Abstract

For the first time a detailed study of hybrid mode-locking in two-section InAs/InP quantum dot Fabry-Pérot-type lasers is presented. The output pulses have a typical upchirp of approximately 8 ps/nm, leading to very elongated pulses. The mechanism leading to this typical pulse shape and the phase noise is investigated by detailed radio-frequency and optical spectral studies as well as time-domain studies. The pulse shaping mechanism in these lasers is found to be fundamentally different than the mechanism observed in conventional mode-locked laser diodes, based on quantum well gain or bulk material.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Kaiser and B. Hüttl, “Monolithic 40-GHz mode-locked MQW DBR lasers for high-speed optical communication systems,” IEEE J. Sel. Top. Quant. Electron. 13, 125–135 (2007).
    [CrossRef]
  2. R. G. Broeke, J. Cao, C. Ji, S.-W. Seo, Y. Du, N. K. Fontaine, J.-H. Baek, J. Yan, F. M. Soares, F. Olsson, S. Lourdudoss, A.-V. H. Pham, M. Shearn, A. Scherer, and S. J. B. Yoo, “Optical-CDMA in InP,” IEEE J. Sel. Top. Quant. Electron. 13, 1497–1507 (2007).
    [CrossRef]
  3. N. K. Fontaine, R. P. Scott, J. Cao, A. Karalar, W. Jiang, K. Okamoto, J. P. Heritage, B. H. Kolner, and S. J. B. Yoo, “32 Phase X 32 amplitude optical arbitrary waveform generation,” Opt. Lett. 32(7), 865–867 (2007).
    [CrossRef] [PubMed]
  4. B. Jalali and S. Fathpour, “Silicon Photonics,” IEEE J. Lightwave Technol. 24(12), 4600–4615 (2006).
    [CrossRef]
  5. B. R. Koch, A. W. Fang, O. Cohen, and J. E. Bowers, “Mode-locked silicon evanescent lasers,” Opt. Express 15(18), 11225–11233 (2007).
    [CrossRef] [PubMed]
  6. H. Guo, K. Sato, K. Takashima, and H. Yokoyama, “Two-photon bio-imaging with a mode-locked semiconductor laser,” in Proceedings of 15th Internat. Conf. on Ultrafast Phenomena (2006) paper TuE8.
  7. K. W. Holman, D. J. Jones, J. Ye, and E. P. Ippen, “Orthogonal control of the frequency comb dynamics of a mode-locked laser diode,” Opt. Lett. 28(23), 2405–2407 (2003).
    [CrossRef] [PubMed]
  8. E. U. Rafailov, M. A. Cataluna, W. Sibbett, N. D. Il’inskaya, Y. M. Zadiranov, A. E. Zhukov, V. M. Ustinov, D. A. Livshits, A. R. Kovsh, and N. N. Ledentsov, “High-power picosecond and femtosecond pulse generation from a two-section mode-locked quantum-dot laser,” Appl. Phys. Lett. 87(8), 081107 (2005).
    [CrossRef]
  9. M. G. Thompson, D. Larson, A. R. Rae, K. Yvind, R. V. Penty, I. H. White, J. Hvam, A. R. Kovsh, S. S. Mikhrin, D. A. Livshits, and I. L. Krestnikov, “Monolithic hybrid and passive mode-locked 40 GHz quantum dot laser diodes,” in Proceedings of the European Conference on Optical Communication ECOC, (Cannes, France, 2006) paper We4.6.3.
  10. M. Kuntz, G. Fiol, M. Lammlin, D. Bimberg, M. G. Thompson, K. T. Tan, C. Marinelli, R. V. Penty, I. H. White, V. M. Ustinov, A. E. Zhukov, Y. M. Shernyakov, and A. R. Kovsh, “35 GHz mode-locking of 1.3 μm quantum dot lasers,” Appl. Phys. Lett. 85(5), 843 (2004).
    [CrossRef]
  11. E. U. Rafailov, M. A. Cataluna, and W. Sibbett, “Mode-locked quantum-dot lasers,” Nat. Photonics 1(7), 395–401 (2007).
    [CrossRef]
  12. D. Bimberg, M. Grundmann, F. Heinrichsdorff, N. N. Ledentsov, V. M. Ustinov, A. E. Zhukov, A. R. Kovsh, M. V. Maximov, Y. M. Shernyakov, B. V. Volovik, A. F. Tsatsul'nikov, P. S. Kop'ev, and Zh. I. Alferov, “Quantum dot lasers: breakthrough in optoelectronics,” Thin Solid Films 367(1-2), 235–249 (2000).
    [CrossRef]
  13. M. Kuntz, G. Fiol, M. Laemmlin, Ch. Meuer, and D. Bimberg, “High-speed mode-locked quantum-dot lasers and optical amplifiers,” Proc. IEEE 95(9), 1767–1778 (2007).
    [CrossRef]
  14. F. Lelarge, B. Dagens, J. Renaudier, R. Brenot, A. Accard, F. van Dijk, D. Make, O. le Gouezigou, J.-G. Provost, F. Poingt, J. Landreau, O. Drisse, E. Derouin, B. Rousseau, F. Pommereau, and G.-H. Duan, “Recent advances on InAs/InP quantum dash based semiconductor lasers and optical amplifiers operating at 1.55 μm,” IEEE J. Sel. Top. Quant. Electron. 13, 111–124 (2007).
