Abstract

Ellipsometry gives access to the phenomenological parameters of a grating coupled slab waveguide structure and permits its functional modeling without a priori knowledge of the geometry of the structure. The evidence is shown by comparing with the exact electromagnetic modeling of a sliced cross-section of a singlemode grating waveguide biosensor chip cut by FIB and analyzed by SEM.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. A. Golubenko, A. S. Svakhin, V. A. Sychugov, and A. V. Tishchenko, “Total reflection of light from a corrugated surface of a dielectric waveguide,” Sov. J. Quantum Electron. 15(7), 886–887 (1985).
    [CrossRef]
  2. B. T. Cunningham, P. Li, B. Lin, and J. Pepper, “Colorimetric resonant reflection as a direct biochemical assay technique,” Sens. Actuators B Chem. 81(2-3), 316–328 (2002).
    [CrossRef]
  3. Y. Fang, A. M. Ferrie, N. H. Fontaine, J. Mauro, and J. Balakrishnan, “Resonant waveguide grating biosensor for living cell sensing,” Biophys. J. 91(5), 1925–1940 (2006).
    [CrossRef] [PubMed]
  4. N. M. Lyndin, V. A. Sychugov, A. V. Tishchenko, O. Parriaux, N. Athanassopoulou, P. Edwards, C. Maule, and J. Molloy, “Enhanced visibility grating waveguide biosensor,” in Proceedings of 5th European Conference on Optical Chemical Sensors and Biosensors EUROPT®ODE V, Lyon, France, ed. (Elsevier, 2000), p. 63.
  5. B. A. Usievich, V. A. Sychugov, J. K. H. Nurligareev, and O. Parriaux, “Multilayer resonances sharpened by grating waveguide resonance,” Opt. Quantum Electron. 36(1-3), 109–117 (2004).
    [CrossRef]
  6. T. Clausnitzer, A. V. Tishchenko, E.-B. Kley, H.-J. Fuchs, D. Schelle, O. Parriaux, and U. Kroll, “Narrowband, polarization-independent free-space wave notch filter,” J. Opt. Soc. Am. A 22(12), 2799–2803 (2005).
    [CrossRef]
  7. I. Abdulhalim, “Optimized guided mode resonant structure as thermooptic sensor and liquid crystal tunable filter,” Chin. Opt. Lett. (to be published).
  8. V. A. Sychugov and A. V. Tishchenko, “Ray optics philosophy in the problem of corrugated-waveguide-excitation with an external lightbeam,” Photon. Opto. 1, 79–89 (1993).
  9. D. Pietroy, A. V. Tishchenko, M. Flury, and O. Parriaux, “Bridging pole and coupled wave formalisms for grating waveguide resonance analysis and design synthesis,” Opt. Express 15(15), 9832–9842 (2007).
    [CrossRef]
  10. K. Vedam, “Non-destructive depth profiling of multilayer structures by spectroscopic ellipsometry,” Mater. Res. Soc. Bull. 12, 21–23 (1987).
  11. M. Nevière, “The homogeneous problem,” in Electromagnetic Theory of Gratings, R. Petit, ed., (Springer Verlag Berlin, 1980), pp. 123–157.
  12. D. Neuschäfer, W. Budach, Ch. Wanke, and S. D. Chibout, “Evanescent resonator chips: a universal platform with superior sensitivity for fluorescence-based microarrays,” Biosens. Bioelectron. 18(4), 489–497 (2003).
    [CrossRef] [PubMed]
  13. W. Lukosz and K. Tiefenthaler, “Directional switching in planar waveguides effected by adsorption-desorption processes,” IEE Conf. Publ. 227, 152–155 (1983).
  14. K. Schmitt, K. Oehse, G. Sulz, and C. Hoffmann, “Evanescent field sensors based on tantalum pentoxide waveguides – a review,” Sensors 8(2), 711–738 (2008).
    [CrossRef]
  15. H. Mukundan, A. S. Anderson, W. K. Grace, K. M. Grace, N. Hartman, J. S. Martinez, and B. I. Swanson, “Waveguide-Based Biosensors for Pathogen Detection,” Sensors 9(7), 5783–5809 (2009).
    [CrossRef]
  16. A. M. Popa, B. Wenger, E. Scolan, G. Voirin, H. Heinzelmann, and R. Pugin, “Nanostructured waveguides for evanescent wave biosensors,” Appl. Surf. Sci. (to be published).
  17. B. H. Cheong, O. N. Prudnikov, E. Cho, H. S. Kim, J. Yu, Y. S. Cho, H. Y. Choi, and S. T. Shin, “High angular tolerant color filter using subwavelength gratings,” Appl. Phys. Lett. 94(21), 213104 (2009).
    [CrossRef]
  18. N. Lyndin, “MC grating: diffraction grating analysis,” http://www.mcgrating.com .
  19. http://www.sopra-sa.com/5-spectroscopic-ellipsometer-se-.php .
  20. J. H. Liu, C. W. Liu, K. J. Huang, T. Y. Li, M. C. Chiu, J. J. Hong, C. Chung-Ping Chen, C. S. Jao, and L. Wang, “Efficient and accurate optical scatterometry diagnosis of grating variation based on segmented moment matching and singular value decomposition method,” Microelectron. Eng. 86(4-6), 999–1003 (2009).
    [CrossRef]

