Abstract

A novel method is proposed to generate slow and fast lights at arbitrary signal wavelength in benzocyclobutene (BCB) polymer, which eliminates the requirement on the optical nonlinearity or the resonant effect at the signal wavelength with the help of the thermo-optic nonlinear effect induced by a control beam at a different but fixed wavelength. The signal group velocity can be precisely tuned simply by scanning the position of the BCB sample along the light propagation direction. Another advantage is the ability to control chromatically the group velocity of the signal beam by adjusting the control beam in the BCB sample, which, in essence, is to control the refractive index change experienced by the signal beam. This method provides an active chromatic control on the group velocity of light at arbitrary signal wavelength and therefore may have important potential applications in optical communication network and optical information processing.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Q1. Th. F. Krauss, "Why do we need slow light," Nature Photonics 2, 448-450 (2008).
    [CrossRef]
  2. S. E. Harris, "Electromagnetically induced transparency," Phys. Today 50, 36-42 (1997).
    [CrossRef]
  3. L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, "Light speed reduction to 17 metres per second in an ultracold atomic gas," Nature (London) 397,594-598 (1999).
    [CrossRef]
  4. M. M. Kash, V. A. Sautenkov, A. S. Zibrov, L. Hollberg, G. R. Welch, M. D. Lukin, Y. Rostovtsev, E. S. Fry, and M. O. Scully, "Ultraslow group velocity and enhanced nonlinear optical effects in a coherently driven hot atomic gas," Phys. Rev. Lett. 82,5229-5232 (1999).
    [CrossRef]
  5. L. J. Wang, A. Kuzmich, and A. Dogariu, "Gain-assisted superluminal light propagation," Nature (London) 406,277-279 (2000).
    [CrossRef]
  6. M. Fleischhauer and M. D. Lukin, "Dark-state polaritons in electromagnetically induced transparency," Phys. Rev. Lett. 84, 5094-5097 (2000).
    [CrossRef] [PubMed]
  7. Ch. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, "Observation of coherent optical information storage in an atomic medium using halted light pulses," Nature (London) 409,490-493 (2001).
    [CrossRef]
  8. A. V. Turukhin, V. S. Sudarshanam, M. S. Shahriar, J. A. Musser, B. S. Ham, and P. R. Hemmer, "Observation of ultraslow and stored light pulses in a solid," Phys. Rev. Lett. 88, 023602 (2002).
    [CrossRef] [PubMed]
  9. M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, "Observation of ultraslow light propagation in a ruby crystal at room temperature," Phys. Rev. Lett. 90,113903 (2003).
    [CrossRef] [PubMed]
  10. M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, "Superluminal and slow light propagation in a roomtemperature solid," Science 301,200-202 (2003).
    [CrossRef] [PubMed]
  11. K. Y. Song, M. G. Herr’aez, and L. Th’evenaz, "Observation of pulse delaying and advancement in optical fibers using stimulated Brillouin scattering," Opt. Express 13,82-88 (2005).
    [CrossRef] [PubMed]
  12. Zh. Zhu, D. J. Gauthier, and R. W. Boyd, "Stored light in an optical fiber via stimulated Brillouin scattering," Science 318, 1748-1750 (2007).
    [CrossRef] [PubMed]
  13. J. E. Sharping, Y. Okawachi, and A. L. Gaeta, "Wide bandwidth slow light using a Raman fiber amplifier," Opt. Express 13,6092-6098 (2005).
    [CrossRef] [PubMed]
  14. G. Zhang, F. Bo, R. Dong, and J. Xu, "Phase-coupling-induced ultraslow light propagation in solids at room temperature," Phys. Rev. Lett. 93,133903 (2004).
    [CrossRef] [PubMed]
  15. E. Podivilov, B. Sturman, A. Shumelyuk, and S. Odoulov, "Light pulse slowing down up to 0.025 cm/s by photorefractive two-Wave coupling," Phys. Rev. Lett. 91, 083902 (2003).
    [CrossRef] [PubMed]
  16. M. F. Yanik and S. Fan, "Stopping light all optically," Phys. Rev. Lett. 92,083901 (2004).
    [CrossRef] [PubMed]
  17. Y. A. Vlasov, M. OBoyle1, H. F. Hamann, and S. J. McNab, "Active control of slow light on a chip with photonic crystal waveguides," Nature 438, 65-69 (2005).
    [CrossRef] [PubMed]
  18. Q2. Q. Xu, P. Dong, and M. Lipson, "Breaking the delay-bandwidth limit in a photonic structure," Nature Phys. 3,406-410 (2007).
    [CrossRef]
  19. Q3. F. Xia, L. Sekaric, and Y. Vlasov, "Ultracompact optical buffers on a silicon chip," Nature Photon. 1, 65-71 (2007).
    [CrossRef]
  20. I. Guedes, L. Misoguti, and S. C. Zilio, "Precise control of superluminal and slow light propagation by transverse phase modulation," Opt. Express 14,6201-6206 (2007).
    [CrossRef]
  21. F. Gao, J. Xu, G. Zhang, F. Bo, and H. Liu, "Paraxial energy transport of a focused Gaussian beam in ruby with nondegenerate two-wave coupling like mechanism," Appl. Phys. Lett. 92,021121 (2008).
    [CrossRef]
  22. M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, "Sensitive measurement of optical nonlinearities using a single beam," IEEE J. Quantum Electron. 26,760-769 (1990).
    [CrossRef]
  23. J. G. Tian, C. P. Zhang, G. Y. Zhang, and J. W. Li, "Position dispersion and optical limiting resulting from thermally induced nonlinearities in Chinese tea liquids," Appl. Opt. 32,6628-6632 (1993).
    [CrossRef] [PubMed]
  24. D. Weaire, B. S. Wherrett, D. A. B. Miller, and S. D. Smith, "Effect of low-power nonlinear refraction on laserbeam propagation in InSb," Opt. Lett. 4,331-333 (1974).
    [CrossRef]
  25. H. Ma and CidB. de Ara’ujo, "Two-color z-scan technique with enhanced sensitivity," Appl. Phys. Lett. 66,1581-1583 (1995).
    [CrossRef]
  26. R. S. Tucker, P. Ch. Ku, and C. J. Chang-Hasnain, "Slow-light optical buffers: capabilities and fundamental limitations," J. Lightw. Technol. 23, 4046-4066 (2005).
    [CrossRef]
  27. D. A. B. Miller, "Fundamental limit to linear one-dimensional slow light structures," Phys. Rev. Lett. 99, 203903 (2007).
    [CrossRef]