    [CrossRef]
  15. C. Gosset, K. Merghem, A. Martinez, G. Moreau, G. Patriarche, G. Aubin, A. Ramdane, J. Landreau, and F. Lelarge, “Subpicosecond pulse generation at 134 GHz using a quantum-dash-based Fabry-Perot laser emitting at 1.56 μm,” Appl. Phys. Lett. 88(24), 241105 (2006).
    [CrossRef]
  16. Z. G. Lu, J. R. Liu, S. Raymond, P. J. Poole, P. J. Barrios, and D. Poitras, “312-fs pulse generation from a passive C-band InAs/InP quantum dot mode-locked laser,” Opt. Express 16(14), 10835–10840 (2008).
    [CrossRef] [PubMed]
  17. J. P. Tourrenc, A. Akrout, K. Merghem, A. Martinez, F. Lelarge, A. Shen, G. H. Duan, and A. Ramdane, “Experimental investigation of the timing jitter in self-pulsating quantum-dash lasers operating at155 µm,” Opt. Express 16(22), 17706–17713 (2008).
    [CrossRef] [PubMed]
  18. M. J. R. Heck, A. Renault, E. A. J. M. Bente, Y.-S. Oei, M. K. Smit, K. S. E. Eikema, W. Ubachs, S. Anantathanasarn, and R. Nötzel, “Passively mode-locked 4.6 GHz and 10.5 GHz quantum dot laser diodes around 1.55 μm with large operating regime,” IEEE J. Sel. Top. Quant. Electron. 15, 634–643 (2009).
    [CrossRef]
  19. M. J. R. Heck, E. A. J. M. Bente, B. Smalbrugge, Y.-S. Oei, M. K. Smit, S. Anantathanasarn, and R. Nötzel, “Observation of Q-switching and mode-locking in two-section InAs/InP (100) quantum dot lasers around 1.55 mum,” Opt. Express 15(25), 16292–16301 (2007).
    [CrossRef] [PubMed]
  20. A. Shen, F. van Dijk, J. Renaudier, G. H. Duan, F. Lelarge, F. Pommereau, F. Poingt, L. Le Gouezigou, and O. Le Gouezigou, “Active mode-locking of quantum dot Fabry-Perot laser diode,” in Proceedings IEEE 20th International Semiconductor Laser Conference (2006) pp. 153–154, paper ThB6.
  21. G. Girault, M. Gay, S. Lobo, L. Bramerie, M. Joindot, J. C. Simon, A. Shen, F. Blache, H. Gariah, F. Mallécot, O. Le Gouezigou, F. Poingt, L. Le Gouezigou, F. Pommereau, B. Rousseau, F. Lelarge, and G.-H. Duan, “Quantum dash actively modelocked Fabry-Perot laser module demonstrated as part of wavelength tunable RZ transmitter,” Electron. Lett. 44(14), 873–874 (2008).
    [CrossRef]
  22. K. A. Williams, M. G. Thompson, and I. H. White, “Long-wavelength monolithic mode-locked diode lasers,” N. J. Phys. 6, 179 (2004).
    [CrossRef]
  23. S. Anantathanasarn, R. Nötzel, P. J. van Veldhoven, F. W. M. van Otten, Y. Barbarin, G. Servanton, T. de Vries, E. Smalbrugge, E. J. Geluk, T. J. Eijkemans, E. A. J. M. Bente, Y. S. Oei, M. K. Smit, and J. H. Wolter, “Lasing of wavelength-tunable (1.55-μm region) InAs/InGaAsP/InP (100) quantum dots grown by metal organic vapor-phase epitaxy,” Appl. Phys. Lett. 89(7), 073115 (2006).
    [CrossRef]
  24. D. von der Linde, “Characterization of the noise in continuously operating mode-locked lasers,” Appl. Phys. B 39(4), 201–217 (1986).
    [CrossRef]
  25. F. R. Ahmad and F. Rana, “Fundamental and subharmonic hybrid mode-locking of a high-power (220 mW) monolithic semiconductor laser,” IEEE Photon. Technol. Lett. 20(15), 1308–1310 (2008).
    [CrossRef]
  26. L. A. Jiang, “Ultralow-noise modelocked lasers,” (Ph.D. diss., Massachusetts Institute of Technology, 2002).
  27. A. J. Lowery, N. Onodera, and R. S. Tucker, “Stability and spectral behavior of grating-controlled actively mode-locked lasers,” IEEE J. Quantum Electron. 27(11), 2422–2430 (1991).
    [CrossRef]
  28. K. Yvind, “Semiconductor mode-locked lasers for optical communication systems,” (Ph.D. diss., Technical University of Denmark, 2003).
  29. A. Akrout, A. Shen, R. Brenot, F. Van Dijk, O. Lelouezigou, F. Pommerau, F. Lelarge, A. Ramdane, and G.-H. Duan, “Error-free transmission of 8 WDM channels at 10 Gbit/s using comb generation in a quantum dash based mode-locked laser,” in Proceedings 34th European Conference on Optical Communication ECOC (Brussels, Belgium, 2008) paper Th3D4.