2009

H. Mukundan, A. S. Anderson, W. K. Grace, K. M. Grace, N. Hartman, J. S. Martinez, and B. I. Swanson, “Waveguide-Based Biosensors for Pathogen Detection,” Sensors 9(7), 5783–5809 (2009).
[CrossRef]

B. H. Cheong, O. N. Prudnikov, E. Cho, H. S. Kim, J. Yu, Y. S. Cho, H. Y. Choi, and S. T. Shin, “High angular tolerant color filter using subwavelength gratings,” Appl. Phys. Lett. 94(21), 213104 (2009).
[CrossRef]

J. H. Liu, C. W. Liu, K. J. Huang, T. Y. Li, M. C. Chiu, J. J. Hong, C. Chung-Ping Chen, C. S. Jao, and L. Wang, “Efficient and accurate optical scatterometry diagnosis of grating variation based on segmented moment matching and singular value decomposition method,” Microelectron. Eng. 86(4-6), 999–1003 (2009).
[CrossRef]

2008

K. Schmitt, K. Oehse, G. Sulz, and C. Hoffmann, “Evanescent field sensors based on tantalum pentoxide waveguides – a review,” Sensors 8(2), 711–738 (2008).
[CrossRef]

2007

D. Pietroy, A. V. Tishchenko, M. Flury, and O. Parriaux, “Bridging pole and coupled wave formalisms for grating waveguide resonance analysis and design synthesis,” Opt. Express 15(15), 9832–9842 (2007).
[CrossRef]

2006

Y. Fang, A. M. Ferrie, N. H. Fontaine, J. Mauro, and J. Balakrishnan, “Resonant waveguide grating biosensor for living cell sensing,” Biophys. J. 91(5), 1925–1940 (2006).
[CrossRef] [PubMed]

2005

2004

B. A. Usievich, V. A. Sychugov, J. K. H. Nurligareev, and O. Parriaux, “Multilayer resonances sharpened by grating waveguide resonance,” Opt. Quantum Electron. 36(1-3), 109–117 (2004).
[CrossRef]

2003

D. Neuschäfer, W. Budach, Ch. Wanke, and S. D. Chibout, “Evanescent resonator chips: a universal platform with superior sensitivity for fluorescence-based microarrays,” Biosens. Bioelectron. 18(4), 489–497 (2003).
[CrossRef] [PubMed]

2002

B. T. Cunningham, P. Li, B. Lin, and J. Pepper, “Colorimetric resonant reflection as a direct biochemical assay technique,” Sens. Actuators B Chem. 81(2-3), 316–328 (2002).
[CrossRef]

1993

V. A. Sychugov and A. V. Tishchenko, “Ray optics philosophy in the problem of corrugated-waveguide-excitation with an external lightbeam,” Photon. Opto. 1, 79–89 (1993).

1987

K. Vedam, “Non-destructive depth profiling of multilayer structures by spectroscopic ellipsometry,” Mater. Res. Soc. Bull. 12, 21–23 (1987).

1985

G. A. Golubenko, A. S. Svakhin, V. A. Sychugov, and A. V. Tishchenko, “Total reflection of light from a corrugated surface of a dielectric waveguide,” Sov. J. Quantum Electron. 15(7), 886–887 (1985).
[CrossRef]

1983

W. Lukosz and K. Tiefenthaler, “Directional switching in planar waveguides effected by adsorption-desorption processes,” IEE Conf. Publ. 227, 152–155 (1983).

Abdulhalim, I.

I. Abdulhalim, “Optimized guided mode resonant structure as thermooptic sensor and liquid crystal tunable filter,” Chin. Opt. Lett. (to be published).

Anderson, A. S.

H. Mukundan, A. S. Anderson, W. K. Grace, K. M. Grace, N. Hartman, J. S. Martinez, and B. I. Swanson, “Waveguide-Based Biosensors for Pathogen Detection,” Sensors 9(7), 5783–5809 (2009).
[CrossRef]

Balakrishnan, J.

Y. Fang, A. M. Ferrie, N. H. Fontaine, J. Mauro, and J. Balakrishnan, “Resonant waveguide grating biosensor for living cell sensing,” Biophys. J. 91(5), 1925–1940 (2006).
[CrossRef] [PubMed]

Budach, W.

D. Neuschäfer, W. Budach, Ch. Wanke, and S. D. Chibout, “Evanescent resonator chips: a universal platform with superior sensitivity for fluorescence-based microarrays,” Biosens. Bioelectron. 18(4), 489–497 (2003).
[CrossRef] [PubMed]

Cheong, B. H.

B. H. Cheong, O. N. Prudnikov, E. Cho, H. S. Kim, J. Yu, Y. S. Cho, H. Y. Choi, and S. T. Shin, “High angular tolerant color filter using subwavelength gratings,” Appl. Phys. Lett. 94(21), 213104 (2009).
[CrossRef]

Chibout, S. D.

D. Neuschäfer, W. Budach, Ch. Wanke, and S. D. Chibout, “Evanescent resonator chips: a universal platform with superior sensitivity for fluorescence-based microarrays,” Biosens. Bioelectron. 18(4), 489–497 (2003).
[CrossRef] [PubMed]

Chiu, M. C.

J. H. Liu, C. W. Liu, K. J. Huang, T. Y. Li, M. C. Chiu, J. J. Hong, C. Chung-Ping Chen, C. S. Jao, and L. Wang, “Efficient and accurate optical scatterometry diagnosis of grating variation based on segmented moment matching and singular value decomposition method,” Microelectron. Eng. 86(4-6), 999–1003 (2009).
[CrossRef]

Cho, E.

B. H. Cheong, O. N. Prudnikov, E. Cho, H. S. Kim, J. Yu, Y. S. Cho, H. Y. Choi, and S. T. Shin, “High angular tolerant color filter using subwavelength gratings,” Appl. Phys. Lett. 94(21), 213104 (2009).
[CrossRef]

Cho, Y. S.

B. H. Cheong, O. N. Prudnikov, E. Cho, H. S. Kim, J. Yu, Y. S. Cho, H. Y. Choi, and S. T. Shin, “High angular tolerant color filter using subwavelength gratings,” Appl. Phys. Lett. 94(21), 213104 (2009).
[CrossRef]

Choi, H. Y.

B. H. Cheong, O. N. Prudnikov, E. Cho, H. S. Kim, J. Yu, Y. S. Cho, H. Y. Choi, and S. T. Shin, “High angular tolerant color filter using subwavelength gratings,” Appl. Phys. Lett. 94(21), 213104 (2009).
[CrossRef]

Chung-Ping Chen, C.

J. H. Liu, C. W. Liu, K. J. Huang, T. Y. Li, M. C. Chiu, J. J. Hong, C. Chung-Ping Chen, C. S. Jao, and L. Wang, “Efficient and accurate optical scatterometry diagnosis of grating variation based on segmented moment matching and singular value decomposition method,” Microelectron. Eng. 86(4-6), 999–1003 (2009).
[CrossRef]

Clausnitzer, T.

Cunningham, B. T.

B. T. Cunningham, P. Li, B. Lin, and J. Pepper, “Colorimetric resonant reflection as a direct biochemical assay technique,” Sens. Actuators B Chem. 81(2-3), 316–328 (2002).
[CrossRef]

Fang, Y.

Y. Fang, A. M. Ferrie, N. H. Fontaine, J. Mauro, and J. Balakrishnan, “Resonant waveguide grating biosensor for living cell sensing,” Biophys. J. 91(5), 1925–1940 (2006).
[CrossRef] [PubMed]

Ferrie, A. M.

