Abstract

At bit rates comparable with the Brillouin shift, i.e. higher than 10 Gbit/s, the signal and the Brillouin backscattered spectra partially overlap. This implies an interaction between different scattering phenomena occurring through out the optical fiber. In particular we believe that an evaluation of how Rayleigh backscattered components of the modulated signal are subjected to Stokes gain is required. This interaction may lead to an increased backscattered power, which in turn will affect Brillouin threshold estimation. We experimentally verified a decrease of Stimulated Brillouin Scattering (SBS) threshold for 10 Gb/s NRZ-OOK signals with respect to theoretical predictions. Simulations carried out with a numerical model of SBS, accounting for Rayleigh contributions, well predict measured backscattered power levels. On the other hand we also experimentally verified that this SBS threshold decrease does not degrade transmission system performance. Indeed, measured BER curves put into evidence a penalty reduction for signal powers just before the saturation regime, which should be usefully taken into consideration in optical systems power budget planning.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. S. Lee, H. J. Lee, W. Seo, and S. G. Lee, “Stimulated Brillouin scattering suppression using cross-phase modulation induced by an optical supervisory channel in WDM links,” IEEE Photon. Technol. Lett. 13(7), 741–743 (2001).
    [CrossRef]
  2. J. Mo, G. Zhou, J. Chen, Y. J. Wen, Y. Wang, C. Lu, and K. Xu, “Single-span transmission of WDM RZ-DPSK signal over 310-km standard SMF without using FEC and remote-pumping,” IEEE Photon. Technol. Lett. 17(10), 2209–2211 (2005).
    [CrossRef]
  3. J. D. Downie and J. Hurley, “Experimental study of SBS mitigation and transmission improvement from cross-phase modulation in 10.7 Gb/s unrepeatered systems,” Opt. Express 15(15), 9527–9534 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-15-9527 .
    [CrossRef] [PubMed]
  4. R. G. Smith, “Optical power handling capacity of low loss optical fibers as determined by stimulated Raman and Brillouin scattering,” Appl. Opt. 11(11), 2489–2494 (1972).
    [CrossRef] [PubMed]
  5. S. Le Floch and P. Cambon, “Theoretical evaluation of the Brillouin threshold and steady-state Brillouin equations in standard single-mode optical fibers,” J. Opt. Soc. Am. A 20(6), 1721–1728 (2003).
    [CrossRef]
  6. A. Kobyakov, S. A. Darmanyan, and D. Q. Chowdhury, “Exact analytical treatment of noise initiation of SBS in the presence of loss,” Opt. Commun. 260(1), 46–49 (2006).
    [CrossRef]
  7. R. B. Jenkins, R. M. Sova, and R. I. Joseph, “Steady-state noise analysis of spontaneous and stimulated Brillouin scattering in optical fibers,” J. Lightwave Technol. 25(3), 763–770 (2007).
    [CrossRef]
  8. Y. Aoki, K. Tajima, and I. Mito, “Input power limits of single-mode optical fibers due to stimulated Brillouin scattering in optical communication systems,” J. Lightwave Technol. 6(5), 710–719 (1988).
    [CrossRef]
  9. E. Lichtman, R. G. Waarts, and A. A. Friesem, “Stimulated Brillouin scattering excited by a modulated pump wave in single-mode fibers,” J. Lightwave Technol. 7(1), 1721–1724 (1989).
    [CrossRef]
  10. D. A. Fishman and J. A. Nagel, “Degradations due to stimulated Brillouin scattering in multigigabit intensity-modulated fiber-optic systems,” J. Lightwave Technol. 11(11), 710–719 (1993).
    [CrossRef]
  11. L. Eskildsen, P. B. Hansen, U. Koren, B. I. Miller, M. G. Young, and K. F. Dreyer, “Stimulated Brillouni scattering suppression with low residual AM using a novel temperature wavelength-dithered DFB laser diode,” IEEE Electron. Lett. 32(15), 1387–1388 (1996).
    [CrossRef]
  12. G. P. Agrawal, Nonlinear Fiber Optics (Academic, London, 1995).
  13. F. Corsi, A. Galtarossa, L. Palmieri, M. Schiano, and T. Tambosso, “Continuous-wave backreflection measurement of polarization mode dispersion,” IEEE Photon. Technol. Lett. 11(4), 451–453 (1999).
    [CrossRef]
  14. J. Zhang, and M. R. Phillips, “Modeling intensity noise caused by stimulated Brillouin scattering in optical fibers,” Proceedings CLEO 2005 paper CMH6, Baltimore, MD, USA (2005).
  15. J. Zhang, and M. R. Phillips, “Cancellation of intensity noise caused by stimulated Brillouin scattering in an optical fiber transmission system,” Proceedings OFC 2005 paper PDP24, Anaheim, CA, USA (2005).
  16. H. Kawakami, Y. Miyamoto, T. Kataoka, and K. Hagimoto, “Overmodulation of intensity modulated signals due to stimulated Brillouin scattering,” IEEE Electron. Lett. 30(18), 1507–1509 (1994).
    [CrossRef]
  17. A. Djupsjobacka, G. Jacobsen, and B. Tromborg, “Dynamic stimulated Brillouin scattering analysis,” J. Lightwave Technol. 18(3), 416–424 (2000).
    [CrossRef]

2007

2006

A. Kobyakov, S. A. Darmanyan, and D. Q. Chowdhury, “Exact analytical treatment of noise initiation of SBS in the presence of loss,” Opt. Commun. 260(1), 46–49 (2006).
[CrossRef]

2005

J. Mo, G. Zhou, J. Chen, Y. J. Wen, Y. Wang, C. Lu, and K. Xu, “Single-span transmission of WDM RZ-DPSK signal over 310-km standard SMF without using FEC and remote-pumping,” IEEE Photon. Technol. Lett. 17(10), 2209–2211 (2005).
[CrossRef]

2003

S. Le Floch and P. Cambon, “Theoretical evaluation of the Brillouin threshold and steady-state Brillouin equations in standard single-mode optical fibers,” J. Opt. Soc. Am. A 20(6), 1721–1728 (2003).
[CrossRef]

2001

S. S. Lee, H. J. Lee, W. Seo, and S. G. Lee, “Stimulated Brillouin scattering suppression using cross-phase modulation induced by an optical supervisory channel in WDM links,” IEEE Photon. Technol. Lett. 13(7), 741–743 (2001).
[CrossRef]

2000

1999

F. Corsi, A. Galtarossa, L. Palmieri, M. Schiano, and T. Tambosso, “Continuous-wave backreflection measurement of polarization mode dispersion,” IEEE Photon. Technol. Lett. 11(4), 451–453 (1999).
[CrossRef]

1996

L. Eskildsen, P. B. Hansen, U. Koren, B. I. Miller, M. G. Young, and K. F. Dreyer, “Stimulated Brillouni scattering suppression with low residual AM using a novel temperature wavelength-dithered DFB laser diode,” IEEE Electron. Lett. 32(15), 1387–1388 (1996).
[CrossRef]

1994

H. Kawakami, Y. Miyamoto, T. Kataoka, and K. Hagimoto, “Overmodulation of intensity modulated signals due to stimulated Brillouin scattering,” IEEE Electron. Lett. 30(18), 1507–1509 (1994).
[CrossRef]

1993

D. A. Fishman and J. A. Nagel, “Degradations due to stimulated Brillouin scattering in multigigabit intensity-modulated fiber-optic systems,” J. Lightwave Technol. 11(11), 710–719 (1993).
[CrossRef]

1989

E. Lichtman, R. G. Waarts, and A. A. Friesem, “Stimulated Brillouin scattering excited by a modulated pump wave in single-mode fibers,” J. Lightwave Technol. 7(1), 1721–1724 (1989).
[CrossRef]

1988

Y. Aoki, K. Tajima, and I. Mito, “Input power limits of single-mode optical fibers due to stimulated Brillouin scattering in optical communication systems,” J. Lightwave Technol. 6(5), 710–719 (1988).
[CrossRef]

1972

Aoki, Y.

Y. Aoki, K. Tajima, and I. Mito, “Input power limits of single-mode optical fibers due to stimulated Brillouin scattering in optical communication systems,” J. Lightwave Technol. 6(5), 710–719 (1988).
[CrossRef]

Cambon, P.