2009

M. J. R. Heck, A. Renault, E. A. J. M. Bente, Y.-S. Oei, M. K. Smit, K. S. E. Eikema, W. Ubachs, S. Anantathanasarn, and R. Nötzel, “Passively mode-locked 4.6 GHz and 10.5 GHz quantum dot laser diodes around 1.55 μm with large operating regime,” IEEE J. Sel. Top. Quant. Electron. 15, 634–643 (2009).
[CrossRef]

2008

F. R. Ahmad and F. Rana, “Fundamental and subharmonic hybrid mode-locking of a high-power (220 mW) monolithic semiconductor laser,” IEEE Photon. Technol. Lett. 20(15), 1308–1310 (2008).
[CrossRef]

G. Girault, M. Gay, S. Lobo, L. Bramerie, M. Joindot, J. C. Simon, A. Shen, F. Blache, H. Gariah, F. Mallécot, O. Le Gouezigou, F. Poingt, L. Le Gouezigou, F. Pommereau, B. Rousseau, F. Lelarge, and G.-H. Duan, “Quantum dash actively modelocked Fabry-Perot laser module demonstrated as part of wavelength tunable RZ transmitter,” Electron. Lett. 44(14), 873–874 (2008).
[CrossRef]

Z. G. Lu, J. R. Liu, S. Raymond, P. J. Poole, P. J. Barrios, and D. Poitras, “312-fs pulse generation from a passive C-band InAs/InP quantum dot mode-locked laser,” Opt. Express 16(14), 10835–10840 (2008).
[CrossRef] [PubMed]