Y. Fang, A. M. Ferrie, N. H. Fontaine, J. Mauro, and J. Balakrishnan, “Resonant waveguide grating biosensor for living cell sensing,” Biophys. J. 91(5), 1925–1940 (2006).
[CrossRef] [PubMed]

Flury, M.

D. Pietroy, A. V. Tishchenko, M. Flury, and O. Parriaux, “Bridging pole and coupled wave formalisms for grating waveguide resonance analysis and design synthesis,” Opt. Express 15(15), 9832–9842 (2007).
[CrossRef]

Fontaine, N. H.

Y. Fang, A. M. Ferrie, N. H. Fontaine, J. Mauro, and J. Balakrishnan, “Resonant waveguide grating biosensor for living cell sensing,” Biophys. J. 91(5), 1925–1940 (2006).
[CrossRef] [PubMed]

Fuchs, H.-J.

Golubenko, G. A.

G. A. Golubenko, A. S. Svakhin, V. A. Sychugov, and A. V. Tishchenko, “Total reflection of light from a corrugated surface of a dielectric waveguide,” Sov. J. Quantum Electron. 15(7), 886–887 (1985).
[CrossRef]

Grace, K. M.

H. Mukundan, A. S. Anderson, W. K. Grace, K. M. Grace, N. Hartman, J. S. Martinez, and B. I. Swanson, “Waveguide-Based Biosensors for Pathogen Detection,” Sensors 9(7), 5783–5809 (2009).
[CrossRef]

Grace, W. K.

H. Mukundan, A. S. Anderson, W. K. Grace, K. M. Grace, N. Hartman, J. S. Martinez, and B. I. Swanson, “Waveguide-Based Biosensors for Pathogen Detection,” Sensors 9(7), 5783–5809 (2009).
[CrossRef]

Hartman, N.

H. Mukundan, A. S. Anderson, W. K. Grace, K. M. Grace, N. Hartman, J. S. Martinez, and B. I. Swanson, “Waveguide-Based Biosensors for Pathogen Detection,” Sensors 9(7), 5783–5809 (2009).
[CrossRef]

Heinzelmann, H.

A. M. Popa, B. Wenger, E. Scolan, G. Voirin, H. Heinzelmann, and R. Pugin, “Nanostructured waveguides for evanescent wave biosensors,” Appl. Surf. Sci. (to be published).

Hoffmann, C.

K. Schmitt, K. Oehse, G. Sulz, and C. Hoffmann, “Evanescent field sensors based on tantalum pentoxide waveguides – a review,” Sensors 8(2), 711–738 (2008).
[CrossRef]

Hong, J. J.

J. H. Liu, C. W. Liu, K. J. Huang, T. Y. Li, M. C. Chiu, J. J. Hong, C. Chung-Ping Chen, C. S. Jao, and L. Wang, “Efficient and accurate optical scatterometry diagnosis of grating variation based on segmented moment matching and singular value decomposition method,” Microelectron. Eng. 86(4-6), 999–1003 (2009).
[CrossRef]

Huang, K. J.

J. H. Liu, C. W. Liu, K. J. Huang, T. Y. Li, M. C. Chiu, J. J. Hong, C. Chung-Ping Chen, C. S. Jao, and L. Wang, “Efficient and accurate optical scatterometry diagnosis of grating variation based on segmented moment matching and singular value decomposition method,” Microelectron. Eng. 86(4-6), 999–1003 (2009).
[CrossRef]

Jao, C. S.

J. H. Liu, C. W. Liu, K. J. Huang, T. Y. Li, M. C. Chiu, J. J. Hong, C. Chung-Ping Chen, C. S. Jao, and L. Wang, “Efficient and accurate optical scatterometry diagnosis of grating variation based on segmented moment matching and singular value decomposition method,” Microelectron. Eng. 86(4-6), 999–1003 (2009).
[CrossRef]

Kim, H. S.

B. H. Cheong, O. N. Prudnikov, E. Cho, H. S. Kim, J. Yu, Y. S. Cho, H. Y. Choi, and S. T. Shin, “High angular tolerant color filter using subwavelength gratings,” Appl. Phys. Lett. 94(21), 213104 (2009).
[CrossRef]

Kley, E.-B.

Kroll, U.

Li, P.

B. T. Cunningham, P. Li, B. Lin, and J. Pepper, “Colorimetric resonant reflection as a direct biochemical assay technique,” Sens. Actuators B Chem. 81(2-3), 316–328 (2002).
[CrossRef]

Li, T. Y.

