Abstract

We report an extensive comparison of the laser performances of diode-pumped Yb3+:YLF (30% at.) and Yb3+:CaF2 (5% at.) crystals, lasing at room-temperature and operating in two different operation mode, i.e. Continuous Wave (CW) and quasi-CW. An in-depth investigation of the crystals behavior by changing the pump power, clearly shows the crystal absorption depends on the lasing conditions. Therefore, we report an unambiguous definition of the slope efficiency calculated taken into account the real measured crystal absorption under laser action. Finally, we present a study of problems related to thermally induced losses which are expected influencing the laser performance.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Lucca, G. Debourg, M. Jacquemet, F. Druon, F. Balembois, P. Georges, P. Camy, J. L. Doualan, and R. Moncorgé, “High-power diode-pumped Yb3+:CaF2 femtosecond laser,” Opt. Lett. 29(23), 2767–2769 (2004).
    [CrossRef] [PubMed]
  2. N. Coluccelli, G. Galzerano, L. Bonelli, A. Di Lieto, M. Tonelli, and P. Laporta, “Diode-pumped passively mode-locked Yb:YLF laser,” Opt. Express 16(5), 2922–2927 (2008).
    [CrossRef] [PubMed]
  3. A. Lucca, M. Jacquemet, F. Druon, F. Balembois, P. Georges, P. Camy, J. L. Doualan, and R. Moncorgé, “High-power tunable diode-pumped Yb3+:CaF2 laser,” Opt. Lett. 29(16), 1879–1881 (2004).
    [CrossRef] [PubMed]
  4. V. Petit, J. L. Doualan, P. Camy, V. Mènerd, and R. Moncorgé, “CW and tunable laser operation of Yb3+ doped CaF2,” Appl. Phys. B 78, 681–684 (2004).
    [CrossRef]
  5. T. J. Carrig, J. W. Hobbs, C. J. Urbina, A. K. Hankla, G. J. Wagner, C. P. Hale, S. W. Henderson, R. A. Swirbalus, and C. A. Denmann, “Single-frequency diode-pumped Yb:YAG and Yb:YLF laser”, in Advanced Solid State Lasers, H. Injeyan, U. Keller and C. Marshall, eds., Vol. 34 of OSA Trends in Optic and Photonics Series ~Optical Society of America, Washington, D.C., 2000, pp 144–149.
  6. M. Vannini, G. Toci, D. Alderighi, D. Parisi, F. Cornacchia, and M. Tonelli, “High efficiency room temperature laser emission in heavily doped Yb:YLF,” Opt. Express 15(13), 7994–8002 (2007).
    [CrossRef] [PubMed]
  7. J. Kawanaka, H. Hishioka, N. Inoue, and K. Ueda, “Tunable continuous-wave Yb:YLF laser operation with a diode-pumped chirped-pulse amplification system,” Appl. Opt. 40(21), 3542 (2001).
    [CrossRef]
  8. S. Chénais, F. Druon, S. Forget, F. Balembois, and P. Georges, “On thermal effects in solid state laser: the case of Ytterbium-doped materials,” Prog. Quantum Electron. 30(4), 89–153 (2006).
    [CrossRef]
  9. V. Petit, P. Camy, J. L. Doualan, and R. Moncorgé, “Refined analysis of the luminescent centers in the Yb3+:CaF2 laser crystal,” J. Lumin. 122-123, 5–7 (2007).
    [CrossRef]
  10. L. E. Bausa, G. Lifante, E. Daran, and P. L. Pernas, “CaF2:Er3+ molecular beam epitaxial layers as optical waveguides,” Appl. Phys. Lett. 68(23), 3242 (1996).
    [CrossRef]
  11. J. Kawanaka, K. Yamakawa, H. Nishioka, and K. Ueda, “30-mJ, diode-pumped, chirped-pulse Yb:YLF regenerative amplifier,” Opt. Lett. 28(21), 2121–2123 (2003).
    [CrossRef] [PubMed]
  12. R. L. Aggarwal, D. J. Ripin, J. R. Ochoa, and T. Y. Fan, “Measurement of thermo-optic properties of Y3Al5O12, Lu3Al5O12, YAlO3, LiYF4, LiLuF4, BaY2F8, KG(WO4)2, and KY(WO4)2 laser crystals in the 80–300 K temperature range,” J. Appl. Phys. 98(10), 103514–103528 (2005).
    [CrossRef]
  13. M. Ito, C. Goutaudier, Y. Guyot, K. Lebbou, T. Fukuda, and G. Boulon, “Crystal growth, Yb3+ spectroscopy, concentration quenching analysis and potentiality of laser emission in Ca1−XYbXF2+X,” J. Phys. Condens. Matter 16(8), 1501–1521 (2004).
    [CrossRef]
  14. J. Petit, P. Goldner, and B. Viana, “Laser emission with low quantum defect in Yb: CaGdAlO4.,” Opt. Lett. 30(11), 1345–1347 (2005).
    [CrossRef] [PubMed]
  15. A. Bensalah, M. Ito, Y. Guyot, C. Goutaudier, A. Jouini, A. Brenier, H. Sato, T. Fukuda, and G. Boulon, “Spectroscopic properties and quenching processes of Yb3+ in Fluoride single crystals for laser applications,” J. Lumin. 122–123, 444–446 (2007).
    [CrossRef]