S. Le Floch and P. Cambon, “Theoretical evaluation of the Brillouin threshold and steady-state Brillouin equations in standard single-mode optical fibers,” J. Opt. Soc. Am. A 20(6), 1721–1728 (2003).
[CrossRef]

Chen, J.

J. Mo, G. Zhou, J. Chen, Y. J. Wen, Y. Wang, C. Lu, and K. Xu, “Single-span transmission of WDM RZ-DPSK signal over 310-km standard SMF without using FEC and remote-pumping,” IEEE Photon. Technol. Lett. 17(10), 2209–2211 (2005).
[CrossRef]

Chowdhury, D. Q.

A. Kobyakov, S. A. Darmanyan, and D. Q. Chowdhury, “Exact analytical treatment of noise initiation of SBS in the presence of loss,” Opt. Commun. 260(1), 46–49 (2006).
[CrossRef]

Corsi, F.

F. Corsi, A. Galtarossa, L. Palmieri, M. Schiano, and T. Tambosso, “Continuous-wave backreflection measurement of polarization mode dispersion,” IEEE Photon. Technol. Lett. 11(4), 451–453 (1999).
[CrossRef]

Darmanyan, S. A.

A. Kobyakov, S. A. Darmanyan, and D. Q. Chowdhury, “Exact analytical treatment of noise initiation of SBS in the presence of loss,” Opt. Commun. 260(1), 46–49 (2006).
[CrossRef]

Djupsjobacka, A.

Downie, J. D.

Dreyer, K. F.

L. Eskildsen, P. B. Hansen, U. Koren, B. I. Miller, M. G. Young, and K. F. Dreyer, “Stimulated Brillouni scattering suppression with low residual AM using a novel temperature wavelength-dithered DFB laser diode,” IEEE Electron. Lett. 32(15), 1387–1388 (1996).
[CrossRef]

Eskildsen, L.

L. Eskildsen, P. B. Hansen, U. Koren, B. I. Miller, M. G. Young, and K. F. Dreyer, “Stimulated Brillouni scattering suppression with low residual AM using a novel temperature wavelength-dithered DFB laser diode,” IEEE Electron. Lett. 32(15), 1387–1388 (1996).
[CrossRef]

Fishman, D. A.

D. A. Fishman and J. A. Nagel, “Degradations due to stimulated Brillouin scattering in multigigabit intensity-modulated fiber-optic systems,” J. Lightwave Technol. 11(11), 710–719 (1993).
[CrossRef]

Friesem, A. A.

E. Lichtman, R. G. Waarts, and A. A. Friesem, “Stimulated Brillouin scattering excited by a modulated pump wave in single-mode fibers,” J. Lightwave Technol. 7(1), 1721–1724 (1989).
[CrossRef]

Galtarossa, A.

F. Corsi, A. Galtarossa, L. Palmieri, M. Schiano, and T. Tambosso, “Continuous-wave backreflection measurement of polarization mode dispersion,” IEEE Photon. Technol. Lett. 11(4), 451–453 (1999).
[CrossRef]

Hagimoto, K.

H. Kawakami, Y. Miyamoto, T. Kataoka, and K. Hagimoto, “Overmodulation of intensity modulated signals due to stimulated Brillouin scattering,” IEEE Electron. Lett. 30(18), 1507–1509 (1994).
[CrossRef]

Hansen, P. B.

L. Eskildsen, P. B. Hansen, U. Koren, B. I. Miller, M. G. Young, and K. F. Dreyer, “Stimulated Brillouni scattering suppression with low residual AM using a novel temperature wavelength-dithered DFB laser diode,” IEEE Electron. Lett. 32(15), 1387–1388 (1996).
[CrossRef]

Hurley, J.

Jacobsen, G.

Jenkins, R. B.

Joseph, R. I.

Kataoka, T.

H. Kawakami, Y. Miyamoto, T. Kataoka, and K. Hagimoto, “Overmodulation of intensity modulated signals due to stimulated Brillouin scattering,” IEEE Electron. Lett. 30(18), 1507–1509 (1994).
[CrossRef]

Kawakami, H.

H. Kawakami, Y. Miyamoto, T. Kataoka, and K. Hagimoto, “Overmodulation of intensity modulated signals due to stimulated Brillouin scattering,” IEEE Electron. Lett. 30(18), 1507–1509 (1994).
[CrossRef]

Kobyakov, A.

A. Kobyakov, S. A. Darmanyan, and D. Q. Chowdhury, “Exact analytical treatment of noise initiation of SBS in the presence of loss,” Opt. Commun. 260(1), 46–49 (2006).
[CrossRef]

Koren, U.

L. Eskildsen, P. B. Hansen, U. Koren, B. I. Miller, M. G. Young, and K. F. Dreyer, “Stimulated Brillouni scattering suppression with low residual AM using a novel temperature wavelength-dithered DFB laser diode,” IEEE Electron. Lett. 32(15), 1387–1388 (1996).
[CrossRef]

Le Floch, S.

S. Le Floch and P. Cambon, “Theoretical evaluation of the Brillouin threshold and steady-state Brillouin equations in standard single-mode optical fibers,” J. Opt. Soc. Am. A 20(6), 1721–1728 (2003).
[CrossRef]

Lee, H. J.

S. S. Lee, H. J. Lee, W. Seo, and S. G. Lee, “Stimulated Brillouin scattering suppression using cross-phase modulation induced by an optical supervisory channel in WDM links,” IEEE Photon. Technol. Lett. 13(7), 741–743 (2001).
[CrossRef]

Lee, S. G.

S. S. Lee, H. J. Lee, W. Seo, and S. G. Lee, “Stimulated Brillouin scattering suppression using cross-phase modulation induced by an optical supervisory channel in WDM links,” IEEE Photon. Technol. Lett. 13(7), 741–743 (2001).
[CrossRef]

Lee, S. S.

S. S. Lee, H. J. Lee, W. Seo, and S. G. Lee, “Stimulated Brillouin scattering suppression using cross-phase modulation induced by an optical supervisory channel in WDM links,” IEEE Photon. Technol. Lett. 13(7), 741–743 (2001).
[CrossRef]

Lichtman, E.

E. Lichtman, R. G. Waarts, and A. A. Friesem, “Stimulated Brillouin scattering excited by a modulated pump wave in single-mode fibers,” J. Lightwave Technol. 7(1), 1721–1724 (1989).
[CrossRef]

Lu, C.

J. Mo, G. Zhou, J. Chen, Y. J. Wen, Y. Wang, C. Lu, and K. Xu, “Single-span transmission of WDM RZ-DPSK signal over 310-km standard SMF without using FEC and remote-pumping,” IEEE Photon. Technol. Lett. 17(10), 2209–2211 (2005).
[CrossRef]

Miller, B. I.

L. Eskildsen, P. B. Hansen, U. Koren, B. I. Miller, M. G. Young, and K. F. Dreyer, “Stimulated Brillouni scattering suppression with low residual AM using a novel temperature wavelength-dithered DFB laser diode,” IEEE Electron. Lett. 32(15), 1387–1388 (1996).
[CrossRef]

Mito, I.

Y. Aoki, K. Tajima, and I. Mito, “Input power limits of single-mode optical fibers due to stimulated Brillouin scattering in optical communication systems,” J. Lightwave Technol. 6(5), 710–719 (1988).
[CrossRef]

Miyamoto, Y.

H. Kawakami, Y. Miyamoto, T. Kataoka, and K. Hagimoto, “Overmodulation of intensity modulated signals due to stimulated Brillouin scattering,” IEEE Electron. Lett. 30(18), 1507–1509 (1994).
[CrossRef]

Mo, J.

J. Mo, G. Zhou, J. Chen, Y. J. Wen, Y. Wang, C. Lu, and K. Xu, “Single-span transmission of WDM RZ-DPSK signal over 310-km standard SMF without using FEC and remote-pumping,” IEEE Photon. Technol. Lett. 17(10), 2209–2211 (2005).
[CrossRef]

Nagel, J. A.

D. A. Fishman and J. A. Nagel, “Degradations due to stimulated Brillouin scattering in multigigabit intensity-modulated fiber-optic systems,” J. Lightwave Technol. 11(11), 710–719 (1993).
[CrossRef]

Palmieri, L.

F. Corsi, A. Galtarossa, L. Palmieri, M. Schiano, and T. Tambosso, “Continuous-wave backreflection measurement of polarization mode dispersion,” IEEE Photon. Technol. Lett. 11(4), 451–453 (1999).
[CrossRef]

Schiano, M.

F. Corsi, A. Galtarossa, L. Palmieri, M. Schiano, and T. Tambosso, “Continuous-wave backreflection measurement of polarization mode dispersion,” IEEE Photon. Technol. Lett. 11(4), 451–453 (1999).
[CrossRef]

Seo, W.

S. S. Lee, H. J. Lee, W. Seo, and S. G. Lee, “Stimulated Brillouin scattering suppression using cross-phase modulation induced by an optical supervisory channel in WDM links,” IEEE Photon. Technol. Lett. 13(7), 741–743 (2001).
[CrossRef]

Smith, R. G.

Sova, R. M.

Tajima, K.

Y. Aoki, K. Tajima, and I. Mito, “Input power limits of single-mode optical fibers due to stimulated Brillouin scattering in optical communication systems,” J. Lightwave Technol. 6(5), 710–719 (1988).
[CrossRef]

Tambosso, T.

F. Corsi, A. Galtarossa, L. Palmieri, M. Schiano, and T. Tambosso, “Continuous-wave backreflection measurement of polarization mode dispersion,” IEEE Photon. Technol. Lett. 11(4), 451–453 (1999).
[CrossRef]

Tromborg, B.

Waarts, R. G.

E. Lichtman, R. G. Waarts, and A. A. Friesem, “Stimulated Brillouin scattering excited by a modulated pump wave in single-mode fibers,” J. Lightwave Technol. 7(1), 1721–1724 (1989).
[CrossRef]

Wang, Y.

J. Mo, G. Zhou, J. Chen, Y. J. Wen, Y. Wang, C. Lu, and K. Xu, “Single-span transmission of WDM RZ-DPSK signal over 310-km standard SMF without using FEC and remote-pumping,” IEEE Photon. Technol. Lett. 17(10), 2209–2211 (2005).
[CrossRef]

Wen, Y. J.

J. Mo, G. Zhou, J. Chen, Y. J. Wen, Y. Wang, C. Lu, and K. Xu, “Single-span transmission of WDM RZ-DPSK signal over 310-km standard SMF without using FEC and remote-pumping,” IEEE Photon. Technol. Lett. 17(10), 2209–2211 (2005).
[CrossRef]

Xu, K.

J. Mo, G. Zhou, J. Chen, Y. J. Wen, Y. Wang, C. Lu, and K. Xu, “Single-span transmission of WDM RZ-DPSK signal over 310-km standard SMF without using FEC and remote-pumping,” IEEE Photon. Technol. Lett. 17(10), 2209–2211 (2005).
[CrossRef]

Young, M. G.

L. Eskildsen, P. B. Hansen, U. Koren, B. I. Miller, M. G. Young, and K. F. Dreyer, “Stimulated Brillouni scattering suppression with low residual AM using a novel temperature wavelength-dithered DFB laser diode,” IEEE Electron. Lett. 32(15), 1387–1388 (1996).
[CrossRef]

Zhou, G.

J. Mo, G. Zhou, J. Chen, Y. J. Wen, Y. Wang, C. Lu, and K. Xu, “Single-span transmission of WDM RZ-DPSK signal over 310-km standard SMF without using FEC and remote-pumping,” IEEE Photon. Technol. Lett. 17(10), 2209–2211 (2005).
[CrossRef]

Appl. Opt.

IEEE Electron. Lett.

L. Eskildsen, P. B. Hansen, U. Koren, B. I. Miller, M. G. Young, and K. F. Dreyer, “Stimulated Brillouni scattering suppression with low residual AM using a novel temperature wavelength-dithered DFB laser diode,” IEEE Electron. Lett. 32(15), 1387–1388 (1996).
[CrossRef]

H. Kawakami, Y. Miyamoto, T. Kataoka, and K. Hagimoto, “Overmodulation of intensity modulated signals due to stimulated Brillouin scattering,” IEEE Electron. Lett. 30(18), 1507–1509 (1994).
[CrossRef]

IEEE Photon. Technol. Lett.

S. S. Lee, H. J. Lee, W. Seo, and S. G. Lee, “Stimulated Brillouin scattering suppression using cross-phase modulation induced by an optical supervisory channel in WDM links,” IEEE Photon. Technol. Lett. 13(7), 741–743 (2001).
[CrossRef]

J. Mo, G. Zhou, J. Chen, Y. J. Wen, Y. Wang, C. Lu, and K. Xu, “Single-span transmission of WDM RZ-DPSK signal over 310-km standard SMF without using FEC and remote-pumping,” IEEE Photon. Technol. Lett. 17(10), 2209–2211 (2005).
[CrossRef]

F. Corsi, A. Galtarossa, L. Palmieri, M. Schiano, and T. Tambosso, “Continuous-wave backreflection measurement of polarization mode dispersion,” IEEE Photon. Technol. Lett. 11(4), 451–453 (1999).
[CrossRef]

J. Lightwave Technol.

A. Djupsjobacka, G. Jacobsen, and B. Tromborg, “Dynamic stimulated Brillouin scattering analysis,” J. Lightwave Technol. 18(3), 416–424 (2000).
[CrossRef]

R. B. Jenkins, R. M. Sova, and R. I. Joseph, “Steady-state noise analysis of spontaneous and stimulated Brillouin scattering in optical fibers,” J. Lightwave Technol. 25(3), 763–770 (2007).
[CrossRef]

Y. Aoki, K. Tajima, and I. Mito, “Input power limits of single-mode optical fibers due to stimulated Brillouin scattering in optical communication systems,” J. Lightwave Technol. 6(5), 710–719 (1988).
[CrossRef]

E. Lichtman, R. G. Waarts, and A. A. Friesem, “Stimulated Brillouin scattering excited by a modulated pump wave in single-mode fibers,” J. Lightwave Technol. 7(1), 1721–1724 (1989).
[CrossRef]

D. A. Fishman and J. A. Nagel, “Degradations due to stimulated Brillouin scattering in multigigabit intensity-modulated fiber-optic systems,” J. Lightwave Technol. 11(11), 710–719 (1993).
[CrossRef]

J. Opt. Soc. Am. A

S. Le Floch and P. Cambon, “Theoretical evaluation of the Brillouin threshold and steady-state Brillouin equations in standard single-mode optical fibers,” J. Opt. Soc. Am. A 20(6), 1721–1728 (2003).
[CrossRef]

Opt. Commun.

A. Kobyakov, S. A. Darmanyan, and D. Q. Chowdhury, “Exact analytical treatment of noise initiation of SBS in the presence of loss,” Opt. Commun. 260(1), 46–49 (2006).
[CrossRef]

Opt. Express

Other

J. Zhang, and M. R. Phillips, “Modeling intensity noise caused by stimulated Brillouin scattering in optical fibers,” Proceedings CLEO 2005 paper CMH6, Baltimore, MD, USA (2005).

J. Zhang, and M. R. Phillips, “Cancellation of intensity noise caused by stimulated Brillouin scattering in an optical fiber transmission system,” Proceedings OFC 2005 paper PDP24, Anaheim, CA, USA (2005).

G. P. Agrawal, Nonlinear Fiber Optics (Academic, London, 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Experimental setup for NRZ-OOK signal SBS-threshold evaluation and BER measurements.

Fig. 2
Fig. 2

Measured SBS power from 48 km fiber as a function of the launch power for a CW signal and 2.5 Gb/s and 10 Gb/s OOK signals. The corresponding simulated results (dotted curves) are also shown. The straight line refers to a SBS equal to 1% of the lauch power.

Fig. 3
Fig. 3

(a) Measured BER curves vs. received power for different input launch powers after a 48-km fiber length. Characterizations were performed at 2.5 Gb/s (black markers) and at 10 Gb/s (white markers). (b) Measured BER at 10 Gb/s vs. launch power Plaunch level after transmission in 48 km fiber (round blue markers). The corresponding backscattered powers are also shown (square red markers). Measured eye diagrams at 10 Gb/s for launch power below SBS threshold, i.e., 6.5dBm (c), and 4dB above SBS threshold, i.e., 11.5dBm (d).

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

PthrOOK=PthrCW1B2ΔνB(1eΔνB/B)
Ppz=gBAeffPSPpαPp
PSz=gBAeff[PS+SαRPRayleigh]Pp+αPS
Beff=π2Δν[Pp(0)gB/Aeffα]12.

Metrics