Abstract

In this paper, we report two fiber-optic temperature sensors based on silica/polymer microfiber knot resonators (SMKR/PMKR). The structures of these sensors are composed of three layers, MgF2 crystal plate is adopted as the substrate, and the sensing knots are covered by a thin MgF2 slab to keep it steady and immunity to the environment fluctuations. Experimental results show that the temperature sensitivity of SMKR is ~52pm/°C within 30°C~700°C, while the sensitivity of PMKR is ~266pm/°C within 20°C~80°C. The temporal response of SMKR and PMKR sensors are less than 1 ms and 5 ms, respectively. These microfiber knot resonators can be used as miniature high temperature sensors with fast response. Higher resolution can be anticipated with further improvement of the Q factor of the microfiber knot resonators.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Sumetsky, Y. Dulashko, J. M. Fini, and A. Hale, “Optical microfiber loop resonator,” Appl. Phys. Lett. 86(16), 161108 (2005).
    [CrossRef]
  2. X. S. Jiang, L. M. Tong, G. Vienne, X. Guo, A. Tsao, Q. Yang, and D. R. Yang, “Demonstration of optical microfiber knot resonators,” Appl. Phys. Lett. 88(22), 223501 (2006).
    [CrossRef]
  3. F. Xu, P. Horak, and G. Brambilla, “Optical microfiber coil resonator refractometric sensor,” Opt. Express 15(12), 7888–7893 (2007).
    [CrossRef] [PubMed]
  4. Y. J. Rao, “In-fibre Bragg grating sensors,” Meas. Sci. Technol. 8(4), 355–375 (1997).
    [CrossRef]
  5. Y. J. Rao, “Recent Progress in Fiber-Optic Extrinsic Fabry-Perot Interferometric Sensors,” Opt. Fiber Technol. 12(3), 227–237 (2006).
    [CrossRef]
  6. D. G. Rabus, “Integrated Ring Resonators,” Springer Series in Optical Sciences. (Berlin, Heidelberg, NewYork: Springer, 2007).
  7. M. Sumetsky, Y. Dulashko, J. M. Fini, A. Hale, and D. J. Digiovanni, “The Microfiber Loop Resonator: Theory, Experiment, and Application,” IEEE J. Lightwave Technol. 24(1), 242–250 (2006).
    [CrossRef]
  8. M. Sumetsky, Y. Dulashko, and A. Hale, “Fabrication and study of bent and coiled free silica nanowires: Self-coupling microloop optical interferometer,” Opt. Express 12(15), 3521–3531 (2004).
    [CrossRef] [PubMed]
  9. L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
    [CrossRef] [PubMed]
  10. F. X. Gu, L. Zhang, X. F. Yin, and L. M. Tong, “Polymer single-nanowire optical sensors,” Nano Lett. 8(9), 2757–2761 (2008).
    [CrossRef] [PubMed]
  11. X. Jiang, Y. Chen, G. Vienne, and L. M. Tong, “All-fiber add-drop filters based on microfiber knot resonators,” Opt. Lett. 32(12), 1710–1712 (2007).
    [CrossRef] [PubMed]
  12. A. J. C. Grellier, N. K. Zayer, and C. N. Pannel, “Heat transfer modeling in CO2 laser processing of optical fibres,” Opt. Commun. 152(4–6), 324–328 (1998).
    [CrossRef]
  13. M. Sumetsky, Y. Dulashko, J. M. Fini, A. Hale, and D. J. DiGiovanni, “The Microfiber Loop Resonator: Theory,Experiment, and Application,” J. Lightwave Technol. 24(1), 242–250 (2006).
    [CrossRef]
  14. M. Sumetsky, “Uniform coil optical resonator and waveguide: transmission spectrum, eigenmodes, and dispersion relation,” Opt. Express 13(11), 4331–4340 (2005).
    [CrossRef] [PubMed]

2008

F. X. Gu, L. Zhang, X. F. Yin, and L. M. Tong, “Polymer single-nanowire optical sensors,” Nano Lett. 8(9), 2757–2761 (2008).
[CrossRef] [PubMed]

2007

2006

M. Sumetsky, Y. Dulashko, J. M. Fini, A. Hale, and D. J. DiGiovanni, “The Microfiber Loop Resonator: Theory,Experiment, and Application,” J. Lightwave Technol. 24(1), 242–250 (2006).
[CrossRef]

Y. J. Rao, “Recent Progress in Fiber-Optic Extrinsic Fabry-Perot Interferometric Sensors,” Opt. Fiber Technol. 12(3), 227–237 (2006).
[CrossRef]

M. Sumetsky, Y. Dulashko, J. M. Fini, A. Hale, and D. J. Digiovanni, “The Microfiber Loop Resonator: Theory, Experiment, and Application,” IEEE J. Lightwave Technol. 24(1), 242–250 (2006).
[CrossRef]

X. S. Jiang, L. M. Tong, G. Vienne, X. Guo, A. Tsao, Q. Yang, and D. R. Yang, “Demonstration of optical microfiber knot resonators,” Appl. Phys. Lett. 88(22), 223501 (2006).
[CrossRef]

2005

M. Sumetsky, Y. Dulashko, J. M. Fini, and A. Hale, “Optical microfiber loop resonator,” Appl. Phys. Lett. 86(16), 161108 (2005).
[CrossRef]

M. Sumetsky, “Uniform coil optical resonator and waveguide: transmission spectrum, eigenmodes, and dispersion relation,” Opt. Express 13(11), 4331–4340 (2005).
[CrossRef] [PubMed]

2004

2003

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[CrossRef] [PubMed]

1998

A. J. C. Grellier, N. K. Zayer, and C. N. Pannel, “Heat transfer modeling in CO2 laser processing of optical fibres,” Opt. Commun. 152(4–6), 324–328 (1998).
[CrossRef]

1997

Y. J. Rao, “In-fibre Bragg grating sensors,” Meas. Sci. Technol. 8(4), 355–375 (1997).
[CrossRef]

Ashcom, J. B.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[CrossRef] [PubMed]

Brambilla, G.

Chen, Y.

Digiovanni, D. J.

M. Sumetsky, Y. Dulashko, J. M. Fini, A. Hale, and D. J. Digiovanni, “The Microfiber Loop Resonator: Theory, Experiment, and Application,” IEEE J. Lightwave Technol. 24(1), 242–250 (2006).
[CrossRef]

M. Sumetsky, Y. Dulashko, J. M. Fini, A. Hale, and D. J. DiGiovanni, “The Microfiber Loop Resonator: Theory,Experiment, and Application,” J. Lightwave Technol. 24(1), 242–250 (2006).
[CrossRef]

Dulashko, Y.

M. Sumetsky, Y. Dulashko, J. M. Fini, A. Hale, and D. J. DiGiovanni, “The Microfiber Loop Resonator: Theory,Experiment, and Application,” J. Lightwave Technol. 24(1), 242–250 (2006).
[CrossRef]

M. Sumetsky, Y. Dulashko, J. M. Fini, A. Hale, and D. J. Digiovanni, “The Microfiber Loop Resonator: Theory, Experiment, and Application,” IEEE J. Lightwave Technol. 24(1), 242–250 (2006).
[CrossRef]

M. Sumetsky, Y. Dulashko, J. M. Fini, and A. Hale, “Optical microfiber loop resonator,” Appl. Phys. Lett. 86(16), 161108 (2005).
[CrossRef]

M. Sumetsky, Y. Dulashko, and A. Hale, “Fabrication and study of bent and coiled free silica nanowires: Self-coupling microloop optical interferometer,” Opt. Express 12(15), 3521–3531 (2004).
[CrossRef] [PubMed]

Fini, J. M.

M. Sumetsky, Y. Dulashko, J. M. Fini, A. Hale, and D. J. DiGiovanni, “The Microfiber Loop Resonator: Theory,Experiment, and Application,” J. Lightwave Technol. 24(1), 242–250 (2006).
[CrossRef]

M. Sumetsky, Y. Dulashko, J. M. Fini, A. Hale, and D. J. Digiovanni, “The Microfiber Loop Resonator: Theory, Experiment, and Application,” IEEE J. Lightwave Technol. 24(1), 242–250 (2006).
[CrossRef]

M. Sumetsky, Y. Dulashko, J. M. Fini, and A. Hale, “Optical microfiber loop resonator,” Appl. Phys. Lett. 86(16), 161108 (2005).
[CrossRef]

Gattass, R. R.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[CrossRef] [PubMed]

Grellier, A. J. C.

A. J. C. Grellier, N. K. Zayer, and C. N. Pannel, “Heat transfer modeling in CO2 laser processing of optical fibres,” Opt. Commun. 152(4–6), 324–328 (1998).
[CrossRef]

Gu, F. X.

F. X. Gu, L. Zhang, X. F. Yin, and L. M. Tong, “Polymer single-nanowire optical sensors,” Nano Lett. 8(9), 2757–2761 (2008).
[CrossRef] [PubMed]

Guo, X.

X. S. Jiang, L. M. Tong, G. Vienne, X. Guo, A. Tsao, Q. Yang, and D. R. Yang, “Demonstration of optical microfiber knot resonators,” Appl. Phys. Lett. 88(22), 223501 (2006).
[CrossRef]

Hale, A.

M. Sumetsky, Y. Dulashko, J. M. Fini, A. Hale, and D. J. DiGiovanni, “The Microfiber Loop Resonator: Theory,Experiment, and Application,” J. Lightwave Technol. 24(1), 242–250 (2006).
[CrossRef]

M. Sumetsky, Y. Dulashko, J. M. Fini, A. Hale, and D. J. Digiovanni, “The Microfiber Loop Resonator: Theory, Experiment, and Application,” IEEE J. Lightwave Technol. 24(1), 242–250 (2006).
[CrossRef]

M. Sumetsky, Y. Dulashko, J. M. Fini, and A. Hale, “Optical microfiber loop resonator,” Appl. Phys. Lett. 86(16), 161108 (2005).
[CrossRef]

M. Sumetsky, Y. Dulashko, and A. Hale, “Fabrication and study of bent and coiled free silica nanowires: Self-coupling microloop optical interferometer,” Opt. Express 12(15), 3521–3531 (2004).
[CrossRef] [PubMed]

He, S.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[CrossRef] [PubMed]

Horak, P.

Jiang, X.

Jiang, X. S.

X. S. Jiang, L. M. Tong, G. Vienne, X. Guo, A. Tsao, Q. Yang, and D. R. Yang, “Demonstration of optical microfiber knot resonators,” Appl. Phys. Lett. 88(22), 223501 (2006).
[CrossRef]

Lou, J.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[CrossRef] [PubMed]

Maxwell, I.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[CrossRef] [PubMed]

Mazur, E.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[CrossRef] [PubMed]

Pannel, C. N.

A. J. C. Grellier, N. K. Zayer, and C. N. Pannel, “Heat transfer modeling in CO2 laser processing of optical fibres,” Opt. Commun. 152(4–6), 324–328 (1998).
[CrossRef]

Rao, Y. J.

Y. J. Rao, “Recent Progress in Fiber-Optic Extrinsic Fabry-Perot Interferometric Sensors,” Opt. Fiber Technol. 12(3), 227–237 (2006).
[CrossRef]

Y. J. Rao, “In-fibre Bragg grating sensors,” Meas. Sci. Technol. 8(4), 355–375 (1997).
[CrossRef]

Shen, M.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[CrossRef] [PubMed]

Sumetsky, M.

Tong, L.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[CrossRef] [PubMed]

Tong, L. M.

F. X. Gu, L. Zhang, X. F. Yin, and L. M. Tong, “Polymer single-nanowire optical sensors,” Nano Lett. 8(9), 2757–2761 (2008).
[CrossRef] [PubMed]

X. Jiang, Y. Chen, G. Vienne, and L. M. Tong, “All-fiber add-drop filters based on microfiber knot resonators,” Opt. Lett. 32(12), 1710–1712 (2007).
[CrossRef] [PubMed]

X. S. Jiang, L. M. Tong, G. Vienne, X. Guo, A. Tsao, Q. Yang, and D. R. Yang, “Demonstration of optical microfiber knot resonators,” Appl. Phys. Lett. 88(22), 223501 (2006).
[CrossRef]

Tsao, A.

X. S. Jiang, L. M. Tong, G. Vienne, X. Guo, A. Tsao, Q. Yang, and D. R. Yang, “Demonstration of optical microfiber knot resonators,” Appl. Phys. Lett. 88(22), 223501 (2006).
[CrossRef]

Vienne, G.

X. Jiang, Y. Chen, G. Vienne, and L. M. Tong, “All-fiber add-drop filters based on microfiber knot resonators,” Opt. Lett. 32(12), 1710–1712 (2007).
[CrossRef] [PubMed]

X. S. Jiang, L. M. Tong, G. Vienne, X. Guo, A. Tsao, Q. Yang, and D. R. Yang, “Demonstration of optical microfiber knot resonators,” Appl. Phys. Lett. 88(22), 223501 (2006).
[CrossRef]

Xu, F.

Yang, D. R.

X. S. Jiang, L. M. Tong, G. Vienne, X. Guo, A. Tsao, Q. Yang, and D. R. Yang, “Demonstration of optical microfiber knot resonators,” Appl. Phys. Lett. 88(22), 223501 (2006).
[CrossRef]

Yang, Q.

X. S. Jiang, L. M. Tong, G. Vienne, X. Guo, A. Tsao, Q. Yang, and D. R. Yang, “Demonstration of optical microfiber knot resonators,” Appl. Phys. Lett. 88(22), 223501 (2006).
[CrossRef]

Yin, X. F.

F. X. Gu, L. Zhang, X. F. Yin, and L. M. Tong, “Polymer single-nanowire optical sensors,” Nano Lett. 8(9), 2757–2761 (2008).
[CrossRef] [PubMed]

Zayer, N. K.

A. J. C. Grellier, N. K. Zayer, and C. N. Pannel, “Heat transfer modeling in CO2 laser processing of optical fibres,” Opt. Commun. 152(4–6), 324–328 (1998).
[CrossRef]

Zhang, L.

F. X. Gu, L. Zhang, X. F. Yin, and L. M. Tong, “Polymer single-nanowire optical sensors,” Nano Lett. 8(9), 2757–2761 (2008).
[CrossRef] [PubMed]

Appl. Phys. Lett.

M. Sumetsky, Y. Dulashko, J. M. Fini, and A. Hale, “Optical microfiber loop resonator,” Appl. Phys. Lett. 86(16), 161108 (2005).
[CrossRef]

X. S. Jiang, L. M. Tong, G. Vienne, X. Guo, A. Tsao, Q. Yang, and D. R. Yang, “Demonstration of optical microfiber knot resonators,” Appl. Phys. Lett. 88(22), 223501 (2006).
[CrossRef]

IEEE J. Lightwave Technol.

M. Sumetsky, Y. Dulashko, J. M. Fini, A. Hale, and D. J. Digiovanni, “The Microfiber Loop Resonator: Theory, Experiment, and Application,” IEEE J. Lightwave Technol. 24(1), 242–250 (2006).
[CrossRef]

J. Lightwave Technol.

Meas. Sci. Technol.

Y. J. Rao, “In-fibre Bragg grating sensors,” Meas. Sci. Technol. 8(4), 355–375 (1997).
[CrossRef]

Nano Lett.

F. X. Gu, L. Zhang, X. F. Yin, and L. M. Tong, “Polymer single-nanowire optical sensors,” Nano Lett. 8(9), 2757–2761 (2008).
[CrossRef] [PubMed]

Nature

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[CrossRef] [PubMed]

Opt. Commun.

A. J. C. Grellier, N. K. Zayer, and C. N. Pannel, “Heat transfer modeling in CO2 laser processing of optical fibres,” Opt. Commun. 152(4–6), 324–328 (1998).
[CrossRef]

Opt. Express

Opt. Fiber Technol.

Y. J. Rao, “Recent Progress in Fiber-Optic Extrinsic Fabry-Perot Interferometric Sensors,” Opt. Fiber Technol. 12(3), 227–237 (2006).
[CrossRef]

Opt. Lett.

Other

D. G. Rabus, “Integrated Ring Resonators,” Springer Series in Optical Sciences. (Berlin, Heidelberg, NewYork: Springer, 2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

(a) Photograph of the SMKR with diameter of ~190μm and 1.7μm-diameter microfiber. (b) Photograph of the PMKR with the diameter of ~98μm and 2.1μm-diameter microfiber. (c) Schematic diagram of the MKRs temperature sensing structures

Fig. 2
Fig. 2

Transmission spectra of a 98μm-diameter microfiber knot using a 2.1μm-diameter polymer microfiber (Red line) and a 190μm-diameter microfiber knot assembled using a 1.7μm-diameter silica microfiber (Blue line).

Fig. 3
Fig. 3

Spectra of SMKR at temperature of 420°C and 425°C (inset shows a single resonance peak).

Fig. 4
Fig. 4

Static temperature response of the SMKR.

Fig. 5
Fig. 5

Spectra of PMKR at temperature of 60°C and 65°C(inset shows a single resonance peak) .

Fig. 6
Fig. 6

Static temperature response of the PMKR in the heating and cooling processes.

Fig. 7
Fig. 7

The experimental system of temporal response for Silica/Polymer MKR

Fig. 8
Fig. 8

The relaxation time of the transmitted power corresponding to ON/OFF of the CO2 laser beam.

Fig. 9
Fig. 9

Dynamic response time of the power corresponding to squared modulation of the CO2 laser beam.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

FSRλ2/NgπD=λ2/NgL
Q=λresFWHM
Δλ/λ=(ΔL/L+Δn/n)Temp.=(α+β+αf+βf)ΔT
t=cρr/2h

Metrics