2008 (2)

Q1. Th. F. Krauss, "Why do we need slow light," Nature Photonics 2, 448-450 (2008).
[CrossRef]

F. Gao, J. Xu, G. Zhang, F. Bo, and H. Liu, "Paraxial energy transport of a focused Gaussian beam in ruby with nondegenerate two-wave coupling like mechanism," Appl. Phys. Lett. 92,021121 (2008).
[CrossRef]

2007 (5)

D. A. B. Miller, "Fundamental limit to linear one-dimensional slow light structures," Phys. Rev. Lett. 99, 203903 (2007).
[CrossRef]

I. Guedes, L. Misoguti, and S. C. Zilio, "Precise control of superluminal and slow light propagation by transverse phase modulation," Opt. Express 14,6201-6206 (2007).
[CrossRef]

Q2. Q. Xu, P. Dong, and M. Lipson, "Breaking the delay-bandwidth limit in a photonic structure," Nature Phys. 3,406-410 (2007).
[CrossRef]

Q3. F. Xia, L. Sekaric, and Y. Vlasov, "Ultracompact optical buffers on a silicon chip," Nature Photon. 1, 65-71 (2007).
[CrossRef]

Zh. Zhu, D. J. Gauthier, and R. W. Boyd, "Stored light in an optical fiber via stimulated Brillouin scattering," Science 318, 1748-1750 (2007).
[CrossRef] [PubMed]

2005 (4)

Y. A. Vlasov, M. OBoyle1, H. F. Hamann, and S. J. McNab, "Active control of slow light on a chip with photonic crystal waveguides," Nature 438, 65-69 (2005).
[CrossRef] [PubMed]

K. Y. Song, M. G. Herr’aez, and L. Th’evenaz, "Observation of pulse delaying and advancement in optical fibers using stimulated Brillouin scattering," Opt. Express 13,82-88 (2005).
[CrossRef] [PubMed]

J. E. Sharping, Y. Okawachi, and A. L. Gaeta, "Wide bandwidth slow light using a Raman fiber amplifier," Opt. Express 13,6092-6098 (2005).
[CrossRef] [PubMed]

R. S. Tucker, P. Ch. Ku, and C. J. Chang-Hasnain, "Slow-light optical buffers: capabilities and fundamental limitations," J. Lightw. Technol. 23, 4046-4066 (2005).
[CrossRef]

2004 (2)

M. F. Yanik and S. Fan, "Stopping light all optically," Phys. Rev. Lett. 92,083901 (2004).
[CrossRef] [PubMed]

G. Zhang, F. Bo, R. Dong, and J. Xu, "Phase-coupling-induced ultraslow light propagation in solids at room temperature," Phys. Rev. Lett. 93,133903 (2004).
[CrossRef] [PubMed]

2003 (3)

E. Podivilov, B. Sturman, A. Shumelyuk, and S. Odoulov, "Light pulse slowing down up to 0.025 cm/s by photorefractive two-Wave coupling," Phys. Rev. Lett. 91, 083902 (2003).
[CrossRef] [PubMed]

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, "Observation of ultraslow light propagation in a ruby crystal at room temperature," Phys. Rev. Lett. 90,113903 (2003).
[CrossRef] [PubMed]

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, "Superluminal and slow light propagation in a roomtemperature solid," Science 301,200-202 (2003).
[CrossRef] [PubMed]

2002 (1)

A. V. Turukhin, V. S. Sudarshanam, M. S. Shahriar, J. A. Musser, B. S. Ham, and P. R. Hemmer, "Observation of ultraslow and stored light pulses in a solid," Phys. Rev. Lett. 88, 023602 (2002).
[CrossRef] [PubMed]

2001 (1)

Ch. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, "Observation of coherent optical information storage in an atomic medium using halted light pulses," Nature (London) 409,490-493 (2001).
[CrossRef]

2000 (2)

L. J. Wang, A. Kuzmich, and A. Dogariu, "Gain-assisted superluminal light propagation," Nature (London) 406,277-279 (2000).
[CrossRef]

M. Fleischhauer and M. D. Lukin, "Dark-state polaritons in electromagnetically induced transparency," Phys. Rev. Lett. 84, 5094-5097 (2000).
[CrossRef] [PubMed]

1999 (2)

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, "Light speed reduction to 17 metres per second in an ultracold atomic gas," Nature (London) 397,594-598 (1999).
[CrossRef]

M. M. Kash, V. A. Sautenkov, A. S. Zibrov, L. Hollberg, G. R. Welch, M. D. Lukin, Y. Rostovtsev, E. S. Fry, and M. O. Scully, "Ultraslow group velocity and enhanced nonlinear optical effects in a coherently driven hot atomic gas," Phys. Rev. Lett. 82,5229-5232 (1999).
[CrossRef]

1997 (1)

S. E. Harris, "Electromagnetically induced transparency," Phys. Today 50, 36-42 (1997).
[CrossRef]

1995 (1)

H. Ma and CidB. de Ara’ujo, "Two-color z-scan technique with enhanced sensitivity," Appl. Phys. Lett. 66,1581-1583 (1995).
[CrossRef]

H. Ma and CidB. de Ara’ujo, "Two-color z-scan technique with enhanced sensitivity," Appl. Phys. Lett. 66,1581-1583 (1995).
[CrossRef]

1993 (1)

1990 (1)

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, "Sensitive measurement of optical nonlinearities using a single beam," IEEE J. Quantum Electron. 26,760-769 (1990).
[CrossRef]

1974 (1)

Behroozi, C. H.

Ch. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, "Observation of coherent optical information storage in an atomic medium using halted light pulses," Nature (London) 409,490-493 (2001).
[CrossRef]

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, "Light speed reduction to 17 metres per second in an ultracold atomic gas," Nature (London) 397,594-598 (1999).
[CrossRef]

Bigelow, M. S.

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, "Superluminal and slow light propagation in a roomtemperature solid," Science 301,200-202 (2003).
[CrossRef] [PubMed]

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, "Observation of ultraslow light propagation in a ruby crystal at room temperature," Phys. Rev. Lett. 90,113903 (2003).
[CrossRef] [PubMed]

Bo, F.

F. Gao, J. Xu, G. Zhang, F. Bo, and H. Liu, "Paraxial energy transport of a focused Gaussian beam in ruby with nondegenerate two-wave coupling like mechanism," Appl. Phys. Lett. 92,021121 (2008).
[CrossRef]

G. Zhang, F. Bo, R. Dong, and J. Xu, "Phase-coupling-induced ultraslow light propagation in solids at room temperature," Phys. Rev. Lett. 93,133903 (2004).
[CrossRef] [PubMed]

Boyd, R. W.

Zh. Zhu, D. J. Gauthier, and R. W. Boyd, "Stored light in an optical fiber via stimulated Brillouin scattering," Science 318, 1748-1750 (2007).
[CrossRef] [PubMed]

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, "Superluminal and slow light propagation in a roomtemperature solid," Science 301,200-202 (2003).
[CrossRef] [PubMed]

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, "Observation of ultraslow light propagation in a ruby crystal at room temperature," Phys. Rev. Lett. 90,113903 (2003).
[CrossRef] [PubMed]

Chang-Hasnain, C. J.

R. S. Tucker, P. Ch. Ku, and C. J. Chang-Hasnain, "Slow-light optical buffers: capabilities and fundamental limitations," J. Lightw. Technol. 23, 4046-4066 (2005).
[CrossRef]

Cid, H.

H. Ma and CidB. de Ara’ujo, "Two-color z-scan technique with enhanced sensitivity," Appl. Phys. Lett. 66,1581-1583 (1995).
[CrossRef]

Dogariu, A.

L. J. Wang, A. Kuzmich, and A. Dogariu, "Gain-assisted superluminal light propagation," Nature (London) 406,277-279 (2000).
[CrossRef]

Dong, P.

Q2. Q. Xu, P. Dong, and M. Lipson, "Breaking the delay-bandwidth limit in a photonic structure," Nature Phys. 3,406-410 (2007).
[CrossRef]

Dong, R.

G. Zhang, F. Bo, R. Dong, and J. Xu, "Phase-coupling-induced ultraslow light propagation in solids at room temperature," Phys. Rev. Lett. 93,133903 (2004).
[CrossRef] [PubMed]

Dutton, Z.