2008

2007

M. Vannini, G. Toci, D. Alderighi, D. Parisi, F. Cornacchia, and M. Tonelli, “High efficiency room temperature laser emission in heavily doped Yb:YLF,” Opt. Express 15(13), 7994–8002 (2007).
[CrossRef] [PubMed]

V. Petit, P. Camy, J. L. Doualan, and R. Moncorgé, “Refined analysis of the luminescent centers in the Yb3+:CaF2 laser crystal,” J. Lumin. 122-123, 5–7 (2007).
[CrossRef]

A. Bensalah, M. Ito, Y. Guyot, C. Goutaudier, A. Jouini, A. Brenier, H. Sato, T. Fukuda, and G. Boulon, “Spectroscopic properties and quenching processes of Yb3+ in Fluoride single crystals for laser applications,” J. Lumin. 122–123, 444–446 (2007).
[CrossRef]

2006

S. Chénais, F. Druon, S. Forget, F. Balembois, and P. Georges, “On thermal effects in solid state laser: the case of Ytterbium-doped materials,” Prog. Quantum Electron. 30(4), 89–153 (2006).
[CrossRef]

2005

R. L. Aggarwal, D. J. Ripin, J. R. Ochoa, and T. Y. Fan, “Measurement of thermo-optic properties of Y3Al5O12, Lu3Al5O12, YAlO3, LiYF4, LiLuF4, BaY2F8, KG(WO4)2, and KY(WO4)2 laser crystals in the 80–300 K temperature range,” J. Appl. Phys. 98(10), 103514–103528 (2005).
[CrossRef]

J. Petit, P. Goldner, and B. Viana, “Laser emission with low quantum defect in Yb: CaGdAlO4.,” Opt. Lett. 30(11), 1345–1347 (2005).
[CrossRef] [PubMed]

2004

A. Lucca, M. Jacquemet, F. Druon, F. Balembois, P. Georges, P. Camy, J. L. Doualan, and R. Moncorgé, “High-power tunable diode-pumped Yb3+:CaF2 laser,” Opt. Lett. 29(16), 1879–1881 (2004).
[CrossRef] [PubMed]

A. Lucca, G. Debourg, M. Jacquemet, F. Druon, F. Balembois, P. Georges, P. Camy, J. L. Doualan, and R. Moncorgé, “High-power diode-pumped Yb3+:CaF2 femtosecond laser,” Opt. Lett. 29(23), 2767–2769 (2004).
[CrossRef] [PubMed]

M. Ito, C. Goutaudier, Y. Guyot, K. Lebbou, T. Fukuda, and G. Boulon, “Crystal growth, Yb3+ spectroscopy, concentration quenching analysis and potentiality of laser emission in Ca1−XYbXF2+X,” J. Phys. Condens. Matter 16(8), 1501–1521 (2004).
[CrossRef]

V. Petit, J. L. Doualan, P. Camy, V. Mènerd, and R. Moncorgé, “CW and tunable laser operation of Yb3+ doped CaF2,” Appl. Phys. B 78, 681–684 (2004).
[CrossRef]

2003

2001

1996

L. E. Bausa, G. Lifante, E. Daran, and P. L. Pernas, “CaF2:Er3+ molecular beam epitaxial layers as optical waveguides,” Appl. Phys. Lett. 68(23), 3242 (1996).
[CrossRef]

Aggarwal, R. L.

R. L. Aggarwal, D. J. Ripin, J. R. Ochoa, and T. Y. Fan, “Measurement of thermo-optic properties of Y3Al5O12, Lu3Al5O12, YAlO3, LiYF4, LiLuF4, BaY2F8, KG(WO4)2, and KY(WO4)2 laser crystals in the 80–300 K temperature range,” J. Appl. Phys. 98(10), 103514–103528 (2005).
[CrossRef]

Alderighi, D.

Balembois, F.

Bausa, L. E.

L. E. Bausa, G. Lifante, E. Daran, and P. L. Pernas, “CaF2:Er3+ molecular beam epitaxial layers as optical waveguides,” Appl. Phys. Lett. 68(23), 3242 (1996).
[CrossRef]

Bensalah, A.

A. Bensalah, M. Ito, Y. Guyot, C. Goutaudier, A. Jouini, A. Brenier, H. Sato, T. Fukuda, and G. Boulon, “Spectroscopic properties and quenching processes of Yb3+ in Fluoride single crystals for laser applications,” J. Lumin. 122–123, 444–446 (2007).
[CrossRef]

Bonelli, L.

Boulon, G.

A. Bensalah, M. Ito, Y. Guyot, C. Goutaudier, A. Jouini, A. Brenier, H. Sato, T. Fukuda, and G. Boulon, “Spectroscopic properties and quenching processes of Yb3+ in Fluoride single crystals for laser applications,” J. Lumin. 122–123, 444–446 (2007).
[CrossRef]

M. Ito, C. Goutaudier, Y. Guyot, K. Lebbou, T. Fukuda, and G. Boulon, “Crystal growth, Yb3+ spectroscopy, concentration quenching analysis and potentiality of laser emission in Ca1−XYbXF2+X,” J. Phys. Condens. Matter 16(8), 1501–1521 (2004).
[CrossRef]

Brenier, A.

A. Bensalah, M. Ito, Y. Guyot, C. Goutaudier, A. Jouini, A. Brenier, H. Sato, T. Fukuda, and G. Boulon, “Spectroscopic properties and quenching processes of Yb3+ in Fluoride single crystals for laser applications,” J. Lumin. 122–123, 444–446 (2007).
[CrossRef]

Camy, P.

V. Petit, P. Camy, J. L. Doualan, and R. Moncorgé, “Refined analysis of the luminescent centers in the Yb3+:CaF2 laser crystal,” J. Lumin. 122-123, 5–7 (2007).
[CrossRef]

V. Petit, J. L. Doualan, P. Camy, V. Mènerd, and R. Moncorgé, “CW and tunable laser operation of Yb3+ doped CaF2,” Appl. Phys. B 78, 681–684 (2004).
[CrossRef]

A. Lucca, M. Jacquemet, F. Druon, F. Balembois, P. Georges, P. Camy, J. L. Doualan, and R. Moncorgé, “High-power tunable diode-pumped Yb3+:CaF2 laser,” Opt. Lett. 29(16), 1879–1881 (2004).
[CrossRef] [PubMed]

A. Lucca, G. Debourg, M. Jacquemet, F. Druon, F. Balembois, P. Georges, P. Camy, J. L. Doualan, and R. Moncorgé, “High-power diode-pumped Yb3+:CaF2 femtosecond laser,” Opt. Lett. 29(23), 2767–2769 (2004).
[CrossRef] [PubMed]

Chénais, S.