J. H. Liu, C. W. Liu, K. J. Huang, T. Y. Li, M. C. Chiu, J. J. Hong, C. Chung-Ping Chen, C. S. Jao, and L. Wang, “Efficient and accurate optical scatterometry diagnosis of grating variation based on segmented moment matching and singular value decomposition method,” Microelectron. Eng. 86(4-6), 999–1003 (2009).
[CrossRef]

Lin, B.

B. T. Cunningham, P. Li, B. Lin, and J. Pepper, “Colorimetric resonant reflection as a direct biochemical assay technique,” Sens. Actuators B Chem. 81(2-3), 316–328 (2002).
[CrossRef]

Liu, C. W.

J. H. Liu, C. W. Liu, K. J. Huang, T. Y. Li, M. C. Chiu, J. J. Hong, C. Chung-Ping Chen, C. S. Jao, and L. Wang, “Efficient and accurate optical scatterometry diagnosis of grating variation based on segmented moment matching and singular value decomposition method,” Microelectron. Eng. 86(4-6), 999–1003 (2009).
[CrossRef]

Liu, J. H.

J. H. Liu, C. W. Liu, K. J. Huang, T. Y. Li, M. C. Chiu, J. J. Hong, C. Chung-Ping Chen, C. S. Jao, and L. Wang, “Efficient and accurate optical scatterometry diagnosis of grating variation based on segmented moment matching and singular value decomposition method,” Microelectron. Eng. 86(4-6), 999–1003 (2009).
[CrossRef]

Lukosz, W.

W. Lukosz and K. Tiefenthaler, “Directional switching in planar waveguides effected by adsorption-desorption processes,” IEE Conf. Publ. 227, 152–155 (1983).

Martinez, J. S.

H. Mukundan, A. S. Anderson, W. K. Grace, K. M. Grace, N. Hartman, J. S. Martinez, and B. I. Swanson, “Waveguide-Based Biosensors for Pathogen Detection,” Sensors 9(7), 5783–5809 (2009).
[CrossRef]

Mauro, J.

Y. Fang, A. M. Ferrie, N. H. Fontaine, J. Mauro, and J. Balakrishnan, “Resonant waveguide grating biosensor for living cell sensing,” Biophys. J. 91(5), 1925–1940 (2006).
[CrossRef] [PubMed]

Mukundan, H.

H. Mukundan, A. S. Anderson, W. K. Grace, K. M. Grace, N. Hartman, J. S. Martinez, and B. I. Swanson, “Waveguide-Based Biosensors for Pathogen Detection,” Sensors 9(7), 5783–5809 (2009).
[CrossRef]

Neuschäfer, D.

D. Neuschäfer, W. Budach, Ch. Wanke, and S. D. Chibout, “Evanescent resonator chips: a universal platform with superior sensitivity for fluorescence-based microarrays,” Biosens. Bioelectron. 18(4), 489–497 (2003).
[CrossRef] [PubMed]

Nurligareev, J. K. H.

B. A. Usievich, V. A. Sychugov, J. K. H. Nurligareev, and O. Parriaux, “Multilayer resonances sharpened by grating waveguide resonance,” Opt. Quantum Electron. 36(1-3), 109–117 (2004).
[CrossRef]

Oehse, K.

K. Schmitt, K. Oehse, G. Sulz, and C. Hoffmann, “Evanescent field sensors based on tantalum pentoxide waveguides – a review,” Sensors 8(2), 711–738 (2008).
[CrossRef]

Parriaux, O.

D. Pietroy, A. V. Tishchenko, M. Flury, and O. Parriaux, “Bridging pole and coupled wave formalisms for grating waveguide resonance analysis and design synthesis,” Opt. Express 15(15), 9832–9842 (2007).
[CrossRef]

T. Clausnitzer, A. V. Tishchenko, E.-B. Kley, H.-J. Fuchs, D. Schelle, O. Parriaux, and U. Kroll, “Narrowband, polarization-independent free-space wave notch filter,” J. Opt. Soc. Am. A 22(12), 2799–2803 (2005).
[CrossRef]

B. A. Usievich, V. A. Sychugov, J. K. H. Nurligareev, and O. Parriaux, “Multilayer resonances sharpened by grating waveguide resonance,” Opt. Quantum Electron. 36(1-3), 109–117 (2004).
[CrossRef]

Pepper, J.

B. T. Cunningham, P. Li, B. Lin, and J. Pepper, “Colorimetric resonant reflection as a direct biochemical assay technique,” Sens. Actuators B Chem. 81(2-3), 316–328 (2002).
[CrossRef]

Pietroy, D.

D. Pietroy, A. V. Tishchenko, M. Flury, and O. Parriaux, “Bridging pole and coupled wave formalisms for grating waveguide resonance analysis and design synthesis,” Opt. Express 15(15), 9832–9842 (2007).
[CrossRef]

Popa, A. M.

A. M. Popa, B. Wenger, E. Scolan, G. Voirin, H. Heinzelmann, and R. Pugin, “Nanostructured waveguides for evanescent wave biosensors,” Appl. Surf. Sci. (to be published).

Prudnikov, O. N.

B. H. Cheong, O. N. Prudnikov, E. Cho, H. S. Kim, J. Yu, Y. S. Cho, H. Y. Choi, and S. T. Shin, “High angular tolerant color filter using subwavelength gratings,” Appl. Phys. Lett. 94(21), 213104 (2009).
[CrossRef]

Pugin, R.

A. M. Popa, B. Wenger, E. Scolan, G. Voirin, H. Heinzelmann, and R. Pugin, “Nanostructured waveguides for evanescent wave biosensors,” Appl. Surf. Sci. (to be published).

Schelle, D.

Schmitt, K.

K. Schmitt, K. Oehse, G. Sulz, and C. Hoffmann, “Evanescent field sensors based on tantalum pentoxide waveguides – a review,” Sensors 8(2), 711–738 (2008).
[CrossRef]

Scolan, E.

A. M. Popa, B. Wenger, E. Scolan, G. Voirin, H. Heinzelmann, and R. Pugin, “Nanostructured waveguides for evanescent wave biosensors,” Appl. Surf. Sci. (to be published).

Shin, S. T.

B. H. Cheong, O. N. Prudnikov, E. Cho, H. S. Kim, J. Yu, Y. S. Cho, H. Y. Choi, and S. T. Shin, “High angular tolerant color filter using subwavelength gratings,” Appl. Phys. Lett. 94(21), 213104 (2009).
[CrossRef]

Sulz, G.

K. Schmitt, K. Oehse, G. Sulz, and C. Hoffmann, “Evanescent field sensors based on tantalum pentoxide waveguides – a review,” Sensors 8(2), 711–738 (2008).
[CrossRef]

Svakhin, A. S.

G. A. Golubenko, A. S. Svakhin, V. A. Sychugov, and A. V. Tishchenko, “Total reflection of light from a corrugated surface of a dielectric waveguide,” Sov. J. Quantum Electron. 15(7), 886–887 (1985).
[CrossRef]

Swanson, B. I.

H. Mukundan, A. S. Anderson, W. K. Grace, K. M. Grace, N. Hartman, J. S. Martinez, and B. I. Swanson, “Waveguide-Based Biosensors for Pathogen Detection,” Sensors 9(7), 5783–5809 (2009).
[CrossRef]

Sychugov, V. A.

B. A. Usievich, V. A. Sychugov, J. K. H. Nurligareev, and O. Parriaux, “Multilayer resonances sharpened by grating waveguide resonance,” Opt. Quantum Electron. 36(1-3), 109–117 (2004).
[CrossRef]

V. A. Sychugov and A. V. Tishchenko, “Ray optics philosophy in the problem of corrugated-waveguide-excitation with an external lightbeam,” Photon. Opto. 1, 79–89 (1993).

G. A. Golubenko, A. S. Svakhin, V. A. Sychugov, and A. V. Tishchenko, “Total reflection of light from a corrugated surface of a dielectric waveguide,” Sov. J. Quantum Electron. 15(7), 886–887 (1985).
[CrossRef]

Tiefenthaler, K.

W. Lukosz and K. Tiefenthaler, “Directional switching in planar waveguides effected by adsorption-desorption processes,” IEE Conf. Publ. 227, 152–155 (1983).

Tishchenko, A. V.