J. P. Tourrenc, A. Akrout, K. Merghem, A. Martinez, F. Lelarge, A. Shen, G. H. Duan, and A. Ramdane, “Experimental investigation of the timing jitter in self-pulsating quantum-dash lasers operating at155 µm,” Opt. Express 16(22), 17706–17713 (2008).
[CrossRef] [PubMed]

2007

N. K. Fontaine, R. P. Scott, J. Cao, A. Karalar, W. Jiang, K. Okamoto, J. P. Heritage, B. H. Kolner, and S. J. B. Yoo, “32 Phase X 32 amplitude optical arbitrary waveform generation,” Opt. Lett. 32(7), 865–867 (2007).
[CrossRef] [PubMed]

B. R. Koch, A. W. Fang, O. Cohen, and J. E. Bowers, “Mode-locked silicon evanescent lasers,” Opt. Express 15(18), 11225–11233 (2007).
[CrossRef] [PubMed]

M. J. R. Heck, E. A. J. M. Bente, B. Smalbrugge, Y.-S. Oei, M. K. Smit, S. Anantathanasarn, and R. Nötzel, “Observation of Q-switching and mode-locking in two-section InAs/InP (100) quantum dot lasers around 1.55 mum,” Opt. Express 15(25), 16292–16301 (2007).
[CrossRef] [PubMed]

E. U. Rafailov, M. A. Cataluna, and W. Sibbett, “Mode-locked quantum-dot lasers,” Nat. Photonics 1(7), 395–401 (2007).
[CrossRef]

M. Kuntz, G. Fiol, M. Laemmlin, Ch. Meuer, and D. Bimberg, “High-speed mode-locked quantum-dot lasers and optical amplifiers,” Proc. IEEE 95(9), 1767–1778 (2007).
[CrossRef]

F. Lelarge, B. Dagens, J. Renaudier, R. Brenot, A. Accard, F. van Dijk, D. Make, O. le Gouezigou, J.-G. Provost, F. Poingt, J. Landreau, O. Drisse, E. Derouin, B. Rousseau, F. Pommereau, and G.-H. Duan, “Recent advances on InAs/InP quantum dash based semiconductor lasers and optical amplifiers operating at 1.55 μm,” IEEE J. Sel. Top. Quant. Electron. 13, 111–124 (2007).
[CrossRef]

R. Kaiser and B. Hüttl, “Monolithic 40-GHz mode-locked MQW DBR lasers for high-speed optical communication systems,” IEEE J. Sel. Top. Quant. Electron. 13, 125–135 (2007).
[CrossRef]

R. G. Broeke, J. Cao, C. Ji, S.-W. Seo, Y. Du, N. K. Fontaine, J.-H. Baek, J. Yan, F. M. Soares, F. Olsson, S. Lourdudoss, A.-V. H. Pham, M. Shearn, A. Scherer, and S. J. B. Yoo, “Optical-CDMA in InP,” IEEE J. Sel. Top. Quant. Electron. 13, 1497–1507 (2007).
[CrossRef]

2006

B. Jalali and S. Fathpour, “Silicon Photonics,” IEEE J. Lightwave Technol. 24(12), 4600–4615 (2006).
[CrossRef]

C. Gosset, K. Merghem, A. Martinez, G. Moreau, G. Patriarche, G. Aubin, A. Ramdane, J. Landreau, and F. Lelarge, “Subpicosecond pulse generation at 134 GHz using a quantum-dash-based Fabry-Perot laser emitting at 1.56 μm,” Appl. Phys. Lett. 88(24), 241105 (2006).
[CrossRef]

S. Anantathanasarn, R. Nötzel, P. J. van Veldhoven, F. W. M. van Otten, Y. Barbarin, G. Servanton, T. de Vries, E. Smalbrugge, E. J. Geluk, T. J. Eijkemans, E. A. J. M. Bente, Y. S. Oei, M. K. Smit, and J. H. Wolter, “Lasing of wavelength-tunable (1.55-μm region) InAs/InGaAsP/InP (100) quantum dots grown by metal organic vapor-phase epitaxy,” Appl. Phys. Lett. 89(7), 073115 (2006).
[CrossRef]

2005

E. U. Rafailov, M. A. Cataluna, W. Sibbett, N. D. Il’inskaya, Y. M. Zadiranov, A. E. Zhukov, V. M. Ustinov, D. A. Livshits, A. R. Kovsh, and N. N. Ledentsov, “High-power picosecond and femtosecond pulse generation from a two-section mode-locked quantum-dot laser,” Appl. Phys. Lett. 87(8), 081107 (2005).
[CrossRef]

2004

M. Kuntz, G. Fiol, M. Lammlin, D. Bimberg, M. G. Thompson, K. T. Tan, C. Marinelli, R. V. Penty, I. H. White, V. M. Ustinov, A. E. Zhukov, Y. M. Shernyakov, and A. R. Kovsh, “35 GHz mode-locking of 1.3 μm quantum dot lasers,” Appl. Phys. Lett. 85(5), 843 (2004).
[CrossRef]

K. A. Williams, M. G. Thompson, and I. H. White, “Long-wavelength monolithic mode-locked diode lasers,” N. J. Phys. 6, 179 (2004).
[CrossRef]

2003

2000

D. Bimberg, M. Grundmann, F. Heinrichsdorff, N. N. Ledentsov, V. M. Ustinov, A. E. Zhukov, A. R. Kovsh, M. V. Maximov, Y. M. Shernyakov, B. V. Volovik, A. F. Tsatsul'nikov, P. S. Kop'ev, and Zh. I. Alferov, “Quantum dot lasers: breakthrough in optoelectronics,” Thin Solid Films 367(1-2), 235–249 (2000).
[CrossRef]

1991

A. J. Lowery, N. Onodera, and R. S. Tucker, “Stability and spectral behavior of grating-controlled actively mode-locked lasers,” IEEE J. Quantum Electron. 27(11), 2422–2430 (1991).
[CrossRef]

1986

D. von der Linde, “Characterization of the noise in continuously operating mode-locked lasers,” Appl. Phys. B 39(4), 201–217 (1986).
[CrossRef]

Accard, A.

F. Lelarge, B. Dagens, J. Renaudier, R. Brenot, A. Accard, F. van Dijk, D. Make, O. le Gouezigou, J.-G. Provost, F. Poingt, J. Landreau, O. Drisse, E. Derouin, B. Rousseau, F. Pommereau, and G.-H. Duan, “Recent advances on InAs/InP quantum dash based semiconductor lasers and optical amplifiers operating at 1.55 μm,” IEEE J. Sel. Top. Quant. Electron. 13, 111–124 (2007).
[CrossRef]

Ahmad, F. R.

F. R. Ahmad and F. Rana, “Fundamental and subharmonic hybrid mode-locking of a high-power (220 mW) monolithic semiconductor laser,” IEEE Photon. Technol. Lett. 20(15), 1308–1310 (2008).
[CrossRef]

Akrout, A.

Alferov, Zh. I.

D. Bimberg, M. Grundmann, F. Heinrichsdorff, N. N. Ledentsov, V. M. Ustinov, A. E. Zhukov, A. R. Kovsh, M. V. Maximov, Y. M. Shernyakov, B. V. Volovik, A. F. Tsatsul'nikov, P. S. Kop'ev, and Zh. I. Alferov, “Quantum dot lasers: breakthrough in optoelectronics,” Thin Solid Films 367(1-2), 235–249 (2000).
[CrossRef]

Anantathanasarn, S.

M. J. R. Heck, A. Renault, E. A. J. M. Bente, Y.-S. Oei, M. K. Smit, K. S. E. Eikema, W. Ubachs, S. Anantathanasarn, and R. Nötzel, “Passively mode-locked 4.6 GHz and 10.5 GHz quantum dot laser diodes around 1.55 μm with large operating regime,” IEEE J. Sel. Top. Quant. Electron. 15, 634–643 (2009).
[CrossRef]

M. J. R. Heck, E. A. J. M. Bente, B. Smalbrugge, Y.-S. Oei, M. K. Smit, S. Anantathanasarn, and R. Nötzel, “Observation of Q-switching and mode-locking in two-section InAs/InP (100) quantum dot lasers around 1.55 mum,” Opt. Express 15(25), 16292–16301 (2007).
[CrossRef] [PubMed]

S. Anantathanasarn, R. Nötzel, P. J. van Veldhoven, F. W. M. van Otten, Y. Barbarin, G. Servanton, T. de Vries, E. Smalbrugge, E. J. Geluk, T. J. Eijkemans, E. A. J. M. Bente, Y. S. Oei, M. K. Smit, and J. H. Wolter, “Lasing of wavelength-tunable (1.55-μm region) InAs/InGaAsP/InP (100) quantum dots grown by metal organic vapor-phase epitaxy,” Appl. Phys. Lett. 89(7), 073115 (2006).
[CrossRef]

Aubin, G.

C. Gosset, K. Merghem, A. Martinez, G. Moreau, G. Patriarche, G. Aubin, A. Ramdane, J. Landreau, and F. Lelarge, “Subpicosecond pulse generation at 134 GHz using a quantum-dash-based Fabry-Perot laser emitting at 1.56 μm,” Appl. Phys. Lett. 88(24), 241105 (2006).
[CrossRef]

Baek, J.-H.

R. G. Broeke, J. Cao, C. Ji, S.-W. Seo, Y. Du, N. K. Fontaine, J.-H. Baek, J. Yan, F. M. Soares, F. Olsson, S. Lourdudoss, A.-V. H. Pham, M. Shearn, A. Scherer, and S. J. B. Yoo, “Optical-CDMA in InP,” IEEE J. Sel. Top. Quant. Electron. 13, 1497–1507 (2007).
[CrossRef]

Barbarin, Y.

S. Anantathanasarn, R. Nötzel, P. J. van Veldhoven, F. W. M. van Otten, Y. Barbarin, G. Servanton, T. de Vries, E. Smalbrugge, E. J. Geluk, T. J. Eijkemans, E. A. J. M. Bente, Y. S. Oei, M. K. Smit, and J. H. Wolter, “Lasing of wavelength-tunable (1.55-μm region) InAs/InGaAsP/InP (100) quantum dots grown by metal organic vapor-phase epitaxy,” Appl. Phys. Lett. 89(7), 073115 (2006).
[CrossRef]

Barrios, P. J.

Bente, E. A. J. M.

M. J. R. Heck, A. Renault, E. A. J. M. Bente, Y.-S. Oei, M. K. Smit, K. S. E. Eikema, W. Ubachs, S. Anantathanasarn, and R. Nötzel, “Passively mode-locked 4.6 GHz and 10.5 GHz quantum dot laser diodes around 1.55 μm with large operating regime,” IEEE J. Sel. Top. Quant. Electron. 15, 634–643 (2009).
[CrossRef]

M. J. R. Heck, E. A. J. M. Bente, B. Smalbrugge, Y.-S. Oei, M. K. Smit, S. Anantathanasarn, and R. Nötzel, “Observation of Q-switching and mode-locking in two-section InAs/InP (100) quantum dot lasers around 1.55 mum,” Opt. Express 15(25), 16292–16301 (2007).
[CrossRef] [PubMed]

S. Anantathanasarn, R. Nötzel, P. J. van Veldhoven, F. W. M. van Otten, Y. Barbarin, G. Servanton, T. de Vries, E. Smalbrugge, E. J. Geluk, T. J. Eijkemans, E. A. J. M. Bente, Y. S. Oei, M. K. Smit, and J. H. Wolter, “Lasing of wavelength-tunable (1.55-μm region) InAs/InