Abstract

In this paper, we report two fiber-optic temperature sensors based on silica/polymer microfiber knot resonators (SMKR/PMKR). The structures of these sensors are composed of three layers, MgF2 crystal plate is adopted as the substrate, and the sensing knots are covered by a thin MgF2 slab to keep it steady and immunity to the environment fluctuations. Experimental results show that the temperature sensitivity of SMKR is ~52pm/°C within 30°C~700°C, while the sensitivity of PMKR is ~266pm/°C within 20°C~80°C. The temporal response of SMKR and PMKR sensors are less than 1 ms and 5 ms, respectively. These microfiber knot resonators can be used as miniature high temperature sensors with fast response. Higher resolution can be anticipated with further improvement of the Q factor of the microfiber knot resonators.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Sumetsky, Y. Dulashko, J. M. Fini, and A. Hale, “Optical microfiber loop resonator,” Appl. Phys. Lett. 86(16), 161108 (2005).
    [CrossRef]
  2. X. S. Jiang, L. M. Tong, G. Vienne, X. Guo, A. Tsao, Q. Yang, and D. R. Yang, “Demonstration of optical microfiber knot resonators,” Appl. Phys. Lett. 88(22), 223501 (2006).
    [CrossRef]
  3. F. Xu, P. Horak, and G. Brambilla, “Optical microfiber coil resonator refractometric sensor,” Opt. Express 15(12), 7888–7893 (2007).
    [CrossRef] [PubMed]
  4. Y. J. Rao, “In-fibre Bragg grating sensors,” Meas. Sci. Technol. 8(4), 355–375 (1997).
    [CrossRef]
  5. Y. J. Rao, “Recent Progress in Fiber-Optic Extrinsic Fabry-Perot Interferometric Sensors,” Opt. Fiber Technol. 12(3), 227–237 (2006).
    [CrossRef]
  6. D. G. Rabus, “Integrated Ring Resonators,” Springer Series in Optical Sciences. (Berlin, Heidelberg, NewYork: Springer, 2007).
  7. M. Sumetsky, Y. Dulashko, J. M. Fini, A. Hale, and D. J. Digiovanni, “The Microfiber Loop Resonator: Theory, Experiment, and Application,” IEEE J. Lightwave Technol. 24(1), 242–250 (2006).
    [CrossRef]
  8. M. Sumetsky, Y. Dulashko, and A. Hale, “Fabrication and study of bent and coiled free silica nanowires: Self-coupling microloop optical interferometer,” Opt. Express 12(15), 3521–3531 (2004).
    [CrossRef] [PubMed]
  9. L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
    [CrossRef] [PubMed]
  10. F. X. Gu, L. Zhang, X. F. Yin, and L. M. Tong, “Polymer single-nanowire optical sensors,” Nano Lett. 8(9), 2757–2761 (2008).
    [CrossRef] [PubMed]
  11. X. Jiang, Y. Chen, G. Vienne, and L. M. Tong, “All-fiber add-drop filters based on microfiber knot resonators,” Opt. Lett. 32(12), 1710–1712 (2007).
    [CrossRef] [PubMed]
  12. A. J. C. Grellier, N. K. Zayer, and C. N. Pannel, “Heat transfer modeling in CO2 laser processing of optical fibres,” Opt. Commun. 152(4–6), 324–328 (1998).
    [CrossRef]
  13. M. Sumetsky, Y. Dulashko, J. M. Fini, A. Hale, and D. J. DiGiovanni, “The Microfiber Loop Resonator: Theory,Experiment, and Application,” J. Lightwave Technol. 24(1), 242–250 (2006).
    [CrossRef]
  14. M. Sumetsky, “Uniform coil optical resonator and waveguide: transmission spectrum, eigenmodes, and dispersion relation,” Opt. Express 13(11), 4331–4340 (2005).
    [CrossRef] [PubMed]

2008 (1)

F. X. Gu, L. Zhang, X. F. Yin, and L. M. Tong, “Polymer single-nanowire optical sensors,” Nano Lett. 8(9), 2757–2761 (2008).
[CrossRef] [PubMed]

2007 (2)

2006 (4)

X. S. Jiang, L. M. Tong, G. Vienne, X. Guo, A. Tsao, Q. Yang, and D. R. Yang, “Demonstration of optical microfiber knot resonators,” Appl. Phys. Lett. 88(22), 223501 (2006).
[CrossRef]

Y. J. Rao, “Recent Progress in Fiber-Optic Extrinsic Fabry-Perot Interferometric Sensors,” Opt. Fiber Technol. 12(3), 227–237 (2006).
[CrossRef]

