Abstract

Molecular diffusion effects have been widely studied inside photopolymers for holographic applications. Recently some works have focused on low spatial frequencies to evaluate in real time the monomer diffusion effects. Assuming a Fermi-Dirac function-based profile, we have fitted the diffracted intensities, reflected and transmitted (up to the 8th order), to obtain the phase and surface profile of the recorded gratings. We have studied the influence of diffusion in polyvinyl-alcohol/acrylamide for the range of spatial frequencies between 2 lines/mm and 6 lines/mm. We have demonstrated the influence of the spatial frequency on the magnitude and sign of the material volume variations. We also studied in dark the evolution of the grating shape. We show that it is possible to achieve diffractive gratings with diffraction efficiency in the first order near 35% if the in dark evolution is taken into account. Furthermore we present a method to calculate the monomer diffusivity in photopolymers. The differential equation is deduced and solved, and experimental average value is obtained (D=1.1·10−8 cm2s−1).

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Pu and D. Psaltis, “High-density recording in photopolymer-based holographic three-dimensional disks,” Appl. Opt. 35(14), 2389–2398 (1996).
    [CrossRef] [PubMed]
  2. Y. Tomita, K. Furushima, K. Ochi, K. Ishizu, A. Tanaka, M. Ozawa, M. Hidaka, and K. Chikama, “Organic nanoparticle (hyperbranched polymer)-dispersed photopolymers for volume holographic storage,” Appl. Phys. Lett. 88(7), 071103 (2006).
    [CrossRef]
  3. C. Márquez, S. Neipp, M. Gallego, A. Ortuño, Beléndez, and I. Pascual, “Edge enhanced imaging using PVA/acrylamide photopolymer gratings,” Opt. Lett. 28, 1510–1512 (2003).
    [CrossRef] [PubMed]
  4. V. Weiss, E. Millul, and A. A. Friesem, “Improvements in holographic photopolymers at Weizmann Institute of Science,” SPIE International Technical Group Newsletter: Optics in Information Systems 15(1), 3 (2004).
  5. J. V. Kelly, M. R. Gleeson, C. E. Close, F. T. O’ Neill, J. T. Sheridan, S. Gallego, and C. Neipp, “Temporal analysis of grating formation in photopolymer using the nonlocal polymerization-driven diffusion model,” Opt. Express 13, 6990–7004 (2005).
    [CrossRef] [PubMed]
  6. S. Gallego, C. Neipp, M. Ortuño, A. Beléndez, E. Fernández, and I. Pascual, “Analysis of diffusion in depth in photopolymer materials,” Opt. Commun. 274(1), 43–49 (2007).
    [CrossRef]
  7. K. Pavani, I. Naydenova, S. Martin, and V. Toal, “Photoinduced surface relief studies in an acrylamide-based photopolymer,” J. Opt. A, Pure Appl. Opt. 9(1), 43–48 (2007).
    [CrossRef]
  8. A. Márquez, J. Campos, M. J. Yzuel, I. Pascual, A. Fimia, and A. Beléndez, “Production of computer-generated phase holograms using graphic devices: application to correlation filters,” Opt. Eng. 39(6), 1612–1619 (2000).
    [CrossRef]
  9. S. Gallego, A. Márquez, D. Méndez, S. Marini, A. Beléndez, and I. Pascual, “Spatial phase modulation-based study of PVA/AA photopolymers in the low spatial frequency range,” Appl. Opt. 48, 4403–4413 (2009).
    [CrossRef] [PubMed]
  10. A. Márquez, C. Iemmi, I. Moreno, J. A. Davis, J. Campos, and M. J. Yzuel, “Quantitative prediction of the modulation behavior of twisted nematic liquid crystal displays,” Opt. Eng. 40(11), 2558–2564 (2001).
    [CrossRef]
  11. S. Gallego, A. Márquez, D. Méndez, C. Neipp, M. Ortuño, M. L. Alvarez, E. Fernandez, A. Beléndez, and I. Pascual, “Real-time interferometric characterization of a polyvinyl alcohol based photopolymer at the zero spatial frequency limit,” Appl. Opt. 46(30), 7506–7512 (2007).
    [CrossRef] [PubMed]
  12. S. Gallego, A. Márquez, D. Méndez, M. Ortuño, C. Neipp, M. L. Alvarez, A. Beléndez, E. Fernández, and I. Pascual, “Analysis of PVA/AA based photopolymers at the zero spatial frequency limit using interferometric methods,” Appl. Opt. 47(14), 2557–2563 (2008).
    [CrossRef] [PubMed]
  13. S. Gallego, A. Márquez, D. Méndez, C. Neipp, M. Ortuño, A. Beléndez, E. Fernández, and I. Pascual, “Direct analysis of monomer diffusion times in polyvinyl/acrylamide materials,” Appl. Phys. Lett. 92(7), 073306 (2008).
    [CrossRef]
  14. T. Endo, F. Sanda, “Ring-opening polymerization, anionic (with expansion in volume),” Polymeric Materials Encyclopedia, 10, CRC Press, Inc.,7550–3, (1996).
  15. G. Ramos, A. Álvarez-Herrero, T. Belenguer, F. del Monte, and D. Levy, “Shrinkage control in a photopolymerizable hybrid solgel material for holographic recording,” Appl. Opt. 43(20), 4018–4024 (2004).
    [CrossRef] [PubMed]
  16. L. Dhar, M. G. Schones, T. L. Wysocki, H. Bair, M. Schilling, and C. Boyd, “Temperature-induced changes in photopolymer volume holograms,” Appl. Phys. Lett. 73(10), 1337–1339 (1998).
    [CrossRef]
  17. I. Naydenova, E. Mihaylova, S. Martin, and V. Toal, “Holographic patterning of acrylamide-based photopolymer surface,” Opt. Express 13(13), 4878–4889 (2005).
    [CrossRef] [PubMed]
  18. T. Babeva, I. Naydenova, S. Martin, and V. Toal, “Method for characterization of diffusion properties of photopolymerisable systems,” Opt. Express 16(12), 8487–8497 (2008).
    [CrossRef] [PubMed]
  19. V. Moreau, Y. Renotte, and Y. Lion, “Characterization of dupont photopolymer: determination of kinetic parameters in a diffusion model,” Appl. Opt. 41(17), 3427–3435 (2002).
    [CrossRef] [PubMed]
  20. F. T. O’Neill, J. R. Lawrence, and J. T. Sheridan, “Improvement of holographic recording material using aerosol sealant,” J. Opt. 3, 20–25 (2001).
    [CrossRef]

2009

2008

2007

S. Gallego, A. Márquez, D. Méndez, C. Neipp, M. Ortuño, M. L. Alvarez, E. Fernandez, A. Beléndez, and I. Pascual, “Real-time interferometric characterization of a polyvinyl alcohol based photopolymer at the zero spatial frequency limit,” Appl. Opt. 46(30), 7506–7512 (2007).
[CrossRef] [PubMed]

S. Gallego, C. Neipp, M. Ortuño, A. Beléndez, E. Fernández, and I. Pascual, “Analysis of diffusion in depth in photopolymer materials,” Opt. Commun. 274(1), 43–49 (2007).
[CrossRef]

K. Pavani, I. Naydenova, S. Martin, and V. Toal, “Photoinduced surface relief studies in an acrylamide-based photopolymer,” J. Opt. A, Pure Appl. Opt. 9(1), 43–48 (2007).
[CrossRef]

2006

Y. Tomita, K. Furushima, K. Ochi, K. Ishizu, A. Tanaka, M. Ozawa, M. Hidaka, and K. Chikama, “Organic nanoparticle (hyperbranched polymer)-dispersed photopolymers for volume holographic storage,” Appl. Phys. Lett. 88(7), 071103 (2006).
[CrossRef]

2005

2004

G. Ramos, A. Álvarez-Herrero, T. Belenguer, F. del Monte, and D. Levy, “Shrinkage control in a photopolymerizable hybrid solgel material for holographic recording,” Appl. Opt. 43(20), 4018–4024 (2004).
[CrossRef] [PubMed]

V. Weiss, E. Millul, and A. A. Friesem, “Improvements in holographic photopolymers at Weizmann Institute of Science,” SPIE International Technical Group Newsletter: Optics in Information Systems 15(1), 3 (2004).

2003

2002

2001

F. T. O’Neill, J. R. Lawrence, and J. T. Sheridan, “Improvement of holographic recording material using aerosol sealant,” J. Opt. 3, 20–25 (2001).
[CrossRef]

A. Márquez, C. Iemmi, I. Moreno, J. A. Davis, J. Campos, and M. J. Yzuel, “Quantitative prediction of the modulation behavior of twisted nematic liquid crystal displays,” Opt. Eng. 40(11), 2558–2564 (2001).
[CrossRef]

2000

A. Márquez, J. Campos, M. J. Yzuel, I. Pascual, A. Fimia, and A. Beléndez, “Production of computer-generated phase holograms using graphic devices: application to correlation filters,” Opt. Eng. 39(6), 1612–1619 (2000).
[CrossRef]

1998

L. Dhar, M. G. Schones, T. L. Wysocki, H. Bair, M. Schilling, and C. Boyd, “Temperature-induced changes in photopolymer volume holograms,” Appl. Phys. Lett. 73(10), 1337–1339 (1998).
[CrossRef]

1996

Alvarez, M. L.

Álvarez-Herrero, A.

Babeva, T.

Bair, H.

L. Dhar, M. G. Schones, T. L. Wysocki, H. Bair, M. Schilling, and C. Boyd, “Temperature-induced changes in photopolymer volume holograms,” Appl. Phys. Lett. 73(10), 1337–1339 (1998).
[CrossRef]

Beléndez,

Beléndez, A.

S. Gallego, A. Márquez, D. Méndez, S. Marini, A. Beléndez, and I. Pascual, “Spatial phase modulation-based study of PVA/AA photopolymers in the low spatial frequency range,” Appl. Opt. 48, 4403–4413 (2009).
[CrossRef] [PubMed]

S. Gallego, A. Márquez, D. Méndez, M. Ortuño, C. Neipp, M. L. Alvarez, A. Beléndez, E. Fernández, and I. Pascual, “Analysis of PVA/AA based photopolymers at the zero spatial frequency limit using interferometric methods,” Appl. Opt. 47(14), 2557–2563 (2008).
[CrossRef] [PubMed]

S. Gallego, A. Márquez, D. Méndez, C. Neipp, M. Ortuño, A. Beléndez, E. Fernández, and I. Pascual, “Direct analysis of monomer diffusion times in polyvinyl/acrylamide materials,” Appl. Phys. Lett. 92(7), 073306 (2008).
[CrossRef]

S. Gallego, A. Márquez, D. Méndez, C. Neipp, M. Ortuño, M. L. Alvarez, E. Fernandez, A. Beléndez, and I. Pascual, “Real-time interferometric characterization of a polyvinyl alcohol based photopolymer at the zero spatial frequency limit,” Appl. Opt. 46(30), 7506–7512 (2007).
[CrossRef] [PubMed]

S. Gallego, C. Neipp, M. Ortuño, A. Beléndez, E. Fernández, and I. Pascual, “Analysis of diffusion in depth in photopolymer materials,” Opt. Commun. 274(1), 43–49 (2007).
[CrossRef]

A. Márquez, J. Campos, M. J. Yzuel, I. Pascual, A. Fimia, and A. Beléndez, “Production of computer-generated phase holograms using graphic devices: application to correlation filters,” Opt. Eng. 39(6), 1612–1619 (2000).
[CrossRef]

Belenguer, T.

Boyd, C.

L. Dhar, M. G. Schones, T. L. Wysocki, H. Bair, M. Schilling, and C. Boyd, “Temperature-induced changes in photopolymer volume holograms,” Appl. Phys. Lett. 73(10), 1337–1339 (1998).
[CrossRef]

Campos, J.

A. Márquez, C. Iemmi, I. Moreno, J. A. Davis, J. Campos, and M. J. Yzuel, “Quantitative prediction of the modulation behavior of twisted nematic liquid crystal displays,” Opt. Eng. 40(11), 2558–2564 (2001).
[CrossRef]

A. Márquez, J. Campos, M. J. Yzuel, I. Pascual, A. Fimia, and A. Beléndez, “Production of computer-generated phase holograms using graphic devices: application to correlation filters,” Opt. Eng. 39(6), 1612–1619 (2000).
[CrossRef]

Chikama, K.

Y. Tomita, K. Furushima, K. Ochi, K. Ishizu, A. Tanaka, M. Ozawa, M. Hidaka, and K. Chikama, “Organic nanoparticle (hyperbranched polymer)-dispersed photopolymers for volume holographic storage,” Appl. Phys. Lett. 88(7), 071103 (2006).
[CrossRef]

Close, C. E.

Davis, J. A.

A. Márquez, C. Iemmi, I. Moreno, J. A. Davis, J. Campos, and M. J. Yzuel, “Quantitative prediction of the modulation behavior of twisted nematic liquid crystal displays,” Opt. Eng. 40(11), 2558–2564 (2001).
[CrossRef]

del Monte, F.

Dhar, L.

L. Dhar, M. G. Schones, T. L. Wysocki, H. Bair, M. Schilling, and C. Boyd, “Temperature-induced changes in photopolymer volume holograms,” Appl. Phys. Lett. 73(10), 1337–1339 (1998).
[CrossRef]

Fernandez, E.

Fernández, E.

S. Gallego, A. Márquez, D. Méndez, M. Ortuño, C. Neipp, M. L. Alvarez, A. Beléndez, E. Fernández, and I. Pascual, “Analysis of PVA/AA based photopolymers at the zero spatial frequency limit using interferometric methods,” Appl. Opt. 47(14), 2557–2563 (2008).
[CrossRef] [PubMed]

S. Gallego, A. Márquez, D. Méndez, C. Neipp, M. Ortuño, A. Beléndez, E. Fernández, and I. Pascual, “Direct analysis of monomer diffusion times in polyvinyl/acrylamide materials,” Appl. Phys. Lett. 92(7), 073306 (2008).
[CrossRef]

S. Gallego, C. Neipp, M. Ortuño, A. Beléndez, E. Fernández, and I. Pascual, “Analysis of diffusion in depth in photopolymer materials,” Opt. Commun. 274(1), 43–49 (2007).
[CrossRef]

Fimia, A.

A. Márquez, J. Campos, M. J. Yzuel, I. Pascual, A. Fimia, and A. Beléndez, “Production of computer-generated phase holograms using graphic devices: application to correlation filters,” Opt. Eng. 39(6), 1612–1619 (2000).
[CrossRef]

Friesem, A. A.

V. Weiss, E. Millul, and A. A. Friesem, “Improvements in holographic photopolymers at Weizmann Institute of Science,” SPIE International Technical Group Newsletter: Optics in Information Systems 15(1), 3 (2004).

Furushima, K.

Y. Tomita, K. Furushima, K. Ochi, K. Ishizu, A. Tanaka, M. Ozawa, M. Hidaka, and K. Chikama, “Organic nanoparticle (hyperbranched polymer)-dispersed photopolymers for volume holographic storage,” Appl. Phys. Lett. 88(7), 071103 (2006).
[CrossRef]

Gallego, M.

Gallego, S.

S. Gallego, A. Márquez, D. Méndez, S. Marini, A. Beléndez, and I. Pascual, “Spatial phase modulation-based study of PVA/AA photopolymers in the low spatial frequency range,” Appl. Opt. 48, 4403–4413 (2009).
[CrossRef] [PubMed]

S. Gallego, A. Márquez, D. Méndez, M. Ortuño, C. Neipp, M. L. Alvarez, A. Beléndez, E. Fernández, and I. Pascual, “Analysis of PVA/AA based photopolymers at the zero spatial frequency limit using interferometric methods,” Appl. Opt. 47(14), 2557–2563 (2008).
[CrossRef] [PubMed]

S. Gallego, A. Márquez, D. Méndez, C. Neipp, M. Ortuño, A. Beléndez, E. Fernández, and I. Pascual, “Direct analysis of monomer diffusion times in polyvinyl/acrylamide materials,” Appl. Phys. Lett. 92(7), 073306 (2008).
[CrossRef]

S. Gallego, A. Márquez, D. Méndez, C. Neipp, M. Ortuño, M. L. Alvarez, E. Fernandez, A. Beléndez, and I. Pascual, “Real-time interferometric characterization of a polyvinyl alcohol based photopolymer at the zero spatial frequency limit,” Appl. Opt. 46(30), 7506–7512 (2007).
[CrossRef] [PubMed]

S. Gallego, C. Neipp, M. Ortuño, A. Beléndez, E. Fernández, and I. Pascual, “Analysis of diffusion in depth in photopolymer materials,” Opt. Commun. 274(1), 43–49 (2007).
[CrossRef]

J. V. Kelly, M. R. Gleeson, C. E. Close, F. T. O’ Neill, J. T. Sheridan, S. Gallego, and C. Neipp, “Temporal analysis of grating formation in photopolymer using the nonlocal polymerization-driven diffusion model,” Opt. Express 13, 6990–7004 (2005).
[CrossRef] [PubMed]

Gleeson, M. R.

Hidaka, M.

Y. Tomita, K. Furushima, K. Ochi, K. Ishizu, A. Tanaka, M. Ozawa, M. Hidaka, and K. Chikama, “Organic nanoparticle (hyperbranched polymer)-dispersed photopolymers for volume holographic storage,” Appl. Phys. Lett. 88(7), 071103 (2006).
[CrossRef]

Iemmi, C.

A. Márquez, C. Iemmi, I. Moreno, J. A. Davis, J. Campos, and M. J. Yzuel, “Quantitative prediction of the modulation behavior of twisted nematic liquid crystal displays,” Opt. Eng. 40(11), 2558–2564 (2001).
[CrossRef]

Ishizu, K.

Y. Tomita, K. Furushima, K. Ochi, K. Ishizu, A. Tanaka, M. Ozawa, M. Hidaka, and K. Chikama, “Organic nanoparticle (hyperbranched polymer)-dispersed photopolymers for volume holographic storage,” Appl. Phys. Lett. 88(7), 071103 (2006).
[CrossRef]

Kelly, J. V.

Lawrence, J. R.

F. T. O’Neill, J. R. Lawrence, and J. T. Sheridan, “Improvement of holographic recording material using aerosol sealant,” J. Opt. 3, 20–25 (2001).
[CrossRef]

Levy, D.

Lion, Y.

Marini, S.

Márquez, A.

S. Gallego, A. Márquez, D. Méndez, S. Marini, A. Beléndez, and I. Pascual, “Spatial phase modulation-based study of PVA/AA photopolymers in the low spatial frequency range,” Appl. Opt. 48, 4403–4413 (2009).
[CrossRef] [PubMed]

S. Gallego, A. Márquez, D. Méndez, M. Ortuño, C. Neipp, M. L. Alvarez, A. Beléndez, E. Fernández, and I. Pascual, “Analysis of PVA/AA based photopolymers at the zero spatial frequency limit using interferometric methods,” Appl. Opt. 47(14), 2557–2563 (2008).
[CrossRef] [PubMed]

S. Gallego, A. Márquez, D. Méndez, C. Neipp, M. Ortuño, A. Beléndez, E. Fernández, and I. Pascual, “Direct analysis of monomer diffusion times in polyvinyl/acrylamide materials,” Appl. Phys. Lett. 92(7), 073306 (2008).
[CrossRef]

S. Gallego, A. Márquez, D. Méndez, C. Neipp, M. Ortuño, M. L. Alvarez, E. Fernandez, A. Beléndez, and I. Pascual, “Real-time interferometric characterization of a polyvinyl alcohol based photopolymer at the zero spatial frequency limit,” Appl. Opt. 46(30), 7506–7512 (2007).
[CrossRef] [PubMed]

A. Márquez, C. Iemmi, I. Moreno, J. A. Davis, J. Campos, and M. J. Yzuel, “Quantitative prediction of the modulation behavior of twisted nematic liquid crystal displays,” Opt. Eng. 40(11), 2558–2564 (2001).
[CrossRef]

A. Márquez, J. Campos, M. J. Yzuel, I. Pascual, A. Fimia, and A. Beléndez, “Production of computer-generated phase holograms using graphic devices: application to correlation filters,” Opt. Eng. 39(6), 1612–1619 (2000).
[CrossRef]

Márquez, C.

Martin, S.

Méndez, D.

Mihaylova, E.

Millul, E.

V. Weiss, E. Millul, and A. A. Friesem, “Improvements in holographic photopolymers at Weizmann Institute of Science,” SPIE International Technical Group Newsletter: Optics in Information Systems 15(1), 3 (2004).

Moreau, V.

Moreno, I.

A. Márquez, C. Iemmi, I. Moreno, J. A. Davis, J. Campos, and M. J. Yzuel, “Quantitative prediction of the modulation behavior of twisted nematic liquid crystal displays,” Opt. Eng. 40(11), 2558–2564 (2001).
[CrossRef]

Naydenova, I.

Neipp, C.

Neipp, S.

O’ Neill, F. T.

O’Neill, F. T.

F. T. O’Neill, J. R. Lawrence, and J. T. Sheridan, “Improvement of holographic recording material using aerosol sealant,” J. Opt. 3, 20–25 (2001).
[CrossRef]

Ochi, K.

Y. Tomita, K. Furushima, K. Ochi, K. Ishizu, A. Tanaka, M. Ozawa, M. Hidaka, and K. Chikama, “Organic nanoparticle (hyperbranched polymer)-dispersed photopolymers for volume holographic storage,” Appl. Phys. Lett. 88(7), 071103 (2006).
[CrossRef]

Ortuño, A.

Ortuño, M.

S. Gallego, A. Márquez, D. Méndez, M. Ortuño, C. Neipp, M. L. Alvarez, A. Beléndez, E. Fernández, and I. Pascual, “Analysis of PVA/AA based photopolymers at the zero spatial frequency limit using interferometric methods,” Appl. Opt. 47(14), 2557–2563 (2008).
[CrossRef] [PubMed]

S. Gallego, A. Márquez, D. Méndez, C. Neipp, M. Ortuño, A. Beléndez, E. Fernández, and I. Pascual, “Direct analysis of monomer diffusion times in polyvinyl/acrylamide materials,” Appl. Phys. Lett. 92(7), 073306 (2008).
[CrossRef]

S. Gallego, A. Márquez, D. Méndez, C. Neipp, M. Ortuño, M. L. Alvarez, E. Fernandez, A. Beléndez, and I. Pascual, “Real-time interferometric characterization of a polyvinyl alcohol based photopolymer at the zero spatial frequency limit,” Appl. Opt. 46(30), 7506–7512 (2007).
[CrossRef] [PubMed]

S. Gallego, C. Neipp, M. Ortuño, A. Beléndez, E. Fernández, and I. Pascual, “Analysis of diffusion in depth in photopolymer materials,” Opt. Commun. 274(1), 43–49 (2007).
[CrossRef]

Ozawa, M.

Y. Tomita, K. Furushima, K. Ochi, K. Ishizu, A. Tanaka, M. Ozawa, M. Hidaka, and K. Chikama, “Organic nanoparticle (hyperbranched polymer)-dispersed photopolymers for volume holographic storage,” Appl. Phys. Lett. 88(7), 071103 (2006).
[CrossRef]

Pascual, I.

S. Gallego, A. Márquez, D. Méndez, S. Marini, A. Beléndez, and I. Pascual, “Spatial phase modulation-based study of PVA/AA photopolymers in the low spatial frequency range,” Appl. Opt. 48, 4403–4413 (2009).
[CrossRef] [PubMed]

S. Gallego, A. Márquez, D. Méndez, M. Ortuño, C. Neipp, M. L. Alvarez, A. Beléndez, E. Fernández, and I. Pascual, “Analysis of PVA/AA based photopolymers at the zero spatial frequency limit using interferometric methods,” Appl. Opt. 47(14), 2557–2563 (2008).
[CrossRef] [PubMed]

S. Gallego, A. Márquez, D. Méndez, C. Neipp, M. Ortuño, A. Beléndez, E. Fernández, and I. Pascual, “Direct analysis of monomer diffusion times in polyvinyl/acrylamide materials,” Appl. Phys. Lett. 92(7), 073306 (2008).
[CrossRef]

S. Gallego, A. Márquez, D. Méndez, C. Neipp, M. Ortuño, M. L. Alvarez, E. Fernandez, A. Beléndez, and I. Pascual, “Real-time interferometric characterization of a polyvinyl alcohol based photopolymer at the zero spatial frequency limit,” Appl. Opt. 46(30), 7506–7512 (2007).
[CrossRef] [PubMed]

S. Gallego, C. Neipp, M. Ortuño, A. Beléndez, E. Fernández, and I. Pascual, “Analysis of diffusion in depth in photopolymer materials,” Opt. Commun. 274(1), 43–49 (2007).
[CrossRef]

C. Márquez, S. Neipp, M. Gallego, A. Ortuño, Beléndez, and I. Pascual, “Edge enhanced imaging using PVA/acrylamide photopolymer gratings,” Opt. Lett. 28, 1510–1512 (2003).
[CrossRef] [PubMed]

A. Márquez, J. Campos, M. J. Yzuel, I. Pascual, A. Fimia, and A. Beléndez, “Production of computer-generated phase holograms using graphic devices: application to correlation filters,” Opt. Eng. 39(6), 1612–1619 (2000).
[CrossRef]

Pavani, K.

K. Pavani, I. Naydenova, S. Martin, and V. Toal, “Photoinduced surface relief studies in an acrylamide-based photopolymer,” J. Opt. A, Pure Appl. Opt. 9(1), 43–48 (2007).
[CrossRef]

Psaltis, D.

Pu, A.

Ramos, G.

Renotte, Y.

Schilling, M.

L. Dhar, M. G. Schones, T. L. Wysocki, H. Bair, M. Schilling, and C. Boyd, “Temperature-induced changes in photopolymer volume holograms,” Appl. Phys. Lett. 73(10), 1337–1339 (1998).
[CrossRef]

Schones, M. G.

L. Dhar, M. G. Schones, T. L. Wysocki, H. Bair, M. Schilling, and C. Boyd, “Temperature-induced changes in photopolymer volume holograms,” Appl. Phys. Lett. 73(10), 1337–1339 (1998).
[CrossRef]

Sheridan, J. T.

Tanaka, A.

Y. Tomita, K. Furushima, K. Ochi, K. Ishizu, A. Tanaka, M. Ozawa, M. Hidaka, and K. Chikama, “Organic nanoparticle (hyperbranched polymer)-dispersed photopolymers for volume holographic storage,” Appl. Phys. Lett. 88(7), 071103 (2006).
[CrossRef]

Toal, V.

Tomita, Y.

Y. Tomita, K. Furushima, K. Ochi, K. Ishizu, A. Tanaka, M. Ozawa, M. Hidaka, and K. Chikama, “Organic nanoparticle (hyperbranched polymer)-dispersed photopolymers for volume holographic storage,” Appl. Phys. Lett. 88(7), 071103 (2006).
[CrossRef]

Weiss, V.

V. Weiss, E. Millul, and A. A. Friesem, “Improvements in holographic photopolymers at Weizmann Institute of Science,” SPIE International Technical Group Newsletter: Optics in Information Systems 15(1), 3 (2004).

Wysocki, T. L.

L. Dhar, M. G. Schones, T. L. Wysocki, H. Bair, M. Schilling, and C. Boyd, “Temperature-induced changes in photopolymer volume holograms,” Appl. Phys. Lett. 73(10), 1337–1339 (1998).
[CrossRef]

Yzuel, M. J.

A. Márquez, C. Iemmi, I. Moreno, J. A. Davis, J. Campos, and M. J. Yzuel, “Quantitative prediction of the modulation behavior of twisted nematic liquid crystal displays,” Opt. Eng. 40(11), 2558–2564 (2001).
[CrossRef]

A. Márquez, J. Campos, M. J. Yzuel, I. Pascual, A. Fimia, and A. Beléndez, “Production of computer-generated phase holograms using graphic devices: application to correlation filters,” Opt. Eng. 39(6), 1612–1619 (2000).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

L. Dhar, M. G. Schones, T. L. Wysocki, H. Bair, M. Schilling, and C. Boyd, “Temperature-induced changes in photopolymer volume holograms,” Appl. Phys. Lett. 73(10), 1337–1339 (1998).
[CrossRef]

S. Gallego, A. Márquez, D. Méndez, C. Neipp, M. Ortuño, A. Beléndez, E. Fernández, and I. Pascual, “Direct analysis of monomer diffusion times in polyvinyl/acrylamide materials,” Appl. Phys. Lett. 92(7), 073306 (2008).
[CrossRef]

Y. Tomita, K. Furushima, K. Ochi, K. Ishizu, A. Tanaka, M. Ozawa, M. Hidaka, and K. Chikama, “Organic nanoparticle (hyperbranched polymer)-dispersed photopolymers for volume holographic storage,” Appl. Phys. Lett. 88(7), 071103 (2006).
[CrossRef]

J. Opt.

F. T. O’Neill, J. R. Lawrence, and J. T. Sheridan, “Improvement of holographic recording material using aerosol sealant,” J. Opt. 3, 20–25 (2001).
[CrossRef]

J. Opt. A, Pure Appl. Opt.

K. Pavani, I. Naydenova, S. Martin, and V. Toal, “Photoinduced surface relief studies in an acrylamide-based photopolymer,” J. Opt. A, Pure Appl. Opt. 9(1), 43–48 (2007).
[CrossRef]

Opt. Commun.

S. Gallego, C. Neipp, M. Ortuño, A. Beléndez, E. Fernández, and I. Pascual, “Analysis of diffusion in depth in photopolymer materials,” Opt. Commun. 274(1), 43–49 (2007).
[CrossRef]

Opt. Eng.

A. Márquez, J. Campos, M. J. Yzuel, I. Pascual, A. Fimia, and A. Beléndez, “Production of computer-generated phase holograms using graphic devices: application to correlation filters,” Opt. Eng. 39(6), 1612–1619 (2000).
[CrossRef]

A. Márquez, C. Iemmi, I. Moreno, J. A. Davis, J. Campos, and M. J. Yzuel, “Quantitative prediction of the modulation behavior of twisted nematic liquid crystal displays,” Opt. Eng. 40(11), 2558–2564 (2001).
[CrossRef]

Opt. Express

Opt. Lett.

SPIE International Technical Group Newsletter: Optics in Information Systems

V. Weiss, E. Millul, and A. A. Friesem, “Improvements in holographic photopolymers at Weizmann Institute of Science,” SPIE International Technical Group Newsletter: Optics in Information Systems 15(1), 3 (2004).

Other

T. Endo, F. Sanda, “Ring-opening polymerization, anionic (with expansion in volume),” Polymeric Materials Encyclopedia, 10, CRC Press, Inc.,7550–3, (1996).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

- Experimental set-up used to analyze the recording of gratings in real time.

Fig. 2
Fig. 2

- Gratings with a spatial period of 0.672 mm in transmission case. (a) Diffraction intensities of the first 4 orders. (b) Estimated profiles for different times (at 30 s of exposure time, when exposure stops at 200 s, and 200 s later).

Fig. 3
Fig. 3

- Gratings with a spatial period of 0.336 mm analyzed for transmission case. (a) Diffraction intensities of the first 4 orders when exposure stops after 200 s. (b) Estimated profiles for different times. (c) Diffraction intensities of the first 4 orders when exposition stops after 16 s.

Fig. 4
Fig. 4

- Gratings with a spatial period of 0.168 mm in the transmission case. (a) Diffraction intensities of the first 4 orders. (b) Estimated profiles for different exposition times. Exposition stops at 200 s.

Fig. 5
Fig. 5

- Gratings a with spatial period of 0.672 mm in the reflection case. (a) Diffraction intensities of the first 4 orders. (b) Estimated profiles for different exposure times. Exposition stops at 16 s.

Fig. 6
Fig. 6

- Gratings with spatial period of 0.168 mm in the reflection case. (a) Diffraction intensities of the first 4 orders. (b) Estimated profiles for different exposition times. Exposition stops at 16 s (we give the absolute value for phase depth).

Fig. 7
Fig. 7

Variation of amplitude of monomer concentration as a function of time after exposure in the exposed zones and non-exposed ones.

Fig. 8
Fig. 8

- Logarithm of variation of h as a function of time for a grating with a spatial period of 0.168 mm.

Equations (16)

Equations on this page are rendered with MathJax. Learn more.

t(x)=exp(iϕ(x))
ϕ(x)=ϕ0(1+exp(α(|x|Ω1)))1
m(x,t)t=x[D(x,t)m(x,t)x]
h(x,t)=Vmm(x,t)+Vpp(x)
Δh(x,t)=h(x,t)h0(x)=Vm(m0(x,t)m0(x))
m(x,t)=mf+Δm(x)exp(tτ)
Δm(x)=τx[D(x,t)dΔm(x)dx]
Δm(x)=Δm0cos(2πxΛ)
I(x)=I0(1cos(2πxΛ))
tg(2πΛ)xD(x,t)+2πΛD(x,t)Λ2πτ=0
D(x)=Λ24π2τ+D1csc(2πΛx)
D=Λ24π2τ
Δh(x,t)=VmΔm(x)(exp(tτ)1)
Δh(x,t)=VmΔm(x)
Δh(x,t)Δh(x,t)=Δh(x,t)exp(tτ)
ln(Δh(x,t)Δh(x,t))=ln(Δh(x,t))tτ

Metrics