Abstract

Site-controlled quantum-wire photonic-crystal microcavity laser is experimentally demonstrated using optical pumping. The single-mode lasing and threshold are established based on the transient laser response, linewidth narrowing, and the details of the non-linear power input-output charateristics. Average-power threshold as low as ~240 nW (absorbed power) and spontaneous emission coupling coefficient β~0.3 are derived.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. De Martini and G. R. Jacobovitz, “Anomalous spontaneous-stimulated-decay phase transition and zero-threshold laser action in a microscopic cavity,” Phys. Rev. Lett. 60(17), 1711–1714 (1988).
    [CrossRef] [PubMed]
  2. G. Bjork and Y. Yamamoto, “Analysis of semiconductor microcavity lasers using rate equations,” IEEE J. Quantum Electron. 27(11), 2386–2396 (1991).
    [CrossRef]
  3. S. Noda, “Applied physics. Seeking the ultimate nanolaser,” Science 314(5797), 260–261 (2006).
    [CrossRef] [PubMed]
  4. T. Kobayashi, T. Segawa, A. Morimoto, and T. Sueta, in 46th Fall Meeting of the Japanese Applied Physics Society, Tokyo, Japan, 1982, paper 29a-B-26.
  5. H. Yokoyama, in Spontaneous Emission and Laser Oscillation in Microcavities, H. Yokoyama and K. Ujihara, eds. (CRC Press, Boca Raton, 1995), p. 311.
  6. T. Arakawa, M. Nishioka, Y. Nagamune, and Y. Arakawa, “Fabrication of vertical-microcavity quantum wire lasers,” Appl. Phys. Lett. 64(17), 2200–2202 (1994).
    [CrossRef]
  7. R. E. Slusher, and U. Mohideen, in Optical Processes in Microcavities, R. K. Chang and A. J. Campilla, eds. (World Scientific, Singapore, 1996), p. 315.
  8. O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim I, “Two-dimensional photonic band-Gap defect mode laser,”, Science 284(5421), 1819–1821 (1999).
    [CrossRef] [PubMed]
  9. D. Englund, H. Altug, B. Ellis, and J. Vučković, “Ultrafast photonic crystal lasers,” Laser & Photon. Rev. 2(4), 264–274 (2008).
    [CrossRef]
  10. S. Strauf, K. Hennessy, M. T. Rakher, Y. S. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, and D. Bouwmeester, “Self-tuned quantum dot gain in photonic crystal lasers,” Phys. Rev. Lett. 96(12), 127404 (2006).
    [CrossRef] [PubMed]
  11. J. Hendrickson, B. C. Richards, J. Sweet, S. Mosor, C. Christenson, D. Lam, G. Khitrova, H. M. Gibbs, A. Scherer, O. B. Shchekin, and D. G. Deppe, “Quantum dot photonic-crystal-slab nanocavities: Quality factors and lasing,” Phys. Rev. B 72(19), 193303 (2005).
    [CrossRef]
  12. M. Nomura, S. Iwamoto, K. Watanabe, N. Kumagai, Y. Nakata, S. Ishida, and Y. Arakawa, “Room temperature continuous-wave lasing in photonic crystal nanocavity,” Opt. Express 14(13), 6308 (2006).
    [CrossRef] [PubMed]
  13. M. Nomura, N. Kumagai, S. Iwamoto, Y. Ota, and Y. Arakawa, “Photonic crystal nanocavity laser with a single quantum dot gain,” Opt. Express 17(18), 15975–15982 (2009).
    [CrossRef] [PubMed]
  14. S. Reitzenstein, C. Böckler, A. Bazhenov, A. Gorbunov, A. Löffler, M. Kamp, V. D. Kulakovskii, and A. Forchel, “Single quantum dot controlled lasing effects in high-Q micropillar cavities,” Opt. Express 16(7), 4848–4857 (2008).
    [CrossRef] [PubMed]
  15. B. Gayral, “Controlling spontaneous emission dynamics in semiconductor microcavities: an experimental approach, PhD thesis,” Ann. Phys. Fr. 26, 1–133 (2001).
  16. F. Vouilloz, D. Y. Oberli, M. A. Dupertuis, A. Gustafsson, F. Reinhardt, and E. Kapon, “Effect of lateral confinement on valence-band mixing and polarization anisotropy in quantum wires,” Phys. Rev. B 57(19), 12378–12387 (1998).
    [CrossRef]
  17. Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425(6961), 944–947 (2003).
    [CrossRef] [PubMed]
  18. K. A. Atlasov, K. F. Karlsson, E. Deichsel, A. Rudra, B. Dwir, and E. Kapon, “Site-controlled single quantum wire integrated into a photonic-crystal membrane microcavity,” Appl. Phys. Lett. 90(15), 153107 (2007).
    [CrossRef]
  19. K. A. Atlasov, P. Gallo, A. Rudra, B. Dwir, and E. Kapon, “Effect of sidewall passivation in BCl3/N2 inductively-coupled plasma etching of 2D GaAs photonic crystals,” J. Vac. Sci. Technol. B 27, L21–L24 (2009).
    [CrossRef]
  20. D. Y. Oberli, M. A. Dupertuis, F. Reinhardt, and E. Kapon, “Effect of disorder on the temperature dependence of radiative lifetimes in V-groove quantum wires,” Phys. Rev. B 59(4), 2910–2914 (1999).
    [CrossRef]
  21. E. Yablonovitch, “Photonic band-gap structures,” J. Opt. Soc. Am. B 10(2), 283–295 (1993).
    [CrossRef]
  22. K. A. Atlasov, M. Calic, K. F. Karlsson, P. Gallo, A. Rudra, B. Dwir, and E. Kapon, “Short (~1 um) quantum-wire single-mode photonic-crystal microcavity laser”, in Conference on Lasers and Electro-Optics/International Quantum Electronics Conference, OSA Technical Digest (Optical Society of America, 2009), paper CTuH4.
  23. K. J. Luo, J. Y. Xu, H. Cao, Y. Ma, S. H. Chang, S. T. Ho, and G. S. Solomon, “Dynamics of GaAs/AlGaAs microdisk lasers,” Appl. Phys. Lett. 77(15), 2304–2306 (2000).
    [CrossRef]
  24. T. Tawara, H. Kamada, Y. H. Zhang, T. Tanabe, N. I. Cade, D. Ding, S. R. Johnson, H. Gotoh, E. Kuramochi, M. Notomi, and T. Sogawa, “Quality factor control and lasing characteristics of InAs/InGaAs quantum dots embedded in photonic-crystal nanocavities,” Opt. Express 16(8), 5199–5205 (2008).
    [CrossRef] [PubMed]
  25. G. Björk, A. Karlsson, and Y. Yamamoto, “On the linewidth of microcavity lasers,” Appl. Phys. Lett. 60(3), 304–306 (1992).
    [CrossRef]
  26. Z. Toffano, “Investigation of threshold transition in semiconductor lasers,” IEEE J. Sel. Top. Quantum Electron. 3(2), 485–490 (1997).
    [CrossRef]
  27. R. Hui, N. Caponio, S. Benedetto, and I. Montrosset, “Linewidth of a semiconductor laser operating near threshold,” IEEE Photon. Technol. Lett. 4(8), 841–843 (1992).
    [CrossRef]
  28. G. P. Agrawal and G. R. Gray, “Intensity and phase noise in microcavity surface-emitting semiconductor lasers,” Appl. Phys. Lett. 59(4), 399–401 (1991).
    [CrossRef]
  29. E. Kapon, “Quantum wire lasers,” Proc. IEEE 80(3), 398–410 (1992).
    [CrossRef]
  30. C. Gies, J. Wiersig, and F. Jahnke, “Output characteristics of pulsed and continuous-wave-excited quantum-dot microcavity lasers,” Phys. Rev. Lett. 101(6), 067401 (2008).
    [CrossRef] [PubMed]
  31. H. Akiyama, L. N. Pfeiffer, M. Yoshita, A. Pinczuk, P. B. Littlewood, K. W. West, M. J. Matthews, and J. Wynn, “Coulomb-correlated electron-hole plasma and gain in a quantum-wire laser of high uniformity,” Phys. Rev. B 67(4), 041302 (2003).
    [CrossRef]
  32. N. Moret, D. Y. Oberli, B. Dwir, A. Rudra, and E. Kapon, “Diffusion of electron-hole pairs in disordered quantum wires,” Appl. Phys. Lett. 93(19), 192101 (2008).
    [CrossRef]