D. Pietroy, A. V. Tishchenko, M. Flury, and O. Parriaux, “Bridging pole and coupled wave formalisms for grating waveguide resonance analysis and design synthesis,” Opt. Express 15(15), 9832–9842 (2007).
[CrossRef]

T. Clausnitzer, A. V. Tishchenko, E.-B. Kley, H.-J. Fuchs, D. Schelle, O. Parriaux, and U. Kroll, “Narrowband, polarization-independent free-space wave notch filter,” J. Opt. Soc. Am. A 22(12), 2799–2803 (2005).
[CrossRef]

V. A. Sychugov and A. V. Tishchenko, “Ray optics philosophy in the problem of corrugated-waveguide-excitation with an external lightbeam,” Photon. Opto. 1, 79–89 (1993).

G. A. Golubenko, A. S. Svakhin, V. A. Sychugov, and A. V. Tishchenko, “Total reflection of light from a corrugated surface of a dielectric waveguide,” Sov. J. Quantum Electron. 15(7), 886–887 (1985).
[CrossRef]

Usievich, B. A.

B. A. Usievich, V. A. Sychugov, J. K. H. Nurligareev, and O. Parriaux, “Multilayer resonances sharpened by grating waveguide resonance,” Opt. Quantum Electron. 36(1-3), 109–117 (2004).
[CrossRef]

Vedam, K.

K. Vedam, “Non-destructive depth profiling of multilayer structures by spectroscopic ellipsometry,” Mater. Res. Soc. Bull. 12, 21–23 (1987).

Voirin, G.

A. M. Popa, B. Wenger, E. Scolan, G. Voirin, H. Heinzelmann, and R. Pugin, “Nanostructured waveguides for evanescent wave biosensors,” Appl. Surf. Sci. (to be published).

Wang, L.

J. H. Liu, C. W. Liu, K. J. Huang, T. Y. Li, M. C. Chiu, J. J. Hong, C. Chung-Ping Chen, C. S. Jao, and L. Wang, “Efficient and accurate optical scatterometry diagnosis of grating variation based on segmented moment matching and singular value decomposition method,” Microelectron. Eng. 86(4-6), 999–1003 (2009).
[CrossRef]

Wanke, Ch.

D. Neuschäfer, W. Budach, Ch. Wanke, and S. D. Chibout, “Evanescent resonator chips: a universal platform with superior sensitivity for fluorescence-based microarrays,” Biosens. Bioelectron. 18(4), 489–497 (2003).
[CrossRef] [PubMed]

Wenger, B.

A. M. Popa, B. Wenger, E. Scolan, G. Voirin, H. Heinzelmann, and R. Pugin, “Nanostructured waveguides for evanescent wave biosensors,” Appl. Surf. Sci. (to be published).

Yu, J.

B. H. Cheong, O. N. Prudnikov, E. Cho, H. S. Kim, J. Yu, Y. S. Cho, H. Y. Choi, and S. T. Shin, “High angular tolerant color filter using subwavelength gratings,” Appl. Phys. Lett. 94(21), 213104 (2009).
[CrossRef]

Appl. Phys. Lett.

B. H. Cheong, O. N. Prudnikov, E. Cho, H. S. Kim, J. Yu, Y. S. Cho, H. Y. Choi, and S. T. Shin, “High angular tolerant color filter using subwavelength gratings,” Appl. Phys. Lett. 94(21), 213104 (2009).
[CrossRef]

Appl. Surf. Sci.

A. M. Popa, B. Wenger, E. Scolan, G. Voirin, H. Heinzelmann, and R. Pugin, “Nanostructured waveguides for evanescent wave biosensors,” Appl. Surf. Sci. (to be published).

Biophys. J.

Y. Fang, A. M. Ferrie, N. H. Fontaine, J. Mauro, and J. Balakrishnan, “Resonant waveguide grating biosensor for living cell sensing,” Biophys. J. 91(5), 1925–1940 (2006).
[CrossRef] [PubMed]

Biosens. Bioelectron.

D. Neuschäfer, W. Budach, Ch. Wanke, and S. D. Chibout, “Evanescent resonator chips: a universal platform with superior sensitivity for fluorescence-based microarrays,” Biosens. Bioelectron. 18(4), 489–497 (2003).
[CrossRef] [PubMed]

Chin. Opt. Lett.

I. Abdulhalim, “Optimized guided mode resonant structure as thermooptic sensor and liquid crystal tunable filter,” Chin. Opt. Lett. (to be published).

IEE Conf. Publ.

W. Lukosz and K. Tiefenthaler, “Directional switching in planar waveguides effected by adsorption-desorption processes,” IEE Conf. Publ. 227, 152–155 (1983).

J. Opt. Soc. Am. A

Mater. Res. Soc. Bull.

K. Vedam, “Non-destructive depth profiling of multilayer structures by spectroscopic ellipsometry,” Mater. Res. Soc. Bull. 12, 21–23 (1987).

Microelectron. Eng.

J. H. Liu, C. W. Liu, K. J. Huang, T. Y. Li, M. C. Chiu, J. J. Hong, C. Chung-Ping Chen, C. S. Jao, and L. Wang, “Efficient and accurate optical scatterometry diagnosis of grating variation based on segmented moment matching and singular value decomposition method,” Microelectron. Eng. 86(4-6), 999–1003 (2009).
[CrossRef]

Opt. Express

D. Pietroy, A. V. Tishchenko, M. Flury, and O. Parriaux, “Bridging pole and coupled wave formalisms for grating waveguide resonance analysis and design synthesis,” Opt. Express 15(15), 9832–9842 (2007).
[CrossRef]

Opt. Quantum Electron.

B. A. Usievich, V. A. Sychugov, J. K. H. Nurligareev, and O. Parriaux, “Multilayer resonances sharpened by grating waveguide resonance,” Opt. Quantum Electron. 36(1-3), 109–117 (2004).
[CrossRef]

Photon. Opto.

V. A. Sychugov and A. V. Tishchenko, “Ray optics philosophy in the problem of corrugated-waveguide-excitation with an external lightbeam,” Photon. Opto. 1, 79–89 (1993).

Sens. Actuators B Chem.

B. T. Cunningham, P. Li, B. Lin, and J. Pepper, “Colorimetric resonant reflection as a direct biochemical assay technique,” Sens. Actuators B Chem. 81(2-3), 316–328 (2002).
[CrossRef]

Sensors

K. Schmitt, K. Oehse, G. Sulz, and C. Hoffmann, “Evanescent field sensors based on tantalum pentoxide waveguides – a review,” Sensors 8(2), 711–738 (2008).
[CrossRef]

H. Mukundan, A. S. Anderson, W. K. Grace, K. M. Grace, N. Hartman, J. S. Martinez, and B. I. Swanson, “Waveguide-Based Biosensors for Pathogen Detection,” Sensors 9(7), 5783–5809 (2009).
[CrossRef]

Sov. J. Quantum Electron.

G. A. Golubenko, A. S. Svakhin, V. A. Sychugov, and A. V. Tishchenko, “Total reflection of light from a corrugated surface of a dielectric waveguide,” Sov. J. Quantum Electron. 15(7), 886–887 (1985).
[CrossRef]

Other

N. M. Lyndin, V. A. Sychugov, A. V. Tishchenko, O. Parriaux, N. Athanassopoulou, P. Edwards, C. Maule, and J. Molloy, “Enhanced visibility grating waveguide biosensor,” in Proceedings of 5th European Conference on Optical Chemical Sensors and Biosensors EUROPT®ODE V, Lyon, France, ed. (Elsevier, 2000), p. 63.

M. Nevière, “The homogeneous problem,” in Electromagnetic Theory of Gratings, R. Petit, ed., (Springer Verlag Berlin, 1980), pp. 123–157.

N. Lyndin, “MC grating: diffraction grating analysis,” http://www.mcgrating.com .

http://www.sopra-sa.com/5-spectroscopic-ellipsometer-se-.php .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Complex plane representation of the features of the reflection coefficient with k as a parameter. The insert represents a typical waveguide structure under −1st order mode coupling. All quantities are defined in [9].

Fig. 4
Fig. 4

Representation of the reflection coefficient rs of the TE resonant polarization in the complex plane: ellipsometric measurements (crosses) and phenomenological retrieval (solid line). The small cloud of points at about 325 degree azimuth represents the numerically modelized reflection coefficient rp of the non-resonant TM polarization.

Fig. 2
Fig. 2

SEM picture of a slice of the Ta2O5-coated glass corrugation cut by focused ion beam.

Fig. 3
Fig. 3

Ellipsometric measurements (crosses), phenomenological retrieval (solid line) and numerical modelisation (dotted line) of the amplitude (a) and phase (b) of the reflection coefficient upon incidence.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

|rs|=|rp|tanΨφs=φpΔ
|rs(k)|1tanΨ(k)φs(k)=φpΔ(k)

Metrics