Ch. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, "Observation of coherent optical information storage in an atomic medium using halted light pulses," Nature (London) 409,490-493 (2001).
[CrossRef]

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, "Light speed reduction to 17 metres per second in an ultracold atomic gas," Nature (London) 397,594-598 (1999).
[CrossRef]

Fan, S.

M. F. Yanik and S. Fan, "Stopping light all optically," Phys. Rev. Lett. 92,083901 (2004).
[CrossRef] [PubMed]

Fleischhauer, M.

M. Fleischhauer and M. D. Lukin, "Dark-state polaritons in electromagnetically induced transparency," Phys. Rev. Lett. 84, 5094-5097 (2000).
[CrossRef] [PubMed]

Fry, E. S.

M. M. Kash, V. A. Sautenkov, A. S. Zibrov, L. Hollberg, G. R. Welch, M. D. Lukin, Y. Rostovtsev, E. S. Fry, and M. O. Scully, "Ultraslow group velocity and enhanced nonlinear optical effects in a coherently driven hot atomic gas," Phys. Rev. Lett. 82,5229-5232 (1999).
[CrossRef]

Gaeta, A. L.

Gao, F.

F. Gao, J. Xu, G. Zhang, F. Bo, and H. Liu, "Paraxial energy transport of a focused Gaussian beam in ruby with nondegenerate two-wave coupling like mechanism," Appl. Phys. Lett. 92,021121 (2008).
[CrossRef]

Gauthier, D. J.

Zh. Zhu, D. J. Gauthier, and R. W. Boyd, "Stored light in an optical fiber via stimulated Brillouin scattering," Science 318, 1748-1750 (2007).
[CrossRef] [PubMed]

Guedes, I.

Hagan, D. J.

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, "Sensitive measurement of optical nonlinearities using a single beam," IEEE J. Quantum Electron. 26,760-769 (1990).
[CrossRef]

Ham, B. S.

A. V. Turukhin, V. S. Sudarshanam, M. S. Shahriar, J. A. Musser, B. S. Ham, and P. R. Hemmer, "Observation of ultraslow and stored light pulses in a solid," Phys. Rev. Lett. 88, 023602 (2002).
[CrossRef] [PubMed]

Harris, S. E.

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, "Light speed reduction to 17 metres per second in an ultracold atomic gas," Nature (London) 397,594-598 (1999).
[CrossRef]

S. E. Harris, "Electromagnetically induced transparency," Phys. Today 50, 36-42 (1997).
[CrossRef]

Hau, L. V.

Ch. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, "Observation of coherent optical information storage in an atomic medium using halted light pulses," Nature (London) 409,490-493 (2001).
[CrossRef]

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, "Light speed reduction to 17 metres per second in an ultracold atomic gas," Nature (London) 397,594-598 (1999).
[CrossRef]

Hemmer, P. R.

A. V. Turukhin, V. S. Sudarshanam, M. S. Shahriar, J. A. Musser, B. S. Ham, and P. R. Hemmer, "Observation of ultraslow and stored light pulses in a solid," Phys. Rev. Lett. 88, 023602 (2002).
[CrossRef] [PubMed]

Herr’aez, M. G.

Hollberg, L.

M. M. Kash, V. A. Sautenkov, A. S. Zibrov, L. Hollberg, G. R. Welch, M. D. Lukin, Y. Rostovtsev, E. S. Fry, and M. O. Scully, "Ultraslow group velocity and enhanced nonlinear optical effects in a coherently driven hot atomic gas," Phys. Rev. Lett. 82,5229-5232 (1999).
[CrossRef]

Kash, M. M.

M. M. Kash, V. A. Sautenkov, A. S. Zibrov, L. Hollberg, G. R. Welch, M. D. Lukin, Y. Rostovtsev, E. S. Fry, and M. O. Scully, "Ultraslow group velocity and enhanced nonlinear optical effects in a coherently driven hot atomic gas," Phys. Rev. Lett. 82,5229-5232 (1999).
[CrossRef]

Krauss, Th. F.

Q1. Th. F. Krauss, "Why do we need slow light," Nature Photonics 2, 448-450 (2008).
[CrossRef]

Ku, P. Ch.

R. S. Tucker, P. Ch. Ku, and C. J. Chang-Hasnain, "Slow-light optical buffers: capabilities and fundamental limitations," J. Lightw. Technol. 23, 4046-4066 (2005).
[CrossRef]

Kuzmich, A.

L. J. Wang, A. Kuzmich, and A. Dogariu, "Gain-assisted superluminal light propagation," Nature (London) 406,277-279 (2000).
[CrossRef]

Lepeshkin, N. N.

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, "Observation of ultraslow light propagation in a ruby crystal at room temperature," Phys. Rev. Lett. 90,113903 (2003).
[CrossRef] [PubMed]

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, "Superluminal and slow light propagation in a roomtemperature solid," Science 301,200-202 (2003).
[CrossRef] [PubMed]

Li, J. W.

Lipson, M.