S. Chénais, F. Druon, S. Forget, F. Balembois, and P. Georges, “On thermal effects in solid state laser: the case of Ytterbium-doped materials,” Prog. Quantum Electron. 30(4), 89–153 (2006).
[CrossRef]

Coluccelli, N.

Cornacchia, F.

Daran, E.

L. E. Bausa, G. Lifante, E. Daran, and P. L. Pernas, “CaF2:Er3+ molecular beam epitaxial layers as optical waveguides,” Appl. Phys. Lett. 68(23), 3242 (1996).
[CrossRef]

Debourg, G.

Di Lieto, A.

Doualan, J. L.

V. Petit, P. Camy, J. L. Doualan, and R. Moncorgé, “Refined analysis of the luminescent centers in the Yb3+:CaF2 laser crystal,” J. Lumin. 122-123, 5–7 (2007).
[CrossRef]

V. Petit, J. L. Doualan, P. Camy, V. Mènerd, and R. Moncorgé, “CW and tunable laser operation of Yb3+ doped CaF2,” Appl. Phys. B 78, 681–684 (2004).
[CrossRef]

A. Lucca, M. Jacquemet, F. Druon, F. Balembois, P. Georges, P. Camy, J. L. Doualan, and R. Moncorgé, “High-power tunable diode-pumped Yb3+:CaF2 laser,” Opt. Lett. 29(16), 1879–1881 (2004).
[CrossRef] [PubMed]

A. Lucca, G. Debourg, M. Jacquemet, F. Druon, F. Balembois, P. Georges, P. Camy, J. L. Doualan, and R. Moncorgé, “High-power diode-pumped Yb3+:CaF2 femtosecond laser,” Opt. Lett. 29(23), 2767–2769 (2004).
[CrossRef] [PubMed]

Druon, F.

Fan, T. Y.

R. L. Aggarwal, D. J. Ripin, J. R. Ochoa, and T. Y. Fan, “Measurement of thermo-optic properties of Y3Al5O12, Lu3Al5O12, YAlO3, LiYF4, LiLuF4, BaY2F8, KG(WO4)2, and KY(WO4)2 laser crystals in the 80–300 K temperature range,” J. Appl. Phys. 98(10), 103514–103528 (2005).
[CrossRef]

Forget, S.

S. Chénais, F. Druon, S. Forget, F. Balembois, and P. Georges, “On thermal effects in solid state laser: the case of Ytterbium-doped materials,” Prog. Quantum Electron. 30(4), 89–153 (2006).
[CrossRef]

Fukuda, T.

A. Bensalah, M. Ito, Y. Guyot, C. Goutaudier, A. Jouini, A. Brenier, H. Sato, T. Fukuda, and G. Boulon, “Spectroscopic properties and quenching processes of Yb3+ in Fluoride single crystals for laser applications,” J. Lumin. 122–123, 444–446 (2007).
[CrossRef]

M. Ito, C. Goutaudier, Y. Guyot, K. Lebbou, T. Fukuda, and G. Boulon, “Crystal growth, Yb3+ spectroscopy, concentration quenching analysis and potentiality of laser emission in Ca1−XYbXF2+X,” J. Phys. Condens. Matter 16(8), 1501–1521 (2004).
[CrossRef]

Galzerano, G.

Georges, P.

Goldner, P.

Goutaudier, C.

