Abstract

A silicon microstructured fiber has been designed and fabricated using a pure silica photonic bandgap guiding fiber as a 3D template for materials deposition. The resulting silicon fiber has a micron sized core but with a small core-cladding index contrast so that it only supports two guided modes. It will be shown that by using the microstructured template this fiber exhibits a number of similar guiding properties to the more traditional index guiding air-silica structures. The large mode areas and low optical losses measured for the silicon microstructured fiber demonstrate its potential to be integrated with existing fiber infrastructures.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Jalali and S. Fathpour, "Silicon Photonics," J. Lightwave Technol. 24, 4600-4615 (2006).
    [CrossRef]
  2. M. A. Foster, K. D. Moll, and A. L. Gaeta, "Optical waveguide dimensions for nonlinear interactions," Opt. Express 12, 2880-2887 (2004).
    [CrossRef] [PubMed]
  3. M. Lipson, "Overcoming the limitations of microelectronics using Si nanophotonics: solving the coupling, modulation and switching challenges," Nanotechnology 15, S622-S627 (2004).
    [CrossRef]
  4. P. J. A. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D.-J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, "Microstructured Optical Fibers as High-Pressure Microfluidic Reactors," Science 311, 1583-1586 (2006).
    [CrossRef] [PubMed]
  5. J. C. Knight, "Photonic crystal fibres," Nature 424, 847-851 (2003).
    [CrossRef] [PubMed]
  6. V. Raghunathan, D. Borlaug, R. R. Rice, and B. Jalali, "Demonstration of a Mid-infrared silicon Raman amplifier," Opt. Express 15, 14355-14362 (2007).
    [CrossRef] [PubMed]
  7. V. Raghunathan, H. Renner, R. R. Rice, and B. Jalali, "Self-imaging silicon Raman amplifier," Opt. Express 15, 3396-3408 (2007).
    [CrossRef] [PubMed]
  8. L. Yin, Q. Lin, and G. P. Agrawal, "Soliton fission and supercontinuum generation in silicon waveguides," Opt. Lett. 32, 391-393 (2007).
    [CrossRef] [PubMed]
  9. T. M. Monro and D. J. Richardson, "Holey optical fibres: Fundamental properties and device applications," Comptes Rendus Physique 4, 175-186 (2003).
    [CrossRef]
  10. M. N. Petrovich, F. Poletti, A. van Brakel, and D. J. Richardson, "Robustly single mode hollow core photonic bandgap fiber," Opt. Express 16, 4337-4346 (2008).
    [CrossRef] [PubMed]
  11. C. R. Kurkjian, J. T. Krause, and M. J. Matthewson, "Strength and Fatigue of Silica Optical Fibers," J. Ligthwave Technol. 7, 1360-1370 (1989).
    [CrossRef]
  12. L. Lagonigro, N. V. Healy, J. R. Sparks, N. F. Baril, P. J. A. Sazio, J. V. Badding, and A. C. Peacock, "Wavelengthdependent loss measurements in polysilicon modified optical fibres," CLEO/Europe-EQEC CE3 (2009).
  13. T. A. Birks, J. C. Knight, and P. St. J. Russell, "Endlessly single-mode photonic crystal fiber," Opt. Lett. 22, 961-963 (1997).
    [CrossRef] [PubMed]
  14. L. Liao, D. R. Lim, A. M. Agarwal, X. Duan, K. K. Lee, and L. C. Kimerling, "Optical Transmission Losses in Polycrystalline Silicon Strip Waveguides: Effects of Waveguide Dimensions, Thermal Treatment, Hydrogen Passivation, and Wavelength," J. Electron. Mater. 29, 1380-1386 (2000).
    [CrossRef]
  15. C. E. Finlayson, A. Amezcua-Correa, P. J. A. Sazio, N. F. Baril, and J. V. Badding, "Electrical and Raman characterization of silicon and germanium-filled microstructured optical fibers," Appl. Phys. Lett. 90, 132110 (2007).
    [CrossRef]
  16. G. Cocorullo, F. G. Della Corte, R. De Rosa, I. Rendina, A. Rubino, and E. Terzini, "Amorphous Silicon-Based Guided-Wave Passive and Active Devices for Silicon Integrated Optoelectronics," IEEE J. Sel.Top Quant. 4997-1002 (1998).
    [CrossRef]

2008

2007

2006

B. Jalali and S. Fathpour, "Silicon Photonics," J. Lightwave Technol. 24, 4600-4615 (2006).
[CrossRef]

P. J. A. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D.-J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, "Microstructured Optical Fibers as High-Pressure Microfluidic Reactors," Science 311, 1583-1586 (2006).
[CrossRef] [PubMed]

2004

M. A. Foster, K. D. Moll, and A. L. Gaeta, "Optical waveguide dimensions for nonlinear interactions," Opt. Express 12, 2880-2887 (2004).
[CrossRef] [PubMed]

M. Lipson, "Overcoming the limitations of microelectronics using Si nanophotonics: solving the coupling, modulation and switching challenges," Nanotechnology 15, S622-S627 (2004).
[CrossRef]

2003

J. C. Knight, "Photonic crystal fibres," Nature 424, 847-851 (2003).
[CrossRef] [PubMed]

T. M. Monro and D. J. Richardson, "Holey optical fibres: Fundamental properties and device applications," Comptes Rendus Physique 4, 175-186 (2003).
[CrossRef]

2000

L. Liao, D. R. Lim, A. M. Agarwal, X. Duan, K. K. Lee, and L. C. Kimerling, "Optical Transmission Losses in Polycrystalline Silicon Strip Waveguides: Effects of Waveguide Dimensions, Thermal Treatment, Hydrogen Passivation, and Wavelength," J. Electron. Mater. 29, 1380-1386 (2000).
[CrossRef]

1998

G. Cocorullo, F. G. Della Corte, R. De Rosa, I. Rendina, A. Rubino, and E. Terzini, "Amorphous Silicon-Based Guided-Wave Passive and Active Devices for Silicon Integrated Optoelectronics," IEEE J. Sel.Top Quant. 4997-1002 (1998).
[CrossRef]

1997

1989

C. R. Kurkjian, J. T. Krause, and M. J. Matthewson, "Strength and Fatigue of Silica Optical Fibers," J. Ligthwave Technol. 7, 1360-1370 (1989).
[CrossRef]

Agarwal, A. M.

L. Liao, D. R. Lim, A. M. Agarwal, X. Duan, K. K. Lee, and L. C. Kimerling, "Optical Transmission Losses in Polycrystalline Silicon Strip Waveguides: Effects of Waveguide Dimensions, Thermal Treatment, Hydrogen Passivation, and Wavelength," J. Electron. Mater. 29, 1380-1386 (2000).
[CrossRef]

Agrawal, G. P.

Amezcua-Correa, A.

C. E. Finlayson, A. Amezcua-Correa, P. J. A. Sazio, N. F. Baril, and J. V. Badding, "Electrical and Raman characterization of silicon and germanium-filled microstructured optical fibers," Appl. Phys. Lett. 90, 132110 (2007).
[CrossRef]

P. J. A. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D.-J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, "Microstructured Optical Fibers as High-Pressure Microfluidic Reactors," Science 311, 1583-1586 (2006).
[CrossRef] [PubMed]

Badding, J. V.

C. E. Finlayson, A. Amezcua-Correa, P. J. A. Sazio, N. F. Baril, and J. V. Badding, "Electrical and Raman characterization of silicon and germanium-filled microstructured optical fibers," Appl. Phys. Lett. 90, 132110 (2007).
[CrossRef]

P. J. A. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D.-J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, "Microstructured Optical Fibers as High-Pressure Microfluidic Reactors," Science 311, 1583-1586 (2006).
[CrossRef] [PubMed]

Baril, N. F.

C. E. Finlayson, A. Amezcua-Correa, P. J. A. Sazio, N. F. Baril, and J. V. Badding, "Electrical and Raman characterization of silicon and germanium-filled microstructured optical fibers," Appl. Phys. Lett. 90, 132110 (2007).
[CrossRef]

P. J. A. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D.-J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, "Microstructured Optical Fibers as High-Pressure Microfluidic Reactors," Science 311, 1583-1586 (2006).
[CrossRef] [PubMed]

Birks, T. A.

Borlaug, D.

Cocorullo, G.

G. Cocorullo, F. G. Della Corte, R. De Rosa, I. Rendina, A. Rubino, and E. Terzini, "Amorphous Silicon-Based Guided-Wave Passive and Active Devices for Silicon Integrated Optoelectronics," IEEE J. Sel.Top Quant. 4997-1002 (1998).
[CrossRef]

Crespi, V. H.

P. J. A. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D.-J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, "Microstructured Optical Fibers as High-Pressure Microfluidic Reactors," Science 311, 1583-1586 (2006).
[CrossRef] [PubMed]

De Rosa, R.

G. Cocorullo, F. G. Della Corte, R. De Rosa, I. Rendina, A. Rubino, and E. Terzini, "Amorphous Silicon-Based Guided-Wave Passive and Active Devices for Silicon Integrated Optoelectronics," IEEE J. Sel.Top Quant. 4997-1002 (1998).
[CrossRef]

Della Corte, F. G.

G. Cocorullo, F. G. Della Corte, R. De Rosa, I. Rendina, A. Rubino, and E. Terzini, "Amorphous Silicon-Based Guided-Wave Passive and Active Devices for Silicon Integrated Optoelectronics," IEEE J. Sel.Top Quant. 4997-1002 (1998).
[CrossRef]

Duan, X.

L. Liao, D. R. Lim, A. M. Agarwal, X. Duan, K. K. Lee, and L. C. Kimerling, "Optical Transmission Losses in Polycrystalline Silicon Strip Waveguides: Effects of Waveguide Dimensions, Thermal Treatment, Hydrogen Passivation, and Wavelength," J. Electron. Mater. 29, 1380-1386 (2000).
[CrossRef]

Fathpour, S.

Finlayson, C. E.

C. E. Finlayson, A. Amezcua-Correa, P. J. A. Sazio, N. F. Baril, and J. V. Badding, "Electrical and Raman characterization of silicon and germanium-filled microstructured optical fibers," Appl. Phys. Lett. 90, 132110 (2007).
[CrossRef]

P. J. A. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D.-J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, "Microstructured Optical Fibers as High-Pressure Microfluidic Reactors," Science 311, 1583-1586 (2006).
[CrossRef] [PubMed]

Foster, M. A.

Gaeta, A. L.

Gopalan, V.

P. J. A. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D.-J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, "Microstructured Optical Fibers as High-Pressure Microfluidic Reactors," Science 311, 1583-1586 (2006).
[CrossRef] [PubMed]

Hayes, J. R.

P. J. A. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D.-J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, "Microstructured Optical Fibers as High-Pressure Microfluidic Reactors," Science 311, 1583-1586 (2006).
[CrossRef] [PubMed]

Jackson, B. R.

P. J. A. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D.-J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, "Microstructured Optical Fibers as High-Pressure Microfluidic Reactors," Science 311, 1583-1586 (2006).
[CrossRef] [PubMed]

Jalali, B.

Kimerling, L. C.

L. Liao, D. R. Lim, A. M. Agarwal, X. Duan, K. K. Lee, and L. C. Kimerling, "Optical Transmission Losses in Polycrystalline Silicon Strip Waveguides: Effects of Waveguide Dimensions, Thermal Treatment, Hydrogen Passivation, and Wavelength," J. Electron. Mater. 29, 1380-1386 (2000).
[CrossRef]

Knight, J. C.

Krause, J. T.

C. R. Kurkjian, J. T. Krause, and M. J. Matthewson, "Strength and Fatigue of Silica Optical Fibers," J. Ligthwave Technol. 7, 1360-1370 (1989).
[CrossRef]

Kurkjian, C. R.

C. R. Kurkjian, J. T. Krause, and M. J. Matthewson, "Strength and Fatigue of Silica Optical Fibers," J. Ligthwave Technol. 7, 1360-1370 (1989).
[CrossRef]

Lee, K. K.

L. Liao, D. R. Lim, A. M. Agarwal, X. Duan, K. K. Lee, and L. C. Kimerling, "Optical Transmission Losses in Polycrystalline Silicon Strip Waveguides: Effects of Waveguide Dimensions, Thermal Treatment, Hydrogen Passivation, and Wavelength," J. Electron. Mater. 29, 1380-1386 (2000).
[CrossRef]

Liao, L.

