Abstract

A silicon microstructured fiber has been designed and fabricated using a pure silica photonic bandgap guiding fiber as a 3D template for materials deposition. The resulting silicon fiber has a micron sized core but with a small core-cladding index contrast so that it only supports two guided modes. It will be shown that by using the microstructured template this fiber exhibits a number of similar guiding properties to the more traditional index guiding air-silica structures. The large mode areas and low optical losses measured for the silicon microstructured fiber demonstrate its potential to be integrated with existing fiber infrastructures.

© 2009 Optical Society of America

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Jalali and S. Fathpour, "Silicon Photonics," J. Lightwave Technol. 24, 4600-4615 (2006).
    [CrossRef]
  2. M. A. Foster, K. D. Moll, and A. L. Gaeta, "Optical waveguide dimensions for nonlinear interactions," Opt. Express 12, 2880-2887 (2004).
    [CrossRef]
  3. M. Lipson, "Overcoming the limitations of microelectronics using Si nanophotonics: solving the coupling, modulation and switching challenges," Nanotechnology 15, S622-S627 (2004).
    [CrossRef]
  4. P. J. A. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D.-J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, "Microstructured Optical Fibers as High-Pressure Microfluidic Reactors," Science 311, 1583-1586 (2006).
    [CrossRef]
  5. J. C. Knight, "Photonic crystal fibres," Nature 424, 847-851 (2003).
    [CrossRef]
  6. V. Raghunathan, D. Borlaug, R. R. Rice, and B. Jalali, "Demonstration of a Mid-infrared silicon Raman amplifier," Opt. Express 15, 14355-14362 (2007).
    [CrossRef]
  7. V. Raghunathan, H. Renner, R. R. Rice, and B. Jalali, "Self-imaging silicon Raman amplifier," Opt. Express 15, 3396-3408 (2007).
    [CrossRef]
  8. L. Yin, Q. Lin, and G. P. Agrawal, "Soliton fission and supercontinuum generation in silicon waveguides," Opt. Lett. 32, 391-393 (2007).
    [CrossRef]
  9. T. M. Monro and D. J. Richardson, "Holey optical fibres: Fundamental properties and device applications," Comptes Rendus Physique 4, 175-186 (2003).
    [CrossRef]
  10. M. N. Petrovich, F. Poletti, A. van Brakel, and D. J. Richardson, "Robustly single mode hollow core photonic bandgap fiber," Opt. Express 16, 4337-4346 (2008).
    [CrossRef]
  11. C. R. Kurkjian, J. T. Krause, and M. J. Matthewson, "Strength and Fatigue of Silica Optical Fibers," J. Ligthwave Technol. 7, 1360-1370 (1989).
    [CrossRef]
  12. L. Lagonigro, N. V. Healy, J. R. Sparks, N. F. Baril, P. J. A. Sazio, J. V. Badding, and A. C. Peacock, "Wavelengthdependent loss measurements in polysilicon modified optical fibres," CLEO/Europe-EQEC CE3 (2009).
  13. T. A. Birks, J. C. Knight, and P. St. J. Russell, "Endlessly single-mode photonic crystal fiber," Opt. Lett. 22, 961-963 (1997).
    [CrossRef]
  14. L. Liao, D. R. Lim, A. M. Agarwal, X. Duan, K. K. Lee, and L. C. Kimerling, "Optical Transmission Losses in Polycrystalline Silicon Strip Waveguides: Effects of Waveguide Dimensions, Thermal Treatment, Hydrogen Passivation, and Wavelength," J. Electron. Mater. 29, 1380-1386 (2000).
    [CrossRef]
  15. C. E. Finlayson, A. Amezcua-Correa, P. J. A. Sazio, N. F. Baril, and J. V. Badding, "Electrical and Raman characterization of silicon and germanium-filled microstructured optical fibers," Appl. Phys. Lett. 90, 132110 (2007).
    [CrossRef]
  16. G. Cocorullo, F. G. Della Corte, R. De Rosa, I. Rendina, A. Rubino, and E. Terzini, "Amorphous Silicon-Based Guided-Wave Passive and Active Devices for Silicon Integrated Optoelectronics," IEEE J. Sel.Top Quant. 4997-1002 (1998).
    [CrossRef]

2008 (1)

2007 (4)

2006 (2)

P. J. A. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D.-J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, "Microstructured Optical Fibers as High-Pressure Microfluidic Reactors," Science 311, 1583-1586 (2006).
[CrossRef]

B. Jalali and S. Fathpour, "Silicon Photonics," J. Lightwave Technol. 24, 4600-4615 (2006).
[CrossRef]

2004 (2)

M. A. Foster, K. D. Moll, and A. L. Gaeta, "Optical waveguide dimensions for nonlinear interactions," Opt. Express 12, 2880-2887 (2004).
[CrossRef]

M. Lipson, "Overcoming the limitations of microelectronics using Si nanophotonics: solving the coupling, modulation and switching challenges," Nanotechnology 15, S622-S627 (2004).
[CrossRef]

2003 (2)

J. C. Knight, "Photonic crystal fibres," Nature 424, 847-851 (2003).
[CrossRef]

T. M. Monro and D. J. Richardson, "Holey optical fibres: Fundamental properties and device applications," Comptes Rendus Physique 4, 175-186 (2003).
[CrossRef]

2000 (1)

L. Liao, D. R. Lim, A. M. Agarwal, X. Duan, K. K. Lee, and L. C. Kimerling, "Optical Transmission Losses in Polycrystalline Silicon Strip Waveguides: Effects of Waveguide Dimensions, Thermal Treatment, Hydrogen Passivation, and Wavelength," J. Electron. Mater. 29, 1380-1386 (2000).
[CrossRef]

1998 (1)

G. Cocorullo, F. G. Della Corte, R. De Rosa, I. Rendina, A. Rubino, and E. Terzini, "Amorphous Silicon-Based Guided-Wave Passive and Active Devices for Silicon Integrated Optoelectronics," IEEE J. Sel.Top Quant. 4997-1002 (1998).
[CrossRef]

1997 (1)

1989 (1)

C. R. Kurkjian, J. T. Krause, and M. J. Matthewson, "Strength and Fatigue of Silica Optical Fibers," J. Ligthwave Technol. 7, 1360-1370 (1989).
[CrossRef]

Agarwal, A. M.

L. Liao, D. R. Lim, A. M. Agarwal, X. Duan, K. K. Lee, and L. C. Kimerling, "Optical Transmission Losses in Polycrystalline Silicon Strip Waveguides: Effects of Waveguide Dimensions, Thermal Treatment, Hydrogen Passivation, and Wavelength," J. Electron. Mater. 29, 1380-1386 (2000).
[CrossRef]

Agrawal, G. P.

Amezcua-Correa, A.

C. E. Finlayson, A. Amezcua-Correa, P. J. A. Sazio, N. F. Baril, and J. V. Badding, "Electrical and Raman characterization of silicon and germanium-filled microstructured optical fibers," Appl. Phys. Lett. 90, 132110 (2007).
[CrossRef]

P. J. A. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D.-J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, "Microstructured Optical Fibers as High-Pressure Microfluidic Reactors," Science 311, 1583-1586 (2006).
[CrossRef]

Badding, J. V.

C. E. Finlayson, A. Amezcua-Correa, P. J. A. Sazio, N. F. Baril, and J. V. Badding, "Electrical and Raman characterization of silicon and germanium-filled microstructured optical fibers," Appl. Phys. Lett. 90, 132110 (2007).
[CrossRef]

P. J. A. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D.-J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, "Microstructured Optical Fibers as High-Pressure Microfluidic Reactors," Science 311, 1583-1586 (2006).
[CrossRef]

Baril, N. F.

C. E. Finlayson, A. Amezcua-Correa, P. J. A. Sazio, N. F. Baril, and J. V. Badding, "Electrical and Raman characterization of silicon and germanium-filled microstructured optical fibers," Appl. Phys. Lett. 90, 132110 (2007).
[CrossRef]

P. J. A. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D.-J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, "Microstructured Optical Fibers as High-Pressure Microfluidic Reactors," Science 311, 1583-1586 (2006).
[CrossRef]

Birks, T. A.

Borlaug, D.

Cocorullo, G.

G. Cocorullo, F. G. Della Corte, R. De Rosa, I. Rendina, A. Rubino, and E. Terzini, "Amorphous Silicon-Based Guided-Wave Passive and Active Devices for Silicon Integrated Optoelectronics," IEEE J. Sel.Top Quant. 4997-1002 (1998).
[CrossRef]

Crespi, V. H.

P. J. A. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D.-J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, "Microstructured Optical Fibers as High-Pressure Microfluidic Reactors," Science 311, 1583-1586 (2006).
[CrossRef]

De Rosa, R.

G. Cocorullo, F. G. Della Corte, R. De Rosa, I. Rendina, A. Rubino, and E. Terzini, "Amorphous Silicon-Based Guided-Wave Passive and Active Devices for Silicon Integrated Optoelectronics," IEEE J. Sel.Top Quant. 4997-1002 (1998).
[CrossRef]

Della Corte, F. G.

G. Cocorullo, F. G. Della Corte, R. De Rosa, I. Rendina, A. Rubino, and E. Terzini, "Amorphous Silicon-Based Guided-Wave Passive and Active Devices for Silicon Integrated Optoelectronics," IEEE J. Sel.Top Quant. 4997-1002 (1998).
[CrossRef]

Duan, X.

L. Liao, D. R. Lim, A. M. Agarwal, X. Duan, K. K. Lee, and L. C. Kimerling, "Optical Transmission Losses in Polycrystalline Silicon Strip Waveguides: Effects of Waveguide Dimensions, Thermal Treatment, Hydrogen Passivation, and Wavelength," J. Electron. Mater. 29, 1380-1386 (2000).
[CrossRef]

Fathpour, S.

Finlayson, C. E.

C. E. Finlayson, A. Amezcua-Correa, P. J. A. Sazio, N. F. Baril, and J. V. Badding, "Electrical and Raman characterization of silicon and germanium-filled microstructured optical fibers," Appl. Phys. Lett. 90, 132110 (2007).
[CrossRef]

P. J. A. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D.-J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, "Microstructured Optical Fibers as High-Pressure Microfluidic Reactors," Science 311, 1583-1586 (2006).
[CrossRef]

Foster, M. A.

Gaeta, A. L.

Gopalan, V.

P. J. A. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D.-J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, "Microstructured Optical Fibers as High-Pressure Microfluidic Reactors," Science 311, 1583-1586 (2006).
[CrossRef]

Hayes, J. R.

P. J. A. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D.-J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, "Microstructured Optical Fibers as High-Pressure Microfluidic Reactors," Science 311, 1583-1586 (2006).
[CrossRef]

Jackson, B. R.

P. J. A. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D.-J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, "Microstructured Optical Fibers as High-Pressure Microfluidic Reactors," Science 311, 1583-1586 (2006).
[CrossRef]

Jalali, B.

Kimerling, L. C.

L. Liao, D. R. Lim, A. M. Agarwal, X. Duan, K. K. Lee, and L. C. Kimerling, "Optical Transmission Losses in Polycrystalline Silicon Strip Waveguides: Effects of Waveguide Dimensions, Thermal Treatment, Hydrogen Passivation, and Wavelength," J. Electron. Mater. 29, 1380-1386 (2000).
[CrossRef]

Knight, J. C.

Krause, J. T.