M. Sumetsky, Y. Dulashko, J. M. Fini, A. Hale, and D. J. Digiovanni, “The Microfiber Loop Resonator: Theory, Experiment, and Application,” IEEE J. Lightwave Technol. 24(1), 242–250 (2006).
[CrossRef]

M. Sumetsky, Y. Dulashko, J. M. Fini, A. Hale, and D. J. DiGiovanni, “The Microfiber Loop Resonator: Theory,Experiment, and Application,” J. Lightwave Technol. 24(1), 242–250 (2006).
[CrossRef]

2005 (2)

M. Sumetsky, “Uniform coil optical resonator and waveguide: transmission spectrum, eigenmodes, and dispersion relation,” Opt. Express 13(11), 4331–4340 (2005).
[CrossRef] [PubMed]

M. Sumetsky, Y. Dulashko, J. M. Fini, and A. Hale, “Optical microfiber loop resonator,” Appl. Phys. Lett. 86(16), 161108 (2005).
[CrossRef]

2004 (1)

2003 (1)

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[CrossRef] [PubMed]

1998 (1)

A. J. C. Grellier, N. K. Zayer, and C. N. Pannel, “Heat transfer modeling in CO2 laser processing of optical fibres,” Opt. Commun. 152(4–6), 324–328 (1998).
[CrossRef]

1997 (1)

Y. J. Rao, “In-fibre Bragg grating sensors,” Meas. Sci. Technol. 8(4), 355–375 (1997).
[CrossRef]

Ashcom, J. B.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[CrossRef] [PubMed]

Brambilla, G.

Chen, Y.

DiGiovanni, D. J.

M. Sumetsky, Y. Dulashko, J. M. Fini, A. Hale, and D. J. DiGiovanni, “The Microfiber Loop Resonator: Theory,Experiment, and Application,” J. Lightwave Technol. 24(1), 242–250 (2006).
[CrossRef]

M. Sumetsky, Y. Dulashko, J. M. Fini, A. Hale, and D. J. Digiovanni, “The Microfiber Loop Resonator: Theory, Experiment, and Application,” IEEE J. Lightwave Technol. 24(1), 242–250 (2006).
[CrossRef]

Dulashko, Y.

M. Sumetsky, Y. Dulashko, J. M. Fini, A. Hale, and D. J. Digiovanni, “The Microfiber Loop Resonator: Theory, Experiment, and Application,” IEEE J. Lightwave Technol. 24(1), 242–250 (2006).
[CrossRef]

M. Sumetsky, Y. Dulashko, J. M. Fini, A. Hale, and D. J. DiGiovanni, “The Microfiber Loop Resonator: Theory,Experiment, and Application,” J. Lightwave Technol. 24(1), 242–250 (2006).
[CrossRef]

M. Sumetsky, Y. Dulashko, J. M. Fini, and A. Hale, “Optical microfiber loop resonator,” Appl. Phys. Lett. 86(16), 161108 (2005).
[CrossRef]

M. Sumetsky, Y. Dulashko, and A. Hale, “Fabrication and study of bent and coiled free silica nanowires: Self-coupling microloop optical interferometer,” Opt. Express 12(15), 3521–3531 (2004).
[CrossRef] [PubMed]

Fini, J. M.

M. Sumetsky, Y. Dulashko, J. M. Fini, A. Hale, and D. J. Digiovanni, “The Microfiber Loop Resonator: Theory, Experiment, and Application,” IEEE J. Lightwave Technol. 24(1), 242–250 (2006).
[CrossRef]

M. Sumetsky, Y. Dulashko, J. M. Fini, A. Hale, and D. J. DiGiovanni, “The Microfiber Loop Resonator: Theory,Experiment, and Application,” J. Lightwave Technol. 24(1), 242–250 (2006).
[CrossRef]

M. Sumetsky, Y. Dulashko, J. M. Fini, and A. Hale, “Optical microfiber loop resonator,” Appl. Phys. Lett. 86(16), 161108 (2005).
[CrossRef]

Gattass, R. R.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[CrossRef] [PubMed]

Grellier, A. J. C.

A. J. C. Grellier, N. K. Zayer, and C. N. Pannel, “Heat transfer modeling in CO2 laser processing of optical fibres,” Opt. Commun. 152(4–6), 324–328 (1998).
[CrossRef]

Gu, F. X.

F. X. Gu, L. Zhang, X. F. Yin, and L. M. Tong, “Polymer single-nanowire optical sensors,” Nano Lett. 8(9), 2757–2761 (2008).
[CrossRef] [PubMed]

Guo, X.

X. S. Jiang, L. M. Tong, G. Vienne, X. Guo, A. Tsao, Q. Yang, and D. R. Yang, “Demonstration of optical microfiber knot resonators,” Appl. Phys. Lett. 88(22), 223501 (2006).
[CrossRef]

Hale, A.

M. Sumetsky, Y. Dulashko, J. M. Fini, A. Hale, and D. J. Digiovanni, “The Microfiber Loop Resonator: Theory, Experiment, and Application,” IEEE J. Lightwave Technol. 24(1), 242–250 (2006).
[CrossRef]

M. Sumetsky, Y. Dulashko, J. M. Fini, A. Hale, and D. J. DiGiovanni, “The Microfiber Loop Resonator: Theory,Experiment, and Application,” J. Lightwave Technol. 24(1), 242–250 (2006).
[CrossRef]

M. Sumetsky, Y. Dulashko, J. M. Fini, and A. Hale, “Optical microfiber loop resonator,” Appl. Phys. Lett. 86(16), 161108 (2005).
[CrossRef]

M. Sumetsky, Y. Dulashko, and A. Hale, “Fabrication and study of bent and coiled free silica nanowires: Self-coupling microloop optical interferometer,” Opt. Express 12(15), 3521–3531 (2004).
[CrossRef] [PubMed]

He, S.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[CrossRef] [PubMed]

Horak, P.

Jiang, X.

Jiang, X. S.

X. S. Jiang, L. M. Tong, G. Vienne, X. Guo, A. Tsao, Q. Yang, and D. R. Yang, “Demonstration of optical microfiber knot resonators,” Appl. Phys. Lett. 88(22), 223501 (2006).
[CrossRef]

Lou, J.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[CrossRef] [PubMed]

Maxwell, I.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[CrossRef] [PubMed]

Mazur, E.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[CrossRef] [PubMed]

Pannel, C. N.

A. J. C. Grellier, N. K. Zayer, and C. N. Pannel, “Heat transfer modeling in CO2 laser processing of optical fibres,” Opt. Commun. 152(4–6), 324–328 (1998).
[CrossRef]

Rao, Y. J.

Y. J. Rao, “Recent Progress in Fiber-Optic Extrinsic Fabry-Perot Interferometric Sensors,” Opt. Fiber Technol. 12(3), 227–237 (2006).
[CrossRef]

Y. J. Rao, “In-fibre Bragg grating sensors,” Meas. Sci. Technol. 8(4), 355–375 (1997).
[CrossRef]

Shen, M.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[CrossRef] [PubMed]

Sumetsky, M.

Tong, L.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[CrossRef] [PubMed]

Tong, L. M.

F. X. Gu, L. Zhang, X. F. Yin, and L. M. Tong, “Polymer single-nanowire optical sensors,” Nano Lett. 8(9), 2757–2761 (2008).
[CrossRef] [PubMed]

X. Jiang, Y. Chen, G. Vienne, and L. M. Tong, “All-fiber add-drop filters based on microfiber knot resonators,” Opt. Lett. 32(12), 1710–1712 (2007).
[CrossRef] [PubMed]

X. S. Jiang, L. M. Tong, G. Vienne, X. Guo, A. Tsao, Q. Yang, and D. R. Yang, “Demonstration of optical microfiber knot resonators,” Appl. Phys. Lett. 88(22), 223501 (2006).
[CrossRef]

Tsao, A.

X. S. Jiang, L. M. Tong, G. Vienne, X. Guo, A. Tsao, Q. Yang, and D. R. Yang, “Demonstration of optical microfiber knot resonators,” Appl. Phys. Lett. 88(22), 223501 (2006).
[CrossRef]

Vienne, G.

X. Jiang, Y. Chen, G. Vienne, and L. M. Tong, “All-fiber add-drop filters based on microfiber knot resonators,” Opt. Lett. 32(12), 1710–1712 (2007).
[CrossRef] [PubMed]

X. S. Jiang, L. M. Tong, G. Vienne, X. Guo, A. Tsao, Q. Yang, and D. R. Yang, “Demonstration of optical microfiber knot resonators,” Appl. Phys. Lett. 88(22), 223501 (2006).
[CrossRef]

Xu, F.

Yang, D. R.

X. S. Jiang, L. M. Tong, G. Vienne, X. Guo, A. Tsao, Q. Yang, and D. R. Yang, “Demonstration of optical microfiber knot resonators,” Appl. Phys. Lett. 88(22), 223501 (2006).
[CrossRef]

Yang, Q.

X. S. Jiang, L. M. Tong, G. Vienne, X. Guo, A. Tsao, Q. Yang, and D. R. Yang, “Demonstration of optical microfiber knot resonators,” Appl. Phys. Lett. 88(22), 223501 (2006).
[CrossRef]

Yin, X. F.

F. X. Gu, L. Zhang, X. F. Yin, and L. M. Tong, “Polymer single-nanowire optical sensors,” Nano Lett. 8(9), 2757–2761 (2008).
[CrossRef] [PubMed]

Zayer, N. K.

A. J. C. Grellier, N. K. Zayer, and C. N. Pannel, “Heat transfer modeling in CO2 laser processing of optical fibres,” Opt. Commun. 152(4–6), 324–328 (1998).
[CrossRef]

Zhang, L.

F. X. Gu, L. Zhang, X. F. Yin, and L. M. Tong, “Polymer single-nanowire optical sensors,” Nano Lett. 8(9), 2757–2761 (2008).
[CrossRef] [PubMed]

Appl. Phys. Lett. (2)

M. Sumetsky, Y. Dulashko, J. M. Fini, and A. Hale, “Optical microfiber loop resonator,” Appl. Phys. Lett. 86(16), 161108 (2005).
[CrossRef]

X. S. Jiang, L. M. Tong, G. Vienne, X. Guo, A. Tsao, Q. Yang, and D. R. Yang, “Demonstration of optical microfiber knot resonators,” Appl. Phys. Lett. 88(22), 223501 (2006).
[CrossRef]

IEEE J. Lightwave Technol. (1)

M. Sumetsky, Y. Dulashko, J. M. Fini, A. Hale, and D. J. Digiovanni, “The Microfiber Loop Resonator: Theory, Experiment, and Application,” IEEE J. Lightwave Technol. 24(1), 242–250 (2006).
[CrossRef]

J. Lightwave Technol. (1)

Meas. Sci. Technol. (1)

Y. J. Rao, “In-fibre Bragg grating sensors,” Meas. Sci. Technol. 8(4), 355–375 (1997).
[CrossRef]

Nano Lett. (1)

F. X. Gu, L. Zhang, X. F. Yin, and L. M. Tong, “Polymer single-nanowire optical sensors,” Nano Lett. 8(9), 2757–2761 (2008).
[CrossRef] [PubMed]

Nature (1)

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[CrossRef] [PubMed]

Opt. Commun. (1)

A. J. C. Grellier, N. K. Zayer, and C. N. Pannel, “Heat transfer modeling in CO2 laser processing of optical fibres,” Opt. Commun. 152(4–6), 324–328 (1998).
[CrossRef]

Opt. Express (3)

Opt. Fiber Technol. (1)

Y. J. Rao, “Recent Progress in Fiber-Optic Extrinsic Fabry-Perot Interferometric Sensors,” Opt. Fiber Technol. 12(3), 227–237 (2006).
[CrossRef]

Opt. Lett. (1)

Other (1)

D. G. Rabus, “Integrated Ring Resonators,” Springer Series in Optical Sciences. (Berlin, Heidelberg, NewYork: Springer, 2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

(a) Photograph of the SMKR with diameter of ~190μm and 1.7μm-diameter microfiber. (b) Photograph of the PMKR with the diameter of ~98μm and 2.1μm-diameter microfiber. (c) Schematic diagram of the MKRs temperature sensing structures

Fig. 2
Fig. 2

Transmission spectra of a 98μm-diameter microfiber knot using a 2.1μm-diameter polymer microfiber (Red line) and a 190μm-diameter microfiber knot assembled using a 1.7μm-diameter silica microfiber (Blue line).

Fig. 3
Fig. 3

Spectra of SMKR at temperature of 420°C and 425°C (inset shows a single resonance peak).

Fig. 4
Fig. 4

Static temperature response of the SMKR.

Fig. 5
Fig. 5

Spectra of PMKR at temperature of 60°C and 65°C(inset shows a single resonance peak) .

Fig. 6
Fig. 6

Static temperature response of the PMKR in the heating and cooling processes.

Fig. 7
Fig. 7

The experimental system of temporal response for Silica/Polymer MKR

Fig. 8
Fig. 8

The relaxation time of the transmitted power corresponding to ON/OFF of the CO2 laser beam.

Fig. 9
Fig. 9

Dynamic response time of the power corresponding to squared modulation of the CO2 laser beam.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

FSRλ2/NgπD=λ2/NgL
Q=λresFWHM
Δλ/λ=(ΔL/L+Δn/n)Temp.=(α+β+αf+βf)ΔT
t=cρr/2h

Metrics