L. Liao, D. R. Lim, A. M. Agarwal, X. Duan, K. K. Lee, and L. C. Kimerling, "Optical Transmission Losses in Polycrystalline Silicon Strip Waveguides: Effects of Waveguide Dimensions, Thermal Treatment, Hydrogen Passivation, and Wavelength," J. Electron. Mater. 29, 1380-1386 (2000).
[CrossRef]

Lim, D. R.

L. Liao, D. R. Lim, A. M. Agarwal, X. Duan, K. K. Lee, and L. C. Kimerling, "Optical Transmission Losses in Polycrystalline Silicon Strip Waveguides: Effects of Waveguide Dimensions, Thermal Treatment, Hydrogen Passivation, and Wavelength," J. Electron. Mater. 29, 1380-1386 (2000).
[CrossRef]

Lin, Q.

Lipson, M.

M. Lipson, "Overcoming the limitations of microelectronics using Si nanophotonics: solving the coupling, modulation and switching challenges," Nanotechnology 15, S622-S627 (2004).
[CrossRef]

Margine, E. R.

P. J. A. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D.-J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, "Microstructured Optical Fibers as High-Pressure Microfluidic Reactors," Science 311, 1583-1586 (2006).
[CrossRef] [PubMed]

Matthewson, M. J.

C. R. Kurkjian, J. T. Krause, and M. J. Matthewson, "Strength and Fatigue of Silica Optical Fibers," J. Ligthwave Technol. 7, 1360-1370 (1989).
[CrossRef]

Moll, K. D.

Monro, T. M.

T. M. Monro and D. J. Richardson, "Holey optical fibres: Fundamental properties and device applications," Comptes Rendus Physique 4, 175-186 (2003).
[CrossRef]

Petrovich, M. N.

Poletti, F.

Raghunathan, V.

Rendina, I.

G. Cocorullo, F. G. Della Corte, R. De Rosa, I. Rendina, A. Rubino, and E. Terzini, "Amorphous Silicon-Based Guided-Wave Passive and Active Devices for Silicon Integrated Optoelectronics," IEEE J. Sel.Top Quant. 4997-1002 (1998).
[CrossRef]

Renner, H.

Rice, R. R.

Richardson, D. J.

M. N. Petrovich, F. Poletti, A. van Brakel, and D. J. Richardson, "Robustly single mode hollow core photonic bandgap fiber," Opt. Express 16, 4337-4346 (2008).
[CrossRef] [PubMed]

T. M. Monro and D. J. Richardson, "Holey optical fibres: Fundamental properties and device applications," Comptes Rendus Physique 4, 175-186 (2003).
[CrossRef]

Rubino, A.

G. Cocorullo, F. G. Della Corte, R. De Rosa, I. Rendina, A. Rubino, and E. Terzini, "Amorphous Silicon-Based Guided-Wave Passive and Active Devices for Silicon Integrated Optoelectronics," IEEE J. Sel.Top Quant. 4997-1002 (1998).
[CrossRef]

Russell, P. St. J.

Sazio, P. J. A.

C. E. Finlayson, A. Amezcua-Correa, P. J. A. Sazio, N. F. Baril, and J. V. Badding, "Electrical and Raman characterization of silicon and germanium-filled microstructured optical fibers," Appl. Phys. Lett. 90, 132110 (2007).
[CrossRef]

P. J. A. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D.-J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, "Microstructured Optical Fibers as High-Pressure Microfluidic Reactors," Science 311, 1583-1586 (2006).
[CrossRef] [PubMed]

Scheidemantel, T. J.

P. J. A. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D.-J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, "Microstructured Optical Fibers as High-Pressure Microfluidic Reactors," Science 311, 1583-1586 (2006).
[CrossRef] [PubMed]

Terzini, E.

G. Cocorullo, F. G. Della Corte, R. De Rosa, I. Rendina, A. Rubino, and E. Terzini, "Amorphous Silicon-Based Guided-Wave Passive and Active Devices for Silicon Integrated Optoelectronics," IEEE J. Sel.Top Quant. 4997-1002 (1998).
[CrossRef]

van Brakel, A.

Won, D.-J.

P. J. A. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D.-J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, "Microstructured Optical Fibers as High-Pressure Microfluidic Reactors," Science 311, 1583-1586 (2006).
[CrossRef] [PubMed]

Yin, L.

Zhang, F.

P. J. A. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D.-J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, "Microstructured Optical Fibers as High-Pressure Microfluidic Reactors," Science 311, 1583-1586 (2006).
[CrossRef] [PubMed]

Appl. Phys. Lett.

C. E. Finlayson, A. Amezcua-Correa, P. J. A. Sazio, N. F. Baril, and J. V. Badding, "Electrical and Raman characterization of silicon and germanium-filled microstructured optical fibers," Appl. Phys. Lett. 90, 132110 (2007).
[CrossRef]

Comptes Rendus Physique

T. M. Monro and D. J. Richardson, "Holey optical fibres: Fundamental properties and device applications," Comptes Rendus Physique 4, 175-186 (2003).
[CrossRef]

IEEE J. Sel.

G. Cocorullo, F. G. Della Corte, R. De Rosa, I. Rendina, A. Rubino, and E. Terzini, "Amorphous Silicon-Based Guided-Wave Passive and Active Devices for Silicon Integrated Optoelectronics," IEEE J. Sel.Top Quant. 4997-1002 (1998).
[CrossRef]

J. Electron. Mater.

L. Liao, D. R. Lim, A. M. Agarwal, X. Duan, K. K. Lee, and L. C. Kimerling, "Optical Transmission Losses in Polycrystalline Silicon Strip Waveguides: Effects of Waveguide Dimensions, Thermal Treatment, Hydrogen Passivation, and Wavelength," J. Electron. Mater. 29, 1380-1386 (2000).
[CrossRef]

J. Lightwave Technol.

J. Ligthwave Technol.

C. R. Kurkjian, J. T. Krause, and M. J. Matthewson, "Strength and Fatigue of Silica Optical Fibers," J. Ligthwave Technol. 7, 1360-1370 (1989).
[CrossRef]

Nanotechnology

M. Lipson, "Overcoming the limitations of microelectronics using Si nanophotonics: solving the coupling, modulation and switching challenges," Nanotechnology 15, S622-S627 (2004).
[CrossRef]

Nature

J. C. Knight, "Photonic crystal fibres," Nature 424, 847-851 (2003).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

Science

P. J. A. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D.-J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, "Microstructured Optical Fibers as High-Pressure Microfluidic Reactors," Science 311, 1583-1586 (2006).
[CrossRef] [PubMed]

Other

L. Lagonigro, N. V. Healy, J. R. Sparks, N. F. Baril, P. J. A. Sazio, J. V. Badding, and A. C. Peacock, "Wavelengthdependent loss measurements in polysilicon modified optical fibres," CLEO/Europe-EQEC CE3 (2009).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

(a) Silica PBGF template; scale bar 20µm. (b) Silicon filled MOF; scale bar 10µm. (c) Polished fiber; scale bar 20µm.

Fig. 2.
Fig. 2.

(a) Fundamental (scale bar 10µm) and (b) second order guided modes calculated at 1.55µm. (c) Group velocity dispersion of the fundamental (black solid) and second order modes (black dashed) together with the dispersion of bulk silicon (grey solid). (d) Corresponding effective mode area of the fundamental and second order modes as functions of wavelength.

Fig. 3.
Fig. 3.

Intensity profiles of the fundamental (left column) and second order (middle column) modes excited at the input wavelengths: (a) 1.3µm, (b) 1.55µm and (c) 1.7µm. The right column plots the normalized cross sections (dotted lines) together with their Gaussian fits (dashed lines).

Fig. 4.
Fig. 4.

(a) Micro-Raman spectra of the polysilicon wires in the silica lattice (top) and a single crystal silicon wafer (bottom). Dashed lines are Voigt fits including Gaussian instrument broadening of 1.7cm-1. (b) Transmission losses as a function of wavelength for polysilicon annealed to 1125°C (◦) and 1300°C (×). Dashed lines are λ -4 fits.

Metrics