C. R. Kurkjian, J. T. Krause, and M. J. Matthewson, "Strength and Fatigue of Silica Optical Fibers," J. Ligthwave Technol. 7, 1360-1370 (1989).
[CrossRef]

Kurkjian, C. R.

C. R. Kurkjian, J. T. Krause, and M. J. Matthewson, "Strength and Fatigue of Silica Optical Fibers," J. Ligthwave Technol. 7, 1360-1370 (1989).
[CrossRef]

Lee, K. K.

L. Liao, D. R. Lim, A. M. Agarwal, X. Duan, K. K. Lee, and L. C. Kimerling, "Optical Transmission Losses in Polycrystalline Silicon Strip Waveguides: Effects of Waveguide Dimensions, Thermal Treatment, Hydrogen Passivation, and Wavelength," J. Electron. Mater. 29, 1380-1386 (2000).
[CrossRef]

Liao, L.

L. Liao, D. R. Lim, A. M. Agarwal, X. Duan, K. K. Lee, and L. C. Kimerling, "Optical Transmission Losses in Polycrystalline Silicon Strip Waveguides: Effects of Waveguide Dimensions, Thermal Treatment, Hydrogen Passivation, and Wavelength," J. Electron. Mater. 29, 1380-1386 (2000).
[CrossRef]

Lim, D. R.

L. Liao, D. R. Lim, A. M. Agarwal, X. Duan, K. K. Lee, and L. C. Kimerling, "Optical Transmission Losses in Polycrystalline Silicon Strip Waveguides: Effects of Waveguide Dimensions, Thermal Treatment, Hydrogen Passivation, and Wavelength," J. Electron. Mater. 29, 1380-1386 (2000).
[CrossRef]

Lin, Q.

Lipson, M.

M. Lipson, "Overcoming the limitations of microelectronics using Si nanophotonics: solving the coupling, modulation and switching challenges," Nanotechnology 15, S622-S627 (2004).
[CrossRef]

Margine, E. R.

P. J. A. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D.-J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, "Microstructured Optical Fibers as High-Pressure Microfluidic Reactors," Science 311, 1583-1586 (2006).
[CrossRef]

Matthewson, M. J.

C. R. Kurkjian, J. T. Krause, and M. J. Matthewson, "Strength and Fatigue of Silica Optical Fibers," J. Ligthwave Technol. 7, 1360-1370 (1989).
[CrossRef]

Moll, K. D.

Monro, T. M.

T. M. Monro and D. J. Richardson, "Holey optical fibres: Fundamental properties and device applications," Comptes Rendus Physique 4, 175-186 (2003).
[CrossRef]

Petrovich, M. N.

Poletti, F.

Raghunathan, V.

Rendina, I.

G. Cocorullo, F. G. Della Corte, R. De Rosa, I. Rendina, A. Rubino, and E. Terzini, "Amorphous Silicon-Based Guided-Wave Passive and Active Devices for Silicon Integrated Optoelectronics," IEEE J. Sel.Top Quant. 4997-1002 (1998).
[CrossRef]

Renner, H.

Rice, R. R.

Richardson, D. J.

M. N. Petrovich, F. Poletti, A. van Brakel, and D. J. Richardson, "Robustly single mode hollow core photonic bandgap fiber," Opt. Express 16, 4337-4346 (2008).
[CrossRef]

T. M. Monro and D. J. Richardson, "Holey optical fibres: Fundamental properties and device applications," Comptes Rendus Physique 4, 175-186 (2003).
[CrossRef]

Rubino, A.

G. Cocorullo, F. G. Della Corte, R. De Rosa, I. Rendina, A. Rubino, and E. Terzini, "Amorphous Silicon-Based Guided-Wave Passive and Active Devices for Silicon Integrated Optoelectronics," IEEE J. Sel.Top Quant. 4997-1002 (1998).
[CrossRef]

Russell, P. St. J.

Sazio, P. J. A.

