2 (2006).
[CrossRef] [PubMed]

D. R. Smith, J. J. Mock, A. F. Starr, and D. Schurig, "Gradient index metamaterials," Phys. Rev. E 71, 036609 (2005).
[CrossRef]

D. R. Smith, S. Schultz, P. Markos, and C. M. Soukoulis, "Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients," Phys. Rev. B 65, 195104 (2002).
[CrossRef]

Soukoulis, C. M.

D. R. Smith, S. Schultz, P. Markos, and C. M. Soukoulis, "Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients," Phys. Rev. B 65, 195104 (2002).
[CrossRef]

Starr, A. F.

T. Driscoll, D. N. Basov, A. F. Starr, P.M. Rye, S. Nemat-Nasser, D. Schurig, D. R. Smith, "Free-space microwave focusing by a negative-index gradient lens," Appl. Phys. Lett. 87, 081101 (2006).
[CrossRef]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, "Metamaterial electromagnetic cloak at microwave frequencies," Science 314, 977-80 (2006).
[CrossRef] [PubMed]

D. R. Smith, J. J. Mock, A. F. Starr, and D. Schurig, "Gradient index metamaterials," Phys. Rev. E 71, 036609 (2005).
[CrossRef]

Tretyakov, S.

Q1. A. Sihvola, S. Tretyakov, A. de Baas, "Metamaterials with extreme material parameters," J. Commun. Technol. Electron. 52, 986-90 (2007).
[CrossRef]

Valentine, J.

J. Valentine, J. Li, T. Zentgraf, G. Bartal and X. Zhang, "An optical cloak made of dielectrics," Nat. Materials 8, 568-71 (2009).
[CrossRef]

Veselago, V. G.

V. G. Veselago, "The electrodynamics of substances with simultaneously negative values of ? and ?," Sov. Phys. Usp. 10, 509-14 (1968).
[CrossRef]

Werner, D. H.

D. Kwon and D. H. Werner, "Transformation optical designs for wave collimators, flat lenses and right-angle bends," New J. Phys. 10, 115023 (2008).
[CrossRef]

Willis, J. R.

G.W. Milton, M. Briane, and J. R. Willis, "On cloaking for elasticity and physical equations with a transformation invariant form," New J. Phys. 8, 248 (2006).
[CrossRef]

Wu, B.

H. Chen, B. Wu, L. Ran, T. M. Grzegorczyk, and J. A. Kong, "Controllable left-handed metamaterial and its application to a steerable antenna," Appl. Phys. Lett. 89, 053509 (2006).
[CrossRef]

Wu, M.

C. Lee and M. Wu, "Apexes-linked circle gratings for low-loss waveguide bends," IEEE Photon. Technol. Lett. 13, 597-9 (2001).
[CrossRef]

M. Wu, P. Fan, J. Hsu, and C. Lee, "Design of ideal structures for lossless bends in optical waveguides by conformal mapping," J. Lightwave Technol. 14, 2604-14 (1996).
[CrossRef]

Xi, W.

H. F. Ma, X. Chen, H. S. Xu, X. M. Yang, W. Xi. Jiang, and T. J. Cui, "Experiments on high-performance beam-scanning antennas made of gradient-index metamaterials," Appl. Phys. Lett. 95, 094107 (2009)
[CrossRef]

Xu, H. S.

H. F. Ma, X. Chen, H. S. Xu, X. M. Yang, W. Xi. Jiang, and T. J. Cui, "Experiments on high-performance beam-scanning antennas made of gradient-index metamaterials," Appl. Phys. Lett. 95, 094107 (2009)
[CrossRef]

Yang, X. M.

H. F. Ma, X. Chen, H. S. Xu, X. M. Yang, W. Xi. Jiang, and T. J. Cui, "Experiments on high-performance beam-scanning antennas made of gradient-index metamaterials," Appl. Phys. Lett. 95, 094107 (2009)
[CrossRef]

W. X. Jiang, T. J. Cui, X. Y. Zhou, X. M. Yang, and Q. Cheng, "Arbitrary bending of electromagnetic waves using realizable inhomogeneous and anisotropic materials," Phys. Rev. E 78, 066607 (2008).
[CrossRef]

X. Q. Lin, T. J. Cui, J. Y. Chin, X. M. Yang, Q. Cheng, and R. Liu, "Controlling electromagnetic waves using tunable gradient dielectric metamaterial lens," Appl. Phys. Lett. 92, 131904 (2008).
[CrossRef]

Zentgraf, T.

J. Valentine, J. Li, T. Zentgraf, G. Bartal and X. Zhang, "An optical cloak made of dielectrics," Nat. Materials 8, 568-71 (2009).
[CrossRef]

Zhang, X.

J. Valentine, J. Li, T. Zentgraf, G. Bartal and X. Zhang, "An optical cloak made of dielectrics," Nat. Materials 8, 568-71 (2009).
[CrossRef]

Zhou, X. Y.

W. X. Jiang, T. J. Cui, X. Y. Zhou, X. M. Yang, and Q. Cheng, "Arbitrary bending of electromagnetic waves using realizable inhomogeneous and anisotropic materials," Phys. Rev. E 78, 066607 (2008).
[CrossRef]

Ziolkowski, R. W.

Q2. A. Alu, N. Engheta, A. Erentok, and R. W. Ziolkowski, "Single-negative, double-negative, and low-index metamaterials and their electromagnetic applications," IEEE Antennas Propag. Mag. 49, 23-36 (2007).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. Lett. (5)

H. F. Ma, X. Chen, H. S. Xu, X. M. Yang, W. Xi. Jiang, and T. J. Cui, "Experiments on high-performance beam-scanning antennas made of gradient-index metamaterials," Appl. Phys. Lett. 95, 094107 (2009)
[CrossRef]

D. A. Roberts, M. Rahm, J. B. Pendry, and D. R. Smith, "Transformation-optical design of sharp waveguide bends and corners," Appl. Phys. Lett. 93, 251111 (2008).
[CrossRef]

X. Q. Lin, T. J. Cui, J. Y. Chin, X. M. Yang, Q. Cheng, and R. Liu, "Controlling electromagnetic waves using tunable gradient dielectric metamaterial lens," Appl. Phys. Lett. 92, 131904 (2008).
[CrossRef]

H. Chen, B. Wu, L. Ran, T. M. Grzegorczyk, and J. A. Kong, "Controllable left-handed metamaterial and its application to a steerable antenna," Appl. Phys. Lett. 89, 053509 (2006).
[CrossRef]

T. Driscoll, D. N. Basov, A. F. Starr, P.M. Rye, S. Nemat-Nasser, D. Schurig, D. R. Smith, "Free-space microwave focusing by a negative-index gradient lens," Appl. Phys. Lett. 87, 081101 (2006).
[CrossRef]

Electron. Lett. (1)

H. Hatami-Hanza, P. L. Chu, and J. Nayye, "Low-loss optical waveguide-bend configuration with curved corner reflector," Electron. Lett. 28, 2283-5 (1992).
[CrossRef]

IEEE Antennas Propag. Mag. (1)

Q2. A. Alu, N. Engheta, A. Erentok, and R. W. Ziolkowski, "Single-negative, double-negative, and low-index metamaterials and their electromagnetic applications," IEEE Antennas Propag. Mag. 49, 23-36 (2007).
[CrossRef]

IEEE J. Quantum Electron. (1)

M. Heiblum and J. H. Harris, "Analysis of curved optical waveguides by conformal transformation," IEEE J. Quantum Electron. 11, 75-83 (1975).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

C. Lee and M. Wu, "Apexes-linked circle gratings for low-loss waveguide bends," IEEE Photon. Technol. Lett. 13, 597-9 (2001).
[CrossRef]

J. Appl. Phys. (2)

Z. L. Mei and T. J. Cui, "Arbitrary bending of electromagnetic waves using isotropic materials," J. Appl. Phys. 105, 104913 (2009).
[CrossRef]

K. Aydina and E. Ozbay, "Capacitor-loaded split ring resonators as tunable metamaterial components," J. Appl. Phys. 101, 024911 (2007).
[CrossRef]

J. Commun. Technol. Electron. (1)

Q1. A. Sihvola, S. Tretyakov, A. de Baas, "Metamaterials with extreme material parameters," J. Commun. Technol. Electron. 52, 986-90 (2007).
[CrossRef]

J. Lightwave Technol. (1)

M. Wu, P. Fan, J. Hsu, and C. Lee, "Design of ideal structures for lossless bends in optical waveguides by conformal mapping," J. Lightwave Technol. 14, 2604-14 (1996).
[CrossRef]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (1)

Nat. Materials (1)

J. Valentine, J. Li, T. Zentgraf, G. Bartal and X. Zhang, "An optical cloak made of dielectrics," Nat. Materials 8, 568-71 (2009).
[CrossRef]

Nat. Phonotics (1)

Q5. L. H. Gabrielli, J. Cardenas, C. B. Poitras, and M. Lipson, "Silicon nanostructure cloak operating at optical frequencies," Nat. Phonotics 3, 461-3 (2009).
[CrossRef]

Nat. Photon. (1)

Q3. W. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, "Optical cloaking with metamaterials," Nat. Photon. 1, 224-7 (2007).
[CrossRef]

New J. Phys. (2)

G.W. Milton, M. Briane, and J. R. Willis, "On cloaking for elasticity and physical equations with a transformation invariant form," New J. Phys. 8, 248 (2006).
[CrossRef]

D. Kwon and D. H. Werner, "Transformation optical designs for wave collimators, flat lenses and right-angle bends," New J. Phys. 10, 115023 (2008).
[CrossRef]

Opt. Express (4)

Photonics Nanostruct. Fund. Appl. (1)

Q4. M. Rahm, D. Schurig, D. A. Roberts, S. A. Cummer, D. R. Smith, and J. B. Pendry, "Design of electromagnetic cloaks and concentrators using form-invariant coordinate transformations of maxwell’s equations," Photonics Nanostruct. Fund. Appl. 6, 87-95 (2008).
[CrossRef]

Phys. Rev. B (2)

A. Alu, M. G. Silveirinha, A. Salandnno, and N. Engheta, "Epsilon-near-zero metamaterials and electromagnetic sources: tailoring the radiation phase pattern," Phys. Rev. B 75, 155410 (2007).
[CrossRef]

D. R. Smith, S. Schultz, P. Markos, and C. M. Soukoulis, "Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients," Phys. Rev. B 65, 195104 (2002).
[CrossRef]

Phys. Rev. E (3)

D. R. Smith, J. J. Mock, A. F. Starr, and D. Schurig, "Gradient index metamaterials," Phys. Rev. E 71, 036609 (2005).
[CrossRef]

W. X. Jiang, T. J. Cui, X. Y. Zhou, X. M. Yang, and Q. Cheng, "Arbitrary bending of electromagnetic waves using realizable inhomogeneous and anisotropic materials," Phys. Rev. E 78, 066607 (2008).
[CrossRef]

W. X. Jiang, J. Y. Chin, Z. Li, Q. Cheng, R. Liu, and T. J. Cui, "Analytical design of conformally invisible cloaks for arbitrarily shaped objects," Phys. Rev. E 77, 066607 (2008).
[CrossRef]

Phys. Rev. Lett. (1)

J. Li and J. B. Pendry, "Hiding under the carpet: a new strategy for cloaking," Phys. Rev. Lett. 101, 203901 (2008).
[CrossRef] [PubMed]

Science (4)

R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, and D. R. Smith, "Broadband ground-plane cloak," Science 323, 366-9 (2009).
[CrossRef] [PubMed]

J. B. Pendry, D. Schurig, and D. R. Smith, "Controlling electromagnetic fields," Science 312, 1780-2 (2006).
[CrossRef] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, "Metamaterial electromagnetic cloak at microwave frequencies," Science 314, 977-80 (2006).
[CrossRef] [PubMed]

Ulf Leonhardt, "Optical conformal mapping," Science 312, 1777-80 (2006).
[CrossRef] [PubMed]

Sov. Phys. Usp. (1)

V. G. Veselago, "The electrodynamics of substances with simultaneously negative values of ? and ?," Sov. Phys. Usp. 10, 509-14 (1968).
[CrossRef]

Other (1)

M. Born and E. Wolf, Principles of Optics, (Cambridge University Press, Cambridge, 1999).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Schematic of the bend structure (a) and the refractive index distribution for the ideal bend structure (b). Here, A=0.214, r 1=0.1 m and r 2=0.148 m.

Fig. 2.
Fig. 2.

HFSS model of the unit cell (a), its geometry (b) and the relationship curve for the retrieved refractive index with a. The working frequency is 10 GHz.

Fig. 3.
Fig. 3.

(Color online) The layered structure (a) and its equivalent refractive index distribution(b). Green rectangles represent unit cells, they are elongated for clear demonstration and aligned along the radius direction.

Fig. 4.
Fig. 4.

(Color online) Photograph of the fabricated waveguide bend (a), the field mapping equipment (b) and two typical strips in the bend (c).

Fig. 5.
Fig. 5.

(Color online) Field mapping results without the bend in the 2D field mapping equipment. (a) 10 GHz; (b) 11 GHz.

Fig. 6.
Fig. 6.

(Color online) Simulation results for the bend structure with perfectly matched materials (a), (b), nonmagnetic materials (c), (d) and the practical materials used in the device (e), (f). The snapshot of the electric field distribution is given in (a), (c) and (e) respectively and (b), (d), (f) show the norm of the electric field. f=10 GHz, A=0.214 in all cases.

Fig. 7.
Fig. 7.

(Color online) Electric field distribution of the dielectric bend structure for the simulation (a), and experimental measurement (b), (c), (d), (e) and (f). Here, A=0.196 for (a) and f=10 GHz for (a), (b) and (c). For subplots (d), (e) and (f), f=9 GHz, 8 GHz and 11 GHz respectively.

Fig. 8.
Fig. 8.

(Color online) Spectral responses of the unit cells used in the device. (a) The real part of the refractive index. (b) The imaginary part of the refractive index. In both plots, larger values correspond to cells in the inner layers.

Metrics