Q2. Q. Xu, P. Dong, and M. Lipson, "Breaking the delay-bandwidth limit in a photonic structure," Nature Phys. 3,406-410 (2007).
[CrossRef]

Liu, Ch.

Ch. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, "Observation of coherent optical information storage in an atomic medium using halted light pulses," Nature (London) 409,490-493 (2001).
[CrossRef]

Liu, H.

F. Gao, J. Xu, G. Zhang, F. Bo, and H. Liu, "Paraxial energy transport of a focused Gaussian beam in ruby with nondegenerate two-wave coupling like mechanism," Appl. Phys. Lett. 92,021121 (2008).
[CrossRef]

Lukin, M. D.

M. Fleischhauer and M. D. Lukin, "Dark-state polaritons in electromagnetically induced transparency," Phys. Rev. Lett. 84, 5094-5097 (2000).
[CrossRef] [PubMed]

M. M. Kash, V. A. Sautenkov, A. S. Zibrov, L. Hollberg, G. R. Welch, M. D. Lukin, Y. Rostovtsev, E. S. Fry, and M. O. Scully, "Ultraslow group velocity and enhanced nonlinear optical effects in a coherently driven hot atomic gas," Phys. Rev. Lett. 82,5229-5232 (1999).
[CrossRef]

Ma, H.

H. Ma and CidB. de Ara’ujo, "Two-color z-scan technique with enhanced sensitivity," Appl. Phys. Lett. 66,1581-1583 (1995).
[CrossRef]

Miller, D. A. B.

Misoguti, L.

Musser, J. A.

A. V. Turukhin, V. S. Sudarshanam, M. S. Shahriar, J. A. Musser, B. S. Ham, and P. R. Hemmer, "Observation of ultraslow and stored light pulses in a solid," Phys. Rev. Lett. 88, 023602 (2002).
[CrossRef] [PubMed]

Odoulov, S.

E. Podivilov, B. Sturman, A. Shumelyuk, and S. Odoulov, "Light pulse slowing down up to 0.025 cm/s by photorefractive two-Wave coupling," Phys. Rev. Lett. 91, 083902 (2003).
[CrossRef] [PubMed]

Okawachi, Y.

Podivilov, E.

E. Podivilov, B. Sturman, A. Shumelyuk, and S. Odoulov, "Light pulse slowing down up to 0.025 cm/s by photorefractive two-Wave coupling," Phys. Rev. Lett. 91, 083902 (2003).
[CrossRef] [PubMed]

Rostovtsev, Y.

M. M. Kash, V. A. Sautenkov, A. S. Zibrov, L. Hollberg, G. R. Welch, M. D. Lukin, Y. Rostovtsev, E. S. Fry, and M. O. Scully, "Ultraslow group velocity and enhanced nonlinear optical effects in a coherently driven hot atomic gas," Phys. Rev. Lett. 82,5229-5232 (1999).
[CrossRef]

Said, A. A.

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, "Sensitive measurement of optical nonlinearities using a single beam," IEEE J. Quantum Electron. 26,760-769 (1990).
[CrossRef]

Sautenkov, V. A.

M. M. Kash, V. A. Sautenkov, A. S. Zibrov, L. Hollberg, G. R. Welch, M. D. Lukin, Y. Rostovtsev, E. S. Fry, and M. O. Scully, "Ultraslow group velocity and enhanced nonlinear optical effects in a coherently driven hot atomic gas," Phys. Rev. Lett. 82,5229-5232 (1999).
[CrossRef]

Scully, M. O.

M. M. Kash, V. A. Sautenkov, A. S. Zibrov, L. Hollberg, G. R. Welch, M. D. Lukin, Y. Rostovtsev, E. S. Fry, and M. O. Scully, "Ultraslow group velocity and enhanced nonlinear optical effects in a coherently driven hot atomic gas," Phys. Rev. Lett. 82,5229-5232 (1999).
[CrossRef]

Sekaric, L.

Q3. F. Xia, L. Sekaric, and Y. Vlasov, "Ultracompact optical buffers on a silicon chip," Nature Photon. 1, 65-71 (2007).
[CrossRef]

Shahriar, M. S.

A. V. Turukhin, V. S. Sudarshanam, M. S. Shahriar, J. A. Musser, B. S. Ham, and P. R. Hemmer, "Observation of ultraslow and stored light pulses in a solid," Phys. Rev. Lett. 88, 023602 (2002).
[CrossRef] [PubMed]

Sharping, J. E.

Sheik-Bahae, M.

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, "Sensitive measurement of optical nonlinearities using a single beam," IEEE J. Quantum Electron. 26,760-769 (1990).
[CrossRef]

Shumelyuk, A.

E. Podivilov, B. Sturman, A. Shumelyuk, and S. Odoulov, "Light pulse slowing down up to 0.025 cm/s by photorefractive two-Wave coupling," Phys. Rev. Lett. 91, 083902 (2003).
[CrossRef] [PubMed]

Smith, S. D.

Song, K. Y.

Sturman, B.

E. Podivilov, B. Sturman, A. Shumelyuk, and S. Odoulov, "Light pulse slowing down up to 0.025 cm/s by photorefractive two-Wave coupling," Phys. Rev. Lett. 91, 083902 (2003).
[CrossRef] [PubMed]

Sudarshanam, V. S.

A. V. Turukhin, V. S. Sudarshanam, M. S. Shahriar, J. A. Musser, B. S. Ham, and P. R. Hemmer, "Observation of ultraslow and stored light pulses in a solid," Phys. Rev. Lett. 88, 023602 (2002).
[CrossRef] [PubMed]

Th’evenaz, L.

Tian, J. G.

Tucker, R. S.

R. S. Tucker, P. Ch. Ku, and C. J. Chang-Hasnain, "Slow-light optical buffers: capabilities and fundamental limitations," J. Lightw. Technol. 23, 4046-4066 (2005).
[CrossRef]

Turukhin, A. V.

A. V. Turukhin, V. S. Sudarshanam, M. S. Shahriar, J. A. Musser, B. S. Ham, and P. R. Hemmer, "Observation of ultraslow and stored light pulses in a solid," Phys. Rev. Lett. 88, 023602 (2002).
[CrossRef] [PubMed]

Van Stryland, E. W.

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, "Sensitive measurement of optical nonlinearities using a single beam," IEEE J. Quantum Electron. 26,760-769 (1990).
[CrossRef]

Vlasov, Y.

Q3. F. Xia, L. Sekaric, and Y. Vlasov, "Ultracompact optical buffers on a silicon chip," Nature Photon. 1, 65-71 (2007).
[CrossRef]

Vlasov, Y. A.

Y. A. Vlasov, M. OBoyle1, H. F. Hamann, and S. J. McNab, "Active control of slow light on a chip with photonic crystal waveguides," Nature 438, 65-69 (2005).
[CrossRef] [PubMed]

Wang, L. J.

L. J. Wang, A. Kuzmich, and A. Dogariu, "Gain-assisted superluminal light propagation," Nature (London) 406,277-279 (2000).
[CrossRef]

Weaire, D.

Wei, T. H.

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, "Sensitive measurement of optical nonlinearities using a single beam," IEEE J. Quantum Electron. 26,760-769 (1990).
[CrossRef]

Welch, G. R.

M. M. Kash, V. A. Sautenkov, A. S. Zibrov, L. Hollberg, G. R. Welch, M. D. Lukin, Y. Rostovtsev, E. S. Fry, and M. O. Scully, "Ultraslow group velocity and enhanced nonlinear optical effects in a coherently driven hot atomic gas," Phys. Rev. Lett. 82,5229-5232 (1999).
[CrossRef]

Wherrett, B. S.

Xia, F.

Q3. F. Xia, L. Sekaric, and Y. Vlasov, "Ultracompact optical buffers on a silicon chip," Nature Photon. 1, 65-71 (2007).
[CrossRef]

Xu, J.

F. Gao, J. Xu, G. Zhang, F. Bo, and H. Liu, "Paraxial energy transport of a focused Gaussian beam in ruby with nondegenerate two-wave coupling like mechanism," Appl. Phys. Lett. 92,021121 (2008).
[CrossRef]

G. Zhang, F. Bo, R. Dong, and J. Xu, "Phase-coupling-induced ultraslow light propagation in solids at room temperature," Phys. Rev. Lett. 93,133903 (2004).
[CrossRef] [PubMed]

Xu, Q.

Q2. Q. Xu, P. Dong, and M. Lipson, "Breaking the delay-bandwidth limit in a photonic structure," Nature Phys. 3,406-410 (2007).
[CrossRef]

Yanik, M. F.

M. F. Yanik and S. Fan, "Stopping light all optically," Phys. Rev. Lett. 92,083901 (2004).
[CrossRef] [PubMed]

Zhang, C. P.

Zhang, G.

F. Gao, J. Xu, G. Zhang, F. Bo, and H. Liu, "Paraxial energy transport of a focused Gaussian beam in ruby with nondegenerate two-wave coupling like mechanism," Appl. Phys. Lett. 92,021121 (2008).
[CrossRef]

G. Zhang, F. Bo, R. Dong, and J. Xu, "Phase-coupling-induced ultraslow light propagation in solids at room temperature," Phys. Rev. Lett. 93,133903 (2004).
[CrossRef] [PubMed]

Zhang, G. Y.

Zhu, Zh.

Zh. Zhu, D. J. Gauthier, and R. W. Boyd, "Stored light in an optical fiber via stimulated Brillouin scattering," Science 318, 1748-1750 (2007).
[CrossRef] [PubMed]

Zibrov, A. S.

M. M. Kash, V. A. Sautenkov, A. S. Zibrov, L. Hollberg, G. R. Welch, M. D. Lukin, Y. Rostovtsev, E. S. Fry, and M. O. Scully, "Ultraslow group velocity and enhanced nonlinear optical effects in a coherently driven hot atomic gas," Phys. Rev. Lett. 82,5229-5232 (1999).
[CrossRef]

Zilio, S. C.

Appl. Opt. (1)

Appl. Phys. Lett. (2)

F. Gao, J. Xu, G. Zhang, F. Bo, and H. Liu, "Paraxial energy transport of a focused Gaussian beam in ruby with nondegenerate two-wave coupling like mechanism," Appl. Phys. Lett. 92,021121 (2008).
[CrossRef]

H. Ma and CidB. de Ara’ujo, "Two-color z-scan technique with enhanced sensitivity," Appl. Phys. Lett. 66,1581-1583 (1995).
[CrossRef]

IEEE J. Quantum Electron. (1)

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Van Stryland, "Sensitive measurement of optical nonlinearities using a single beam," IEEE J. Quantum Electron. 26,760-769 (1990).
[CrossRef]

J. Lightw. Technol. (1)

R. S. Tucker, P. Ch. Ku, and C. J. Chang-Hasnain, "Slow-light optical buffers: capabilities and fundamental limitations," J. Lightw. Technol. 23, 4046-4066 (2005).
[CrossRef]

Nature (1)

Y. A. Vlasov, M. OBoyle1, H. F. Hamann, and S. J. McNab, "Active control of slow light on a chip with photonic crystal waveguides," Nature 438, 65-69 (2005).
[CrossRef] [PubMed]

Nature (London) (3)

L. J. Wang, A. Kuzmich, and A. Dogariu, "Gain-assisted superluminal light propagation," Nature (London) 406,277-279 (2000).
[CrossRef]

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, "Light speed reduction to 17 metres per second in an ultracold atomic gas," Nature (London) 397,594-598 (1999).
[CrossRef]

Ch. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, "Observation of coherent optical information storage in an atomic medium using halted light pulses," Nature (London) 409,490-493 (2001).
[CrossRef]

Nature Photon. (1)

Q3. F. Xia, L. Sekaric, and Y. Vlasov, "Ultracompact optical buffers on a silicon chip," Nature Photon. 1, 65-71 (2007).
[CrossRef]

Nature Photonics (1)

Q1. Th. F. Krauss, "Why do we need slow light," Nature Photonics 2, 448-450 (2008).
[CrossRef]

Nature Phys. (1)

Q2. Q. Xu, P. Dong, and M. Lipson, "Breaking the delay-bandwidth limit in a photonic structure," Nature Phys. 3,406-410 (2007).
[CrossRef]

Opt. Express (3)

Opt. Lett. (1)

Phys. Rev. Lett. (8)

D. A. B. Miller, "Fundamental limit to linear one-dimensional slow light structures," Phys. Rev. Lett. 99, 203903 (2007).
[CrossRef]

M. Fleischhauer and M. D. Lukin, "Dark-state polaritons in electromagnetically induced transparency," Phys. Rev. Lett. 84, 5094-5097 (2000).
[CrossRef] [PubMed]

G. Zhang, F. Bo, R. Dong, and J. Xu, "Phase-coupling-induced ultraslow light propagation in solids at room temperature," Phys. Rev. Lett. 93,133903 (2004).
[CrossRef] [PubMed]

E. Podivilov, B. Sturman, A. Shumelyuk, and S. Odoulov, "Light pulse slowing down up to 0.025 cm/s by photorefractive two-Wave coupling," Phys. Rev. Lett. 91, 083902 (2003).
[CrossRef] [PubMed]

M. F. Yanik and S. Fan, "Stopping light all optically," Phys. Rev. Lett. 92,083901 (2004).
[CrossRef] [PubMed]

M. M. Kash, V. A. Sautenkov, A. S. Zibrov, L. Hollberg, G. R. Welch, M. D. Lukin, Y. Rostovtsev, E. S. Fry, and M. O. Scully, "Ultraslow group velocity and enhanced nonlinear optical effects in a coherently driven hot atomic gas," Phys. Rev. Lett. 82,5229-5232 (1999).
[CrossRef]

A. V. Turukhin, V. S. Sudarshanam, M. S. Shahriar, J. A. Musser, B. S. Ham, and P. R. Hemmer, "Observation of ultraslow and stored light pulses in a solid," Phys. Rev. Lett. 88, 023602 (2002).
[CrossRef] [PubMed]

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, "Observation of ultraslow light propagation in a ruby crystal at room temperature," Phys. Rev. Lett. 90,113903 (2003).
[CrossRef] [PubMed]

Phys. Today (1)

S. E. Harris, "Electromagnetically induced transparency," Phys. Today 50, 36-42 (1997).
[CrossRef]

Science (2)

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, "Superluminal and slow light propagation in a roomtemperature solid," Science 301,200-202 (2003).
[CrossRef] [PubMed]

Zh. Zhu, D. J. Gauthier, and R. W. Boyd, "Stored light in an optical fiber via stimulated Brillouin scattering," Science 318, 1748-1750 (2007).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Schematic diagram for active chromatic control on the group velocity of light at arbitrary wavelength. Here the material (a BCB polymer in our experiments) is assumed to be optically nonlinear sensitive at the control wavelength, whereas it is assumed to be optically insensitive at the signal wavelength. M: mirror, BS: beam splitter, L1: lens, D1 and D2: photo-detectors, filter1 and filter2: narrow bandwidth bandpass filters to select out the signal beam. A pinhole with a 1.6-mm diameter was placed just before the photo-detector D2 to achieve an on-axis intensity detection of the signal beam. Note that the lens L1 in the dashed rectangle could be replaced by a set of optical elements shown in the inset of Fig. 8 when necessary.