A. Bensalah, M. Ito, Y. Guyot, C. Goutaudier, A. Jouini, A. Brenier, H. Sato, T. Fukuda, and G. Boulon, “Spectroscopic properties and quenching processes of Yb3+ in Fluoride single crystals for laser applications,” J. Lumin. 122–123, 444–446 (2007).
[CrossRef]

M. Ito, C. Goutaudier, Y. Guyot, K. Lebbou, T. Fukuda, and G. Boulon, “Crystal growth, Yb3+ spectroscopy, concentration quenching analysis and potentiality of laser emission in Ca1−XYbXF2+X,” J. Phys. Condens. Matter 16(8), 1501–1521 (2004).
[CrossRef]

Guyot, Y.

A. Bensalah, M. Ito, Y. Guyot, C. Goutaudier, A. Jouini, A. Brenier, H. Sato, T. Fukuda, and G. Boulon, “Spectroscopic properties and quenching processes of Yb3+ in Fluoride single crystals for laser applications,” J. Lumin. 122–123, 444–446 (2007).
[CrossRef]

M. Ito, C. Goutaudier, Y. Guyot, K. Lebbou, T. Fukuda, and G. Boulon, “Crystal growth, Yb3+ spectroscopy, concentration quenching analysis and potentiality of laser emission in Ca1−XYbXF2+X,” J. Phys. Condens. Matter 16(8), 1501–1521 (2004).
[CrossRef]

Hishioka, H.

Inoue, N.

Ito, M.

A. Bensalah, M. Ito, Y. Guyot, C. Goutaudier, A. Jouini, A. Brenier, H. Sato, T. Fukuda, and G. Boulon, “Spectroscopic properties and quenching processes of Yb3+ in Fluoride single crystals for laser applications,” J. Lumin. 122–123, 444–446 (2007).
[CrossRef]

M. Ito, C. Goutaudier, Y. Guyot, K. Lebbou, T. Fukuda, and G. Boulon, “Crystal growth, Yb3+ spectroscopy, concentration quenching analysis and potentiality of laser emission in Ca1−XYbXF2+X,” J. Phys. Condens. Matter 16(8), 1501–1521 (2004).
[CrossRef]

Jacquemet, M.

Jouini, A.

A. Bensalah, M. Ito, Y. Guyot, C. Goutaudier, A. Jouini, A. Brenier, H. Sato, T. Fukuda, and G. Boulon, “Spectroscopic properties and quenching processes of Yb3+ in Fluoride single crystals for laser applications,” J. Lumin. 122–123, 444–446 (2007).
[CrossRef]

Kawanaka, J.

Laporta, P.

Lebbou, K.

M. Ito, C. Goutaudier, Y. Guyot, K. Lebbou, T. Fukuda, and G. Boulon, “Crystal growth, Yb3+ spectroscopy, concentration quenching analysis and potentiality of laser emission in Ca1−XYbXF2+X,” J. Phys. Condens. Matter 16(8), 1501–1521 (2004).
[CrossRef]

Lifante, G.

L. E. Bausa, G. Lifante, E. Daran, and P. L. Pernas, “CaF2:Er3+ molecular beam epitaxial layers as optical waveguides,” Appl. Phys. Lett. 68(23), 3242 (1996).
[CrossRef]

Lucca, A.

Mènerd, V.

V. Petit, J. L. Doualan, P. Camy, V. Mènerd, and R. Moncorgé, “CW and tunable laser operation of Yb3+ doped CaF2,” Appl. Phys. B 78, 681–684 (2004).
[CrossRef]

Moncorgé, R.

V. Petit, P. Camy, J. L. Doualan, and R. Moncorgé, “Refined analysis of the luminescent centers in the Yb3+:CaF2 laser crystal,” J. Lumin. 122-123, 5–7 (2007).
[CrossRef]

V. Petit, J. L. Doualan, P. Camy, V. Mènerd, and R. Moncorgé, “CW and tunable laser operation of Yb3+ doped CaF2,” Appl. Phys. B 78, 681–684 (2004).
[CrossRef]

A. Lucca, M. Jacquemet, F. Druon, F. Balembois, P. Georges, P. Camy, J. L. Doualan, and R. Moncorgé, “High-power tunable diode-pumped Yb3+:CaF2 laser,” Opt. Lett. 29(16), 1879–1881 (2004).
[CrossRef] [PubMed]

A. Lucca, G. Debourg, M. Jacquemet, F. Druon, F. Balembois, P. Georges, P. Camy, J. L. Doualan, and R. Moncorgé, “High-power diode-pumped Yb3+:CaF2 femtosecond laser,” Opt. Lett. 29(23), 2767–2769 (2004).
[CrossRef] [PubMed]

Nishioka, H.

Ochoa, J. R.

R. L. Aggarwal, D. J. Ripin, J. R. Ochoa, and T. Y. Fan, “Measurement of thermo-optic properties of Y3Al5O12, Lu3Al5O12, YAlO3, LiYF4, LiLuF4, BaY2F8, KG(WO4)2, and KY(WO4)2 laser crystals in the 80–300 K temperature range,” J. Appl. Phys. 98(10), 103514–103528 (2005).
[CrossRef]

Parisi, D.

Pernas, P. L.

L. E. Bausa, G. Lifante, E. Daran, and P. L. Pernas, “CaF2:Er3+ molecular beam epitaxial layers as optical waveguides,” Appl. Phys. Lett. 68(23), 3242 (1996).
[CrossRef]

Petit, J.

Petit, V.

V. Petit, P. Camy, J. L. Doualan, and R. Moncorgé, “Refined analysis of the luminescent centers in the Yb3+:CaF2 laser crystal,” J. Lumin. 122-123, 5–7 (2007).
[CrossRef]

V. Petit, J. L. Doualan, P. Camy, V. Mènerd, and R. Moncorgé, “CW and tunable laser operation of Yb3+ doped CaF2,” Appl. Phys. B 78, 681–684 (2004).
[CrossRef]

Ripin, D. J.

R. L. Aggarwal, D. J. Ripin, J. R. Ochoa, and T. Y. Fan, “Measurement of thermo-optic properties of Y3Al5O12, Lu3Al5O12, YAlO3, LiYF4, LiLuF4, BaY2F8, KG(WO4)2, and KY(WO4)2 laser crystals in the 80–300 K temperature range,” J. Appl. Phys. 98(10), 103514–103528 (2005).
[CrossRef]

Sato, H.

A. Bensalah, M. Ito, Y. Guyot, C. Goutaudier, A. Jouini, A. Brenier, H. Sato, T. Fukuda, and G. Boulon, “Spectroscopic properties and quenching processes of Yb3+ in Fluoride single crystals for laser applications,” J. Lumin. 122–123, 444–446 (2007).
[CrossRef]

Toci, G.

Tonelli, M.

Ueda, K.

Vannini, M.

Viana, B.

Yamakawa, K.

Appl. Opt.

Appl. Phys. B

V. Petit, J. L. Doualan, P. Camy, V. Mènerd, and R. Moncorgé, “CW and tunable laser operation of Yb3+ doped CaF2,” Appl. Phys. B 78, 681–684 (2004).
[CrossRef]

Appl. Phys. Lett.

L. E. Bausa, G. Lifante, E. Daran, and P. L. Pernas, “CaF2:Er3+ molecular beam epitaxial layers as optical waveguides,” Appl. Phys. Lett. 68(23), 3242 (1996).
[CrossRef]

J. Appl. Phys.

R. L. Aggarwal, D. J. Ripin, J. R. Ochoa, and T. Y. Fan, “Measurement of thermo-optic properties of Y3Al5O12, Lu3Al5O12, YAlO3, LiYF4, LiLuF4, BaY2F8, KG(WO4)2, and KY(WO4)2 laser crystals in the 80–300 K temperature range,” J. Appl. Phys. 98(10), 103514–103528 (2005).
[CrossRef]

J. Lumin.

A. Bensalah, M. Ito, Y. Guyot, C. Goutaudier, A. Jouini, A. Brenier, H. Sato, T. Fukuda, and G. Boulon, “Spectroscopic properties and quenching processes of Yb3+ in Fluoride single crystals for laser applications,” J. Lumin. 122–123, 444–446 (2007).
[CrossRef]

V. Petit, P. Camy, J. L. Doualan, and R. Moncorgé, “Refined analysis of the luminescent centers in the Yb3+:CaF2 laser crystal,” J. Lumin. 122-123, 5–7 (2007).
[CrossRef]

J. Phys. Condens. Matter

M. Ito, C. Goutaudier, Y. Guyot, K. Lebbou, T. Fukuda, and G. Boulon, “Crystal growth, Yb3+ spectroscopy, concentration quenching analysis and potentiality of laser emission in Ca1−XYbXF2+X,” J. Phys. Condens. Matter 16(8), 1501–1521 (2004).
[CrossRef]

Opt. Express

Opt. Lett.

Prog. Quantum Electron.

S. Chénais, F. Druon, S. Forget, F. Balembois, and P. Georges, “On thermal effects in solid state laser: the case of Ytterbium-doped materials,” Prog. Quantum Electron. 30(4), 89–153 (2006).
[CrossRef]

Other

T. J. Carrig, J. W. Hobbs, C. J. Urbina, A. K. Hankla, G. J. Wagner, C. P. Hale, S. W. Henderson, R. A. Swirbalus, and C. A. Denmann, “Single-frequency diode-pumped Yb:YAG and Yb:YLF laser”, in Advanced Solid State Lasers, H. Injeyan, U. Keller and C. Marshall, eds., Vol. 34 of OSA Trends in Optic and Photonics Series ~Optical Society of America, Washington, D.C., 2000, pp 144–149.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Tunable Laser Cavity. EM: End Mirror (flat); FM: Folding Mirror (radius of curvature 155 mm); OC: Output Mirror (flat); C denotes the direction of the crystal optical axis; P: tuning prism; S: slit. The inset shows the non-tunable cavity configuration used to measured the fraction of the pump power absorbed from crystals. M: flat mirror, F: pump beam filter, L: convergent lens

Fig. 2
Fig. 2

(a)-(b) Fraction of the pump peak power (ABS) absorbed from Yb3+:YLF (a) and Yb3+:CaF2 (b) either when the laser is off (red points) or active by employing an output coupler mirror with a transmission ranging from 1.5% to 10%. (c)-(d) report the slope efficiency for Yb3+:YLF and Yb3+:CaF2 respectively, obtained taken into account the results in (a)-(b), with different output coupler mirrors.

Fig. 3
Fig. 3

Laser peak power as a function of the absorbed pump peak power from Yb3+:YLF (a) and Yb3+:CaF2 (b) obtained by changing the Duty Factor from 20% to 100%. OC transmission is 1.5%.

Fig. 4
Fig. 4

Laser peak power versus the laser wavelength is reported. For both crystals, the pump peak power was 5.95 W, while the transmission of the output coupler mirror was 1.5%.

Tables (2)

Tables Icon

Table 1 Spectroscopic and thermal properties of Yb:YLF and Yb:CaF2

Tables Icon

Table 2 Performance and Comparation of Yb:YLF and Yb:CaF2

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

ILsat=hc/[λLτ(σemL+σabL)]
αasym=N0σabL(ILsat/IPmin)
IPmin=hc/[λLτ(σemP(σabPσemL/σabL))]
απ,σasym=σπ,σabLN0(IπLsat/Iπ,σPmin)
Iπ,σPmin=hc/[λLτ(σπ,σemP(σabPσemL/σabL)π,σ)]

Metrics