2009 (2)

K. A. Atlasov, P. Gallo, A. Rudra, B. Dwir, and E. Kapon, “Effect of sidewall passivation in BCl3/N2 inductively-coupled plasma etching of 2D GaAs photonic crystals,” J. Vac. Sci. Technol. B 27, L21–L24 (2009).
[CrossRef]

M. Nomura, N. Kumagai, S. Iwamoto, Y. Ota, and Y. Arakawa, “Photonic crystal nanocavity laser with a single quantum dot gain,” Opt. Express 17(18), 15975–15982 (2009).
[CrossRef] [PubMed]

2008 (5)

S. Reitzenstein, C. Böckler, A. Bazhenov, A. Gorbunov, A. Löffler, M. Kamp, V. D. Kulakovskii, and A. Forchel, “Single quantum dot controlled lasing effects in high-Q micropillar cavities,” Opt. Express 16(7), 4848–4857 (2008).
[CrossRef] [PubMed]

T. Tawara, H. Kamada, Y. H. Zhang, T. Tanabe, N. I. Cade, D. Ding, S. R. Johnson, H. Gotoh, E. Kuramochi, M. Notomi, and T. Sogawa, “Quality factor control and lasing characteristics of InAs/InGaAs quantum dots embedded in photonic-crystal nanocavities,” Opt. Express 16(8), 5199–5205 (2008).
[CrossRef] [PubMed]

D. Englund, H. Altug, B. Ellis, and J. Vučković, “Ultrafast photonic crystal lasers,” Laser & Photon. Rev. 2(4), 264–274 (2008).
[CrossRef]

C. Gies, J. Wiersig, and F. Jahnke, “Output characteristics of pulsed and continuous-wave-excited quantum-dot microcavity lasers,” Phys. Rev. Lett. 101(6), 067401 (2008).
[CrossRef] [PubMed]

N. Moret, D. Y. Oberli, B. Dwir, A. Rudra, and E. Kapon, “Diffusion of electron-hole pairs in disordered quantum wires,” Appl. Phys. Lett. 93(19), 192101 (2008).
[CrossRef]

2007 (1)

K. A. Atlasov, K. F. Karlsson, E. Deichsel, A. Rudra, B. Dwir, and E. Kapon, “Site-controlled single quantum wire integrated into a photonic-crystal membrane microcavity,” Appl. Phys. Lett. 90(15), 153107 (2007).
[CrossRef]

2006 (3)

M. Nomura, S. Iwamoto, K. Watanabe, N. Kumagai, Y. Nakata, S. Ishida, and Y. Arakawa, “Room temperature continuous-wave lasing in photonic crystal nanocavity,” Opt. Express 14(13), 6308 (2006).
[CrossRef] [PubMed]

S. Strauf, K. Hennessy, M. T. Rakher, Y. S. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, and D. Bouwmeester, “Self-tuned quantum dot gain in photonic crystal lasers,” Phys. Rev. Lett. 96(12), 127404 (2006).
[CrossRef] [PubMed]

S. Noda, “Applied physics. Seeking the ultimate nanolaser,” Science 314(5797), 260–261 (2006).
[CrossRef] [PubMed]

2005 (1)

J. Hendrickson, B. C. Richards, J. Sweet, S. Mosor, C. Christenson, D. Lam, G. Khitrova, H. M. Gibbs, A. Scherer, O. B. Shchekin, and D. G. Deppe, “Quantum dot photonic-crystal-slab nanocavities: Quality factors and lasing,” Phys. Rev. B 72(19), 193303 (2005).
[CrossRef]

2003 (2)

H. Akiyama, L. N. Pfeiffer, M. Yoshita, A. Pinczuk, P. B. Littlewood, K. W. West, M. J. Matthews, and J. Wynn, “Coulomb-correlated electron-hole plasma and gain in a quantum-wire laser of high uniformity,” Phys. Rev. B 67(4), 041302 (2003).
[CrossRef]

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425(6961), 944–947 (2003).
[CrossRef] [PubMed]

2000 (1)

K. J. Luo, J. Y. Xu, H. Cao, Y. Ma, S. H. Chang, S. T. Ho, and G. S. Solomon, “Dynamics of GaAs/AlGaAs microdisk lasers,” Appl. Phys. Lett. 77(15), 2304–2306 (2000).
[CrossRef]

1999 (2)

D. Y. Oberli, M. A. Dupertuis, F. Reinhardt, and E. Kapon, “Effect of disorder on the temperature dependence of radiative lifetimes in V-groove quantum wires,” Phys. Rev. B 59(4), 2910–2914 (1999).
[CrossRef]

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim I, “Two-dimensional photonic band-Gap defect mode laser,”, Science 284(5421), 1819–1821 (1999).
[CrossRef] [PubMed]

1998 (1)

F. Vouilloz, D. Y. Oberli, M. A. Dupertuis, A. Gustafsson, F. Reinhardt, and E. Kapon, “Effect of lateral confinement on valence-band mixing and polarization anisotropy in quantum wires,” Phys. Rev. B 57(19), 12378–12387 (1998).
[CrossRef]

1997 (1)

Z. Toffano, “Investigation of threshold transition in semiconductor lasers,” IEEE J. Sel. Top. Quantum Electron. 3(2), 485–490 (1997).
[CrossRef]

1994 (1)

T. Arakawa, M. Nishioka, Y. Nagamune, and Y. Arakawa, “Fabrication of vertical-microcavity quantum wire lasers,” Appl. Phys. Lett. 64(17), 2200–2202 (1994).
[CrossRef]

1993 (1)

1992 (3)

G. Björk, A. Karlsson, and Y. Yamamoto, “On the linewidth of microcavity lasers,” Appl. Phys. Lett. 60(3), 304–306 (1992).
[CrossRef]

R. Hui, N. Caponio, S. Benedetto, and I. Montrosset, “Linewidth of a semiconductor laser operating near threshold,” IEEE Photon. Technol. Lett. 4(8), 841–843 (1992).
[CrossRef]

E. Kapon, “Quantum wire lasers,” Proc. IEEE 80(3), 398–410 (1992).
[CrossRef]

1991 (2)

G. P. Agrawal and G. R. Gray, “Intensity and phase noise in microcavity surface-emitting semiconductor lasers,” Appl. Phys. Lett. 59(4), 399–401 (1991).
[CrossRef]

G. Bjork and Y. Yamamoto, “Analysis of semiconductor microcavity lasers using rate equations,” IEEE J. Quantum Electron. 27(11), 2386–2396 (1991).
[CrossRef]

1988 (1)

F. De Martini and G. R. Jacobovitz, “Anomalous spontaneous-stimulated-decay phase transition and zero-threshold laser action in a microscopic cavity,” Phys. Rev. Lett. 60(17), 1711–1714 (1988).
[CrossRef] [PubMed]

Agrawal, G. P.

G. P. Agrawal and G. R. Gray, “Intensity and phase noise in microcavity surface-emitting semiconductor lasers,” Appl. Phys. Lett. 59(4), 399–401 (1991).
[CrossRef]

Akahane, Y.

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425(6961), 944–947 (2003).
[CrossRef] [PubMed]

Akiyama, H.

H. Akiyama, L. N. Pfeiffer, M. Yoshita, A. Pinczuk, P. B. Littlewood, K. W. West, M. J. Matthews, and J. Wynn, “Coulomb-correlated electron-hole plasma and gain in a quantum-wire laser of high uniformity,” Phys. Rev. B 67(4), 041302 (2003).
[CrossRef]

Altug, H.

D. Englund, H. Altug, B. Ellis, and J. Vučković, “Ultrafast photonic crystal lasers,” Laser & Photon. Rev. 2(4), 264–274 (2008).
[CrossRef]

Andreani, L. C.

S. Strauf, K. Hennessy, M. T. Rakher, Y. S. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, and D. Bouwmeester, “Self-tuned quantum dot gain in photonic crystal lasers,” Phys. Rev. Lett. 96(12), 127404 (2006).
[CrossRef] [PubMed]

Arakawa, T.

T. Arakawa, M. Nishioka, Y. Nagamune, and Y. Arakawa, “Fabrication of vertical-microcavity quantum wire lasers,” Appl. Phys. Lett. 64(17), 2200–2202 (1994).
[CrossRef]

Arakawa, Y.

Asano, T.

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425(6961), 944–947 (2003).
[CrossRef] [PubMed]

Atlasov, K. A.

K. A. Atlasov, P. Gallo, A. Rudra, B. Dwir, and E. Kapon, “Effect of sidewall passivation in BCl3/N2 inductively-coupled plasma etching of 2D GaAs photonic crystals,” J. Vac. Sci. Technol. B 27, L21–L24 (2009).
[CrossRef]

K. A. Atlasov, K. F. Karlsson, E. Deichsel, A. Rudra, B. Dwir, and E. Kapon, “Site-controlled single quantum wire integrated into a photonic-crystal membrane microcavity,” Appl. Phys. Lett. 90(15), 153107 (2007).
[CrossRef]

Badolato, A.

S. Strauf, K. Hennessy, M. T. Rakher, Y. S. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, and D. Bouwmeester, “Self-tuned quantum dot gain in photonic crystal lasers,” Phys. Rev. Lett. 96(12), 127404 (2006).
[CrossRef] [PubMed]

Bazhenov, A.

Benedetto, S.

R. Hui, N. Caponio, S. Benedetto, and I. Montrosset, “Linewidth of a semiconductor laser operating near threshold,” IEEE Photon. Technol. Lett. 4(8), 841–843 (1992).
[CrossRef]

Bjork, G.

G. Bjork and Y. Yamamoto, “Analysis of semiconductor microcavity lasers using rate equations,” IEEE J. Quantum Electron. 27(11), 2386–2396 (1991).
[CrossRef]

Björk, G.

G. Björk, A. Karlsson, and Y. Yamamoto, “On the linewidth of microcavity lasers,” Appl. Phys. Lett. 60(3), 304–306 (1992).
[CrossRef]

Böckler, C.

Bouwmeester, D.

S. Strauf, K. Hennessy, M. T. Rakher, Y. S. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, and D. Bouwmeester, “Self-tuned quantum dot gain in photonic crystal lasers,” Phys. Rev. Lett. 96(12), 127404 (2006).
[CrossRef] [PubMed]

Cade, N. I.

Cao, H.

K. J. Luo, J. Y. Xu, H. Cao, Y. Ma, S. H. Chang, S. T. Ho, and G. S. Solomon, “Dynamics of GaAs/AlGaAs microdisk lasers,” Appl. Phys. Lett. 77(15), 2304–2306 (2000).
[CrossRef]

Caponio, N.

R. Hui, N. Caponio, S. Benedetto, and I. Montrosset, “Linewidth of a semiconductor laser operating near threshold,” IEEE Photon. Technol. Lett. 4(8), 841–843 (1992).
[CrossRef]

Chang, S. H.

K. J. Luo, J. Y. Xu, H. Cao, Y. Ma, S. H. Chang, S. T. Ho, and G. S. Solomon, “Dynamics of GaAs/AlGaAs microdisk lasers,” Appl. Phys. Lett. 77(15), 2304–2306 (2000).
[CrossRef]

Choi, Y. S.

S. Strauf, K. Hennessy, M. T. Rakher, Y. S. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, and D. Bouwmeester, “Self-tuned quantum dot gain in photonic crystal lasers,” Phys. Rev. Lett. 96(12), 127404 (2006).
[CrossRef] [PubMed]

Christenson, C.

J. Hendrickson, B. C. Richards, J. Sweet, S. Mosor, C. Christenson, D. Lam, G. Khitrova, H. M. Gibbs, A. Scherer, O. B. Shchekin, and D. G. Deppe, “Quantum dot photonic-crystal-slab nanocavities: Quality factors and lasing,” Phys. Rev. B 72(19), 193303 (2005).
[CrossRef]

Dapkus, P. D.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim I, “Two-dimensional photonic band-Gap defect mode laser,”, Science 284(5421), 1819–1821 (1999).
[CrossRef] [PubMed]

De Martini, F.

F. De Martini and G. R. Jacobovitz, “Anomalous spontaneous-stimulated-decay phase transition and zero-threshold laser action in a microscopic cavity,” Phys. Rev. Lett. 60(17), 1711–1714 (1988).
[CrossRef] [PubMed]

Deichsel, E.

K. A. Atlasov, K. F. Karlsson, E. Deichsel, A. Rudra, B. Dwir, and E. Kapon, “Site-controlled single quantum wire integrated into a photonic-crystal membrane microcavity,” Appl. Phys. Lett. 90(15), 153107 (2007).
[CrossRef]

Deppe, D. G.

J. Hendrickson, B. C. Richards, J. Sweet, S. Mosor, C. Christenson, D. Lam, G. Khitrova, H. M. Gibbs, A. Scherer, O. B. Shchekin, and D. G. Deppe, “Quantum dot photonic-crystal-slab nanocavities: Quality factors and lasing,” Phys. Rev. B 72(19), 193303 (2005).
[CrossRef]

Ding, D.

Dupertuis, M. A.

D. Y. Oberli, M. A. Dupertuis, F. Reinhardt, and E. Kapon, “Effect of disorder on the temperature dependence of radiative lifetimes in V-groove quantum wires,” Phys. Rev. B 59(4), 2910–2914 (1999).
[CrossRef]

F. Vouilloz, D. Y. Oberli, M. A. Dupertuis, A. Gustafsson, F. Reinhardt, and E. Kapon, “Effect of lateral confinement on valence-band mixing and polarization anisotropy in quantum wires,” Phys. Rev. B 57(19), 12378–12387 (1998).
[CrossRef]

Dwir, B.

K. A. Atlasov, P. Gallo, A. Rudra, B. Dwir, and E. Kapon, “Effect of sidewall passivation in BCl3/N2 inductively-coupled plasma etching of 2D GaAs photonic crystals,” J. Vac. Sci. Technol. B 27, L21–L24 (2009).
[CrossRef]

N. Moret, D. Y. Oberli, B. Dwir, A. Rudra, and E. Kapon, “Diffusion of electron-hole pairs in disordered quantum wires,” Appl. Phys. Lett. 93(19), 192101 (2008).
[CrossRef]

K. A. Atlasov, K. F. Karlsson, E. Deichsel, A. Rudra, B. Dwir, and E. Kapon, “Site-controlled single quantum wire integrated into a photonic-crystal membrane microcavity,” Appl. Phys. Lett. 90(15), 153107 (2007).
[CrossRef]

Ellis, B.

D. Englund, H. Altug, B. Ellis, and J. Vučković, “Ultrafast photonic crystal lasers,” Laser & Photon. Rev. 2(4), 264–274 (2008).
[CrossRef]

Englund, D.

D. Englund, H. Altug, B. Ellis, and J. Vučković, “Ultrafast photonic crystal lasers,” Laser & Photon. Rev. 2(4), 264–274 (2008).
[CrossRef]

Forchel, A.

Gallo, P.

K. A. Atlasov, P. Gallo, A. Rudra, B. Dwir, and E. Kapon, “Effect of sidewall passivation in BCl3/N2 inductively-coupled plasma etching of 2D GaAs photonic crystals,” J. Vac. Sci. Technol. B 27, L21–L24 (2009).
[CrossRef]

Gibbs, H. M.

J. Hendrickson, B. C. Richards, J. Sweet, S. Mosor, C. Christenson, D. Lam, G. Khitrova, H. M. Gibbs, A. Scherer, O. B. Shchekin, and D. G. Deppe, “Quantum dot photonic-crystal-slab nanocavities: Quality factors and lasing,” Phys. Rev. B 72(19), 193303 (2005).
[CrossRef]

Gies, C.

C. Gies, J. Wiersig, and F. Jahnke, “Output characteristics of pulsed and continuous-wave-excited quantum-dot microcavity lasers,” Phys. Rev. Lett. 101(6), 067401 (2008).
[CrossRef] [PubMed]

Gorbunov, A.

Gotoh, H.

Gray, G. R.

G. P. Agrawal and G. R. Gray, “Intensity and phase noise in microcavity surface-emitting semiconductor lasers,” Appl. Phys. Lett. 59(4), 399–401 (1991).
[CrossRef]

Gustafsson, A.

F. Vouilloz, D. Y. Oberli, M. A. Dupertuis, A. Gustafsson, F. Reinhardt, and E. Kapon, “Effect of lateral confinement on valence-band mixing and polarization anisotropy in quantum wires,” Phys. Rev. B 57(19), 12378–12387 (1998).
[CrossRef]

Hendrickson, J.

J. Hendrickson, B. C. Richards, J. Sweet, S. Mosor, C. Christenson, D. Lam, G. Khitrova, H. M. Gibbs, A. Scherer, O. B. Shchekin, and D. G. Deppe, “Quantum dot photonic-crystal-slab nanocavities: Quality factors and lasing,” Phys. Rev. B 72(19), 193303 (2005).
[CrossRef]

Hennessy, K.

S. Strauf, K. Hennessy, M. T. Rakher, Y. S. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, and D. Bouwmeester, “Self-tuned quantum dot gain in photonic crystal lasers,” Phys. Rev. Lett. 96(12), 127404 (2006).
[CrossRef] [PubMed]

Ho, S. T.

K. J. Luo, J. Y. Xu, H. Cao, Y. Ma, S. H. Chang, S. T. Ho, and G. S. Solomon, “Dynamics of GaAs/AlGaAs microdisk lasers,” Appl. Phys. Lett. 77(15), 2304–2306 (2000).
[CrossRef]

Hu, E. L.

S. Strauf, K. Hennessy, M. T. Rakher, Y. S. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, and D. Bouwmeester, “Self-tuned quantum dot gain in photonic crystal lasers,” Phys. Rev. Lett. 96(12), 127404 (2006).
[CrossRef] [PubMed]

Hui, R.

R. Hui, N. Caponio, S. Benedetto, and I. Montrosset, “Linewidth of a semiconductor laser operating near threshold,” IEEE Photon. Technol. Lett. 4(8), 841–843 (1992).
[CrossRef]

Ishida, S.

Iwamoto, S.

Jacobovitz, G. R.

F. De Martini and G. R. Jacobovitz, “Anomalous spontaneous-stimulated-decay phase transition and zero-threshold laser action in a microscopic cavity,” Phys. Rev. Lett. 60(17), 1711–1714 (1988).
[CrossRef] [PubMed]

Jahnke, F.

C. Gies, J. Wiersig, and F. Jahnke, “Output characteristics of pulsed and continuous-wave-excited quantum-dot microcavity lasers,” Phys. Rev. Lett. 101(6), 067401 (2008).
[CrossRef] [PubMed]

Johnson, S. R.

Kamada, H.

Kamp, M.

Kapon, E.

K. A. Atlasov, P. Gallo, A. Rudra, B. Dwir, and E. Kapon, “Effect of sidewall passivation in BCl3/N2 inductively-coupled plasma etching of 2D GaAs photonic crystals,” J. Vac. Sci. Technol. B 27, L21–L24 (2009).
[CrossRef]

N. Moret, D. Y. Oberli, B. Dwir, A. Rudra, and E. Kapon, “Diffusion of electron-hole pairs in disordered quantum wires,” Appl. Phys. Lett. 93(19), 192101 (2008).
[CrossRef]

K. A. Atlasov, K. F. Karlsson, E. Deichsel, A. Rudra, B. Dwir, and E. Kapon, “Site-controlled single quantum wire integrated into a photonic-crystal membrane microcavity,” Appl. Phys. Lett. 90(15), 153107 (2007).
[CrossRef]

D. Y. Oberli, M. A. Dupertuis, F. Reinhardt, and E. Kapon, “Effect of disorder on the temperature dependence of radiative lifetimes in V-groove quantum wires,” Phys. Rev. B 59(4), 2910–2914 (1999).
[CrossRef]

F. Vouilloz, D. Y. Oberli, M. A. Dupertuis, A. Gustafsson, F. Reinhardt, and E. Kapon, “Effect of lateral confinement on valence-band mixing and polarization anisotropy in quantum wires,” Phys. Rev. B 57(19), 12378–12387 (1998).
[CrossRef]

E. Kapon, “Quantum wire lasers,” Proc. IEEE 80(3), 398–410 (1992).
[CrossRef]

Karlsson, A.

G. Björk, A. Karlsson, and Y. Yamamoto, “On the linewidth of microcavity lasers,” Appl. Phys. Lett. 60(3), 304–306 (1992).
[CrossRef]

Karlsson, K. F.

K. A. Atlasov, K. F. Karlsson, E. Deichsel, A. Rudra, B. Dwir, and E. Kapon, “Site-controlled single quantum wire integrated into a photonic-crystal membrane microcavity,” Appl. Phys. Lett. 90(15), 153107 (2007).
[CrossRef]

Khitrova, G.

J. Hendrickson, B. C. Richards, J. Sweet, S. Mosor, C. Christenson, D. Lam, G. Khitrova, H. M. Gibbs, A. Scherer, O. B. Shchekin, and D. G. Deppe, “Quantum dot photonic-crystal-slab nanocavities: Quality factors and lasing,” Phys. Rev. B 72(19), 193303 (2005).
[CrossRef]

Kim I, I.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim I, “Two-dimensional photonic band-Gap defect mode laser,”, Science 284(5421), 1819–1821 (1999).
[CrossRef] [PubMed]

Kulakovskii, V. D.

Kumagai, N.

Kuramochi, E.

Lam, D.

J. Hendrickson, B. C. Richards, J. Sweet, S. Mosor, C. Christenson, D. Lam, G. Khitrova, H. M. Gibbs, A. Scherer, O. B. Shchekin, and D. G. Deppe, “Quantum dot photonic-crystal-slab nanocavities: Quality factors and lasing,” Phys. Rev. B 72(19), 193303 (2005).
[CrossRef]

Lee, R. K.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim I, “Two-dimensional photonic band-Gap defect mode laser,”, Science 284(5421), 1819–1821 (1999).
[CrossRef] [PubMed]

Littlewood, P. B.

H. Akiyama, L. N. Pfeiffer, M. Yoshita, A. Pinczuk, P. B. Littlewood, K. W. West, M. J. Matthews, and J. Wynn, “Coulomb-correlated electron-hole plasma and gain in a quantum-wire laser of high uniformity,” Phys. Rev. B 67(4), 041302 (2003).
[CrossRef]

Löffler, A.

Luo, K. J.

K. J. Luo, J. Y. Xu, H. Cao, Y. Ma, S. H. Chang, S. T. Ho, and G. S. Solomon, “Dynamics of GaAs/AlGaAs microdisk lasers,” Appl. Phys. Lett. 77(15), 2304–2306 (2000).
[CrossRef]

Ma, Y.

K. J. Luo, J. Y. Xu, H. Cao, Y. Ma, S. H. Chang, S. T. Ho, and G. S. Solomon, “Dynamics of GaAs/AlGaAs microdisk lasers,” Appl. Phys. Lett. 77(15), 2304–2306 (2000).
[CrossRef]

Matthews, M. J.

H. Akiyama, L. N. Pfeiffer, M. Yoshita, A. Pinczuk, P. B. Littlewood, K. W. West, M. J. Matthews, and J. Wynn, “Coulomb-correlated electron-hole plasma and gain in a quantum-wire laser of high uniformity,” Phys. Rev. B 67(4), 041302 (2003).
[CrossRef]

Montrosset, I.

R. Hui, N. Caponio, S. Benedetto, and I. Montrosset, “Linewidth of a semiconductor laser operating near threshold,” IEEE Photon. Technol. Lett. 4(8), 841–843 (1992).
[CrossRef]

Moret, N.

N. Moret, D. Y. Oberli, B. Dwir, A. Rudra, and E. Kapon, “Diffusion of electron-hole pairs in disordered quantum wires,” Appl. Phys. Lett. 93(19), 192101 (2008).
[CrossRef]

Mosor, S.

J. Hendrickson, B. C. Richards, J. Sweet, S. Mosor, C. Christenson, D. Lam, G. Khitrova, H. M. Gibbs, A. Scherer, O. B. Shchekin, and D. G. Deppe, “Quantum dot photonic-crystal-slab nanocavities: Quality factors and lasing,” Phys. Rev. B 72(19), 193303 (2005).
[CrossRef]

Nagamune, Y.

T. Arakawa, M. Nishioka, Y. Nagamune, and Y. Arakawa, “Fabrication of vertical-microcavity quantum wire lasers,” Appl. Phys. Lett. 64(17), 2200–2202 (1994).
[CrossRef]

Nakata, Y.

Nishioka, M.

T. Arakawa, M. Nishioka, Y. Nagamune, and Y. Arakawa, “Fabrication of vertical-microcavity quantum wire lasers,” Appl. Phys. Lett. 64(17), 2200–2202 (1994).
[CrossRef]

Noda, S.

S. Noda, “Applied physics. Seeking the ultimate nanolaser,” Science 314(5797), 260–261 (2006).
[CrossRef] [PubMed]

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425(6961), 944–947 (2003).
[CrossRef] [PubMed]

Nomura, M.

Notomi, M.

O’Brien, J. D.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim I, “Two-dimensional photonic band-Gap defect mode laser,”, Science 284(5421), 1819–1821 (1999).
[CrossRef] [PubMed]

Oberli, D. Y.

N. Moret, D. Y. Oberli, B. Dwir, A. Rudra, and E. Kapon, “Diffusion of electron-hole pairs in disordered quantum wires,” Appl. Phys. Lett. 93(19), 192101 (2008).
[CrossRef]

D. Y. Oberli, M. A. Dupertuis, F. Reinhardt, and E. Kapon, “Effect of disorder on the temperature dependence of radiative lifetimes in V-groove quantum wires,” Phys. Rev. B 59(4), 2910–2914 (1999).
[CrossRef]

F. Vouilloz, D. Y. Oberli, M. A. Dupertuis, A. Gustafsson, F. Reinhardt, and E. Kapon, “Effect of lateral confinement on valence-band mixing and polarization anisotropy in quantum wires,” Phys. Rev. B 57(19), 12378–12387 (1998).
[CrossRef]

Ota, Y.

Painter, O.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim I, “Two-dimensional photonic band-Gap defect mode laser,”, Science 284(5421), 1819–1821 (1999).
[CrossRef] [PubMed]

Petroff, P. M.

S. Strauf, K. Hennessy, M. T. Rakher, Y. S. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, and D. Bouwmeester, “Self-tuned quantum dot gain in photonic crystal lasers,” Phys. Rev. Lett. 96(12), 127404 (2006).
[CrossRef] [PubMed]

Pfeiffer, L. N.

H. Akiyama, L. N. Pfeiffer, M. Yoshita, A. Pinczuk, P. B. Littlewood, K. W. West, M. J. Matthews, and J. Wynn, “Coulomb-correlated electron-hole plasma and gain in a quantum-wire laser of high uniformity,” Phys. Rev. B 67(4), 041302 (2003).
[CrossRef]

Pinczuk, A.

H. Akiyama, L. N. Pfeiffer, M. Yoshita, A. Pinczuk, P. B. Littlewood, K. W. West, M. J. Matthews, and J. Wynn, “Coulomb-correlated electron-hole plasma and gain in a quantum-wire laser of high uniformity,” Phys. Rev. B 67(4), 041302 (2003).
[CrossRef]

Rakher, M. T.

S. Strauf, K. Hennessy, M. T. Rakher, Y. S. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, and D. Bouwmeester, “Self-tuned quantum dot gain in photonic crystal lasers,” Phys. Rev. Lett. 96(12), 127404 (2006).
[CrossRef] [PubMed]

Reinhardt, F.

D. Y. Oberli, M. A. Dupertuis, F. Reinhardt, and E. Kapon, “Effect of disorder on the temperature dependence of radiative lifetimes in V-groove quantum wires,” Phys. Rev. B 59(4), 2910–2914 (1999).
[CrossRef]

F. Vouilloz, D. Y. Oberli, M. A. Dupertuis, A. Gustafsson, F. Reinhardt, and E. Kapon, “Effect of lateral confinement on valence-band mixing and polarization anisotropy in quantum wires,” Phys. Rev. B 57(19), 12378–12387 (1998).
[CrossRef]

Reitzenstein, S.

Richards, B. C.

J. Hendrickson, B. C. Richards, J. Sweet, S. Mosor, C. Christenson, D. Lam, G. Khitrova, H. M. Gibbs, A. Scherer, O. B. Shchekin, and D. G. Deppe, “Quantum dot photonic-crystal-slab nanocavities: Quality factors and lasing,” Phys. Rev. B 72(19), 193303 (2005).
[CrossRef]

Rudra, A.

K. A. Atlasov, P. Gallo, A. Rudra, B. Dwir, and E. Kapon, “Effect of sidewall passivation in BCl3/N2 inductively-coupled plasma etching of 2D GaAs photonic crystals,” J. Vac. Sci. Technol. B 27, L21–L24 (2009).
[CrossRef]

N. Moret, D. Y. Oberli, B. Dwir, A. Rudra, and E. Kapon, “Diffusion of electron-hole pairs in disordered quantum wires,” Appl. Phys. Lett. 93(19), 192101 (2008).
[CrossRef]

K. A. Atlasov, K. F. Karlsson, E. Deichsel, A. Rudra, B. Dwir, and E. Kapon, “Site-controlled single quantum wire integrated into a photonic-crystal membrane microcavity,” Appl. Phys. Lett. 90(15), 153107 (2007).
[CrossRef]

Scherer, A.

J. Hendrickson, B. C. Richards, J. Sweet, S. Mosor, C. Christenson, D. Lam, G. Khitrova, H. M. Gibbs, A. Scherer, O. B. Shchekin, and D. G. Deppe, “Quantum dot photonic-crystal-slab nanocavities: Quality factors and lasing,” Phys. Rev. B 72(19), 193303 (2005).
[CrossRef]

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim I, “Two-dimensional photonic band-Gap defect mode laser,”, Science 284(5421), 1819–1821 (1999).
[CrossRef] [PubMed]

Shchekin, O. B.

J. Hendrickson, B. C. Richards, J. Sweet, S. Mosor, C. Christenson, D. Lam, G. Khitrova, H. M. Gibbs, A. Scherer, O. B. Shchekin, and D. G. Deppe, “Quantum dot photonic-crystal-slab nanocavities: Quality factors and lasing,” Phys. Rev. B 72(19), 193303 (2005).
[CrossRef]

Sogawa, T.

Solomon, G. S.

K. J. Luo, J. Y. Xu, H. Cao, Y. Ma, S. H. Chang, S. T. Ho, and G. S. Solomon, “Dynamics of GaAs/AlGaAs microdisk lasers,” Appl. Phys. Lett. 77(15), 2304–2306 (2000).
[CrossRef]

Song, B. S.

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425(6961), 944–947 (2003).
[CrossRef] [PubMed]

Strauf, S.

S. Strauf, K. Hennessy, M. T. Rakher, Y. S. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, and D. Bouwmeester, “Self-tuned quantum dot gain in photonic crystal lasers,” Phys. Rev. Lett. 96(12), 127404 (2006).
[CrossRef] [PubMed]

Sweet, J.

J. Hendrickson, B. C. Richards, J. Sweet, S. Mosor, C. Christenson, D. Lam, G. Khitrova, H. M. Gibbs, A. Scherer, O. B. Shchekin, and D. G. Deppe, “Quantum dot photonic-crystal-slab nanocavities: Quality factors and lasing,” Phys. Rev. B 72(19), 193303 (2005).
[CrossRef]

Tanabe, T.

Tawara, T.

Toffano, Z.

Z. Toffano, “Investigation of threshold transition in semiconductor lasers,” IEEE J. Sel. Top. Quantum Electron. 3(2), 485–490 (1997).
[CrossRef]

Vouilloz, F.

F. Vouilloz, D. Y. Oberli, M. A. Dupertuis, A. Gustafsson, F. Reinhardt, and E. Kapon, “Effect of lateral confinement on valence-band mixing and polarization anisotropy in quantum wires,” Phys. Rev. B 57(19), 12378–12387 (1998).
[CrossRef]

Vuckovic, J.

D. Englund, H. Altug, B. Ellis, and J. Vučković, “Ultrafast photonic crystal lasers,” Laser & Photon. Rev. 2(4), 264–274 (2008).
[CrossRef]

Watanabe, K.

West, K. W.

H. Akiyama, L. N. Pfeiffer, M. Yoshita, A. Pinczuk, P. B. Littlewood, K. W. West, M. J. Matthews, and J. Wynn, “Coulomb-correlated electron-hole plasma and gain in a quantum-wire laser of high uniformity,” Phys. Rev. B 67(4), 041302 (2003).
[CrossRef]

Wiersig, J.

C. Gies, J. Wiersig, and F. Jahnke, “Output characteristics of pulsed and continuous-wave-excited quantum-dot microcavity lasers,” Phys. Rev. Lett. 101(6), 067401 (2008).
[CrossRef] [PubMed]

Wynn, J.

H. Akiyama, L. N. Pfeiffer, M. Yoshita, A. Pinczuk, P. B. Littlewood, K. W. West, M. J. Matthews, and J. Wynn, “Coulomb-correlated electron-hole plasma and gain in a quantum-wire laser of high uniformity,” Phys. Rev. B 67(4), 041302 (2003).
[CrossRef]

Xu, J. Y.

K. J. Luo, J. Y. Xu, H. Cao, Y. Ma, S. H. Chang, S. T. Ho, and G. S. Solomon, “Dynamics of GaAs/AlGaAs microdisk lasers,” Appl. Phys. Lett. 77(15), 2304–2306 (2000).
[CrossRef]

Yablonovitch, E.

Yamamoto, Y.

G. Björk, A. Karlsson, and Y. Yamamoto, “On the linewidth of microcavity lasers,” Appl. Phys. Lett. 60(3), 304–306 (1992).
[CrossRef]

G. Bjork and Y. Yamamoto, “Analysis of semiconductor microcavity lasers using rate equations,” IEEE J. Quantum Electron. 27(11), 2386–2396 (1991).
[CrossRef]

Yariv, A.

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim I, “Two-dimensional photonic band-Gap defect mode laser,”, Science 284(5421), 1819–1821 (1999).
[CrossRef] [PubMed]

Yoshita, M.

H. Akiyama, L. N. Pfeiffer, M. Yoshita, A. Pinczuk, P. B. Littlewood, K. W. West, M. J. Matthews, and J. Wynn, “Coulomb-correlated electron-hole plasma and gain in a quantum-wire laser of high uniformity,” Phys. Rev. B 67(4), 041302 (2003).
[CrossRef]

Zhang, Y. H.

Appl. Phys. Lett. (6)

T. Arakawa, M. Nishioka, Y. Nagamune, and Y. Arakawa, “Fabrication of vertical-microcavity quantum wire lasers,” Appl. Phys. Lett. 64(17), 2200–2202 (1994).
[CrossRef]

G. Björk, A. Karlsson, and Y. Yamamoto, “On the linewidth of microcavity lasers,” Appl. Phys. Lett. 60(3), 304–306 (1992).
[CrossRef]

G. P. Agrawal and G. R. Gray, “Intensity and phase noise in microcavity surface-emitting semiconductor lasers,” Appl. Phys. Lett. 59(4), 399–401 (1991).
[CrossRef]

N. Moret, D. Y. Oberli, B. Dwir, A. Rudra, and E. Kapon, “Diffusion of electron-hole pairs in disordered quantum wires,” Appl. Phys. Lett. 93(19), 192101 (2008).
[CrossRef]

K. A. Atlasov, K. F. Karlsson, E. Deichsel, A. Rudra, B. Dwir, and E. Kapon, “Site-controlled single quantum wire integrated into a photonic-crystal membrane microcavity,” Appl. Phys. Lett. 90(15), 153107 (2007).
[CrossRef]

K. J. Luo, J. Y. Xu, H. Cao, Y. Ma, S. H. Chang, S. T. Ho, and G. S. Solomon, “Dynamics of GaAs/AlGaAs microdisk lasers,” Appl. Phys. Lett. 77(15), 2304–2306 (2000).
[CrossRef]

IEEE J. Quantum Electron. (1)

G. Bjork and Y. Yamamoto, “Analysis of semiconductor microcavity lasers using rate equations,” IEEE J. Quantum Electron. 27(11), 2386–2396 (1991).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

Z. Toffano, “Investigation of threshold transition in semiconductor lasers,” IEEE J. Sel. Top. Quantum Electron. 3(2), 485–490 (1997).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

R. Hui, N. Caponio, S. Benedetto, and I. Montrosset, “Linewidth of a semiconductor laser operating near threshold,” IEEE Photon. Technol. Lett. 4(8), 841–843 (1992).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Vac. Sci. Technol. B (1)

K. A. Atlasov, P. Gallo, A. Rudra, B. Dwir, and E. Kapon, “Effect of sidewall passivation in BCl3/N2 inductively-coupled plasma etching of 2D GaAs photonic crystals,” J. Vac. Sci. Technol. B 27, L21–L24 (2009).
[CrossRef]

Laser & Photon. Rev. (1)

D. Englund, H. Altug, B. Ellis, and J. Vučković, “Ultrafast photonic crystal lasers,” Laser & Photon. Rev. 2(4), 264–274 (2008).
[CrossRef]

Nature (1)

Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425(6961), 944–947 (2003).
[CrossRef] [PubMed]

Opt. Express (4)

Phys. Rev. B (4)

D. Y. Oberli, M. A. Dupertuis, F. Reinhardt, and E. Kapon, “Effect of disorder on the temperature dependence of radiative lifetimes in V-groove quantum wires,” Phys. Rev. B 59(4), 2910–2914 (1999).
[CrossRef]

H. Akiyama, L. N. Pfeiffer, M. Yoshita, A. Pinczuk, P. B. Littlewood, K. W. West, M. J. Matthews, and J. Wynn, “Coulomb-correlated electron-hole plasma and gain in a quantum-wire laser of high uniformity,” Phys. Rev. B 67(4), 041302 (2003).
[CrossRef]

F. Vouilloz, D. Y. Oberli, M. A. Dupertuis, A. Gustafsson, F. Reinhardt, and E. Kapon, “Effect of lateral confinement on valence-band mixing and polarization anisotropy in quantum wires,” Phys. Rev. B 57(19), 12378–12387 (1998).
[CrossRef]

J. Hendrickson, B. C. Richards, J. Sweet, S. Mosor, C. Christenson, D. Lam, G. Khitrova, H. M. Gibbs, A. Scherer, O. B. Shchekin, and D. G. Deppe, “Quantum dot photonic-crystal-slab nanocavities: Quality factors and lasing,” Phys. Rev. B 72(19), 193303 (2005).
[CrossRef]

Phys. Rev. Lett. (3)

C. Gies, J. Wiersig, and F. Jahnke, “Output characteristics of pulsed and continuous-wave-excited quantum-dot microcavity lasers,” Phys. Rev. Lett. 101(6), 067401 (2008).
[CrossRef] [PubMed]

S. Strauf, K. Hennessy, M. T. Rakher, Y. S. Choi, A. Badolato, L. C. Andreani, E. L. Hu, P. M. Petroff, and D. Bouwmeester, “Self-tuned quantum dot gain in photonic crystal lasers,” Phys. Rev. Lett. 96(12), 127404 (2006).
[CrossRef] [PubMed]

F. De Martini and G. R. Jacobovitz, “Anomalous spontaneous-stimulated-decay phase transition and zero-threshold laser action in a microscopic cavity,” Phys. Rev. Lett. 60(17), 1711–1714 (1988).
[CrossRef] [PubMed]

Proc. IEEE (1)

E. Kapon, “Quantum wire lasers,” Proc. IEEE 80(3), 398–410 (1992).
[CrossRef]

Science (2)

O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim I, “Two-dimensional photonic band-Gap defect mode laser,”, Science 284(5421), 1819–1821 (1999).
[CrossRef] [PubMed]

S. Noda, “Applied physics. Seeking the ultimate nanolaser,” Science 314(5797), 260–261 (2006).
[CrossRef] [PubMed]

Other (5)

T. Kobayashi, T. Segawa, A. Morimoto, and T. Sueta, in 46th Fall Meeting of the Japanese Applied Physics Society, Tokyo, Japan, 1982, paper 29a-B-26.

H. Yokoyama, in Spontaneous Emission and Laser Oscillation in Microcavities, H. Yokoyama and K. Ujihara, eds. (CRC Press, Boca Raton, 1995), p. 311.

R. E. Slusher, and U. Mohideen, in Optical Processes in Microcavities, R. K. Chang and A. J. Campilla, eds. (World Scientific, Singapore, 1996), p. 315.

B. Gayral, “Controlling spontaneous emission dynamics in semiconductor microcavities: an experimental approach, PhD thesis,” Ann. Phys. Fr. 26, 1–133 (2001).

K. A. Atlasov, M. Calic, K. F. Karlsson, P. Gallo, A. Rudra, B. Dwir, and E. Kapon, “Short (~1 um) quantum-wire single-mode photonic-crystal microcavity laser”, in Conference on Lasers and Electro-Optics/International Quantum Electronics Conference, OSA Technical Digest (Optical Society of America, 2009), paper CTuH4.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) 3D-rendered AFM image of an L6 PhC cavity. (b) TEM cross-sectional image of the embedded stack of 3 InGaAs/GaAs QWRs. (c) Low-temperature µPL spectrum of the “bare” QWRs (without cavity). (d) Top-view SEM image of an L3m PhC cavity. (e) Computed optical-field distribution of the fundamental cavity mode, Et = (Ex 2 + Ey 2)1/2 .

Fig. 2
Fig. 2

Transient µPL spectra of the bare QWRs (grey) and the QWRs embedded in a PhC L3m, resonant (non-lasing) cavity (green) and non-resonant one (red). Inset shows the emission spectrum. Pump power is 11.5 µW. (T = 20K).

Fig. 3
Fig. 3

Spectra of (a) lasing QWR-PhC device (L3m cavity), and (b) non-lasing device (L6 cavity, inset illustrating QWR emission background, log scale). T = 50K. (c) Comparison of characteristic input-output curves (both cavities are L6). (d) Slope efficiency derived from (c).

Fig. 4
Fig. 4

Transient micro-PL at different excitation levels collected from a non-lasing (a) and lasing (b) L3m device. (T = 20K). (c) Input-output curve and delay time (see inset); based on that [22] (see text), lasing threshold is indicated.

Fig. 5
Fig. 5

(a) Linewidth (inverse normalized units) vs pump power for lasing and non-lasing L3m, L6 QWR-PhC devices (see also Fig. 3). (b) Estimated β-factor derived from fitting to the input-output curve of an L3m device [Fig. 3(a)]. Inset shows the input-output curve on a linear scale.

Metrics