Fig. 2.
Fig. 2.

Transmittance spectrum of the bulk BCB polymer sample with a thickness of 2.1 mm.

Fig. 3.
Fig. 3.

Temporal traces of the transmitted on-axis intensity evolution of the signal beam (red curves) and the reference beam (black curves) with (a) and without (b) the control beam at z 2=-6.4 mm. The incident powers of the control and the signal beams were 17.1 mW and 0.71 mW, respectively. The modulation frequency ωm /2π was 10 Hz for both beams, and Γ1=6% and Γ2=9%, respectively.

Fig. 4.
Fig. 4.

Temporal traces of the transmitted on-axis intensity evolution of the signal beam (red curves) and the reference beam (black curves) with (a) and without (b) the control beam at z 2=13.6 mm. Other experimental conditions were set to be the same as those in Fig. 3.

Fig. 5.
Fig. 5.

The dispersion curves of neff (blue curves) and F(x 1, x 2,δ) (black curves) at z 2=-6.4 mm (a) and z 2=13.6 mm (b), respectively. The simulation parameters are set to be the same as those in Figs. 3 and 4, where the relaxation time constants τ were measured to be 8.8 ms and 13 ms, respectively.

Fig. 6.
Fig. 6.

Time delay Δt as a function of the sample position displacement z 2. The solid squares are the measured data, while the red solid curve is a theoretical fit to the experimental data by use of Eqs. (18) and (19), in which the relaxation time constant τ=13 ms at z 2=13.6 mm is employed in the theoretical fit.

Fig. 7.
Fig. 7.

Dependence of the time delay Δt on the modulation frequency ωm /2π of the signal beam at the position displacement z 2=13.6 mm. The solid squares are the measured data, while the red solid curve is a theoretical fit to the experimental data by employing Eqs. (18) and (19) with τ=13 ms at z 2=13.6 mm.

Fig. 8.
Fig. 8.

Time delay Δt versus sample position displacement z 1 with respect to the control beam waist. The BCB polymer sample was fixed at z 2=19.3 mm. The top inset shows the optical element set replacing the lens L1 in the dashed rectangle in Fig. 1. The powers of the control and the signal beams were 8.4 mW and 0.4 mW, respectively. Other experimental parameters were ωm /2π=10 Hz, Γ1=4.5% and Γ2=5.2%, respectively.

Equations (20)

Equations on this page are rendered with MathJax. Learn more.

I1 (r,z1)=I10w102w12exp[2r2w12],
I2 (r,z2)=I20w202w22exp[2r2/w22] ,
Δ n1 (r,z1,z)=nTΔTnTI1(r,z1)τtτ+tα1ρCeα1z.
Δ n1 (r,z1,z)=nTI1(r,z1)w12α14Keα1z.
Δ n2 (r,z1,z)=ηΔn1(r,z1,z)=ηnTI1(r,z1)w12α14Keα1z,
Δ n2 (r,z1,z)=nT I1(r,z1)w12α14K eα1z .
Δϕ2(r,z1,z)z = k2 Δ n2 (r,z1,z).
Δ ϕ2 (r,z1)=Δϕ20exp(2r2/w12),
Δ ϕ20 = k2 β1 P1in Leff ,
Tr 1 + 4Bx2(x22+1)(x22+9)(x12+1) ,
I1 (r,z1,t)=I1(r,z1)[1+Γ1sin(ωmt)],
I2 (r,z2,t)=I2(r,z2)[1+Γ2sin(ωmt)],
Δ n1 (r,z1,z,t) = nT I1(r,z1)w12α14K [1+Γ11+δ2sin(ωmtγ)] eα1z ,
Δ n2 (r,z1,z,t) = nT I1(r,z1)w12α14K [1+Γ11+δ2sin(ωmtγ)] eα1z ,
I2 (x1,x2,t)=I20[1+A(x1,x2,)B](1+F(x1,x2,δ)Γ2sin(ωmtφ)),
A (x1,x2)=4x2(x22+1)(x22+9)(x12+1),
F (x1,x2,δ)=1+Γ1Γ2A(x1,x2)B1+A(x1,x2)B11+δ2,
φ = arctan (A(x1,x2)BδA(x1,x2)B+Γ2Γ1[A(x1,x2)B+1](1+δ2)) ,
Δ t = Lvg Lc = φT 2 π = φωm ,
vg = c (1+ωmL)1 .

Metrics