C. E. Finlayson, A. Amezcua-Correa, P. J. A. Sazio, N. F. Baril, and J. V. Badding, "Electrical and Raman characterization of silicon and germanium-filled microstructured optical fibers," Appl. Phys. Lett. 90, 132110 (2007).
[CrossRef]

P. J. A. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D.-J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, "Microstructured Optical Fibers as High-Pressure Microfluidic Reactors," Science 311, 1583-1586 (2006).
[CrossRef]

Scheidemantel, T. J.

P. J. A. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D.-J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, "Microstructured Optical Fibers as High-Pressure Microfluidic Reactors," Science 311, 1583-1586 (2006).
[CrossRef]

Terzini, E.

G. Cocorullo, F. G. Della Corte, R. De Rosa, I. Rendina, A. Rubino, and E. Terzini, "Amorphous Silicon-Based Guided-Wave Passive and Active Devices for Silicon Integrated Optoelectronics," IEEE J. Sel.Top Quant. 4997-1002 (1998).
[CrossRef]

van Brakel, A.

Won, D.-J.

P. J. A. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D.-J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, "Microstructured Optical Fibers as High-Pressure Microfluidic Reactors," Science 311, 1583-1586 (2006).
[CrossRef]

Yin, L.

Zhang, F.

P. J. A. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D.-J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, "Microstructured Optical Fibers as High-Pressure Microfluidic Reactors," Science 311, 1583-1586 (2006).
[CrossRef]

Appl. Phys. Lett. (1)

C. E. Finlayson, A. Amezcua-Correa, P. J. A. Sazio, N. F. Baril, and J. V. Badding, "Electrical and Raman characterization of silicon and germanium-filled microstructured optical fibers," Appl. Phys. Lett. 90, 132110 (2007).
[CrossRef]

Comptes Rendus Physique (1)

T. M. Monro and D. J. Richardson, "Holey optical fibres: Fundamental properties and device applications," Comptes Rendus Physique 4, 175-186 (2003).
[CrossRef]

IEEE J. Sel. (1)

G. Cocorullo, F. G. Della Corte, R. De Rosa, I. Rendina, A. Rubino, and E. Terzini, "Amorphous Silicon-Based Guided-Wave Passive and Active Devices for Silicon Integrated Optoelectronics," IEEE J. Sel.Top Quant. 4997-1002 (1998).
[CrossRef]

J. Electron. Mater. (1)

L. Liao, D. R. Lim, A. M. Agarwal, X. Duan, K. K. Lee, and L. C. Kimerling, "Optical Transmission Losses in Polycrystalline Silicon Strip Waveguides: Effects of Waveguide Dimensions, Thermal Treatment, Hydrogen Passivation, and Wavelength," J. Electron. Mater. 29, 1380-1386 (2000).
[CrossRef]

J. Lightwave Technol. (1)

J. Ligthwave Technol. (1)

C. R. Kurkjian, J. T. Krause, and M. J. Matthewson, "Strength and Fatigue of Silica Optical Fibers," J. Ligthwave Technol. 7, 1360-1370 (1989).
[CrossRef]

Nanotechnology (1)

M. Lipson, "Overcoming the limitations of microelectronics using Si nanophotonics: solving the coupling, modulation and switching challenges," Nanotechnology 15, S622-S627 (2004).
[CrossRef]

Nature (1)

J. C. Knight, "Photonic crystal fibres," Nature 424, 847-851 (2003).
[CrossRef]

Opt. Express (4)

Opt. Lett. (2)

Science (1)

P. J. A. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D.-J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, "Microstructured Optical Fibers as High-Pressure Microfluidic Reactors," Science 311, 1583-1586 (2006).
[CrossRef]

Other (1)

L. Lagonigro, N. V. Healy, J. R. Sparks, N. F. Baril, P. J. A. Sazio, J. V. Badding, and A. C. Peacock, "Wavelengthdependent loss measurements in polysilicon modified optical fibres," CLEO/Europe-EQEC CE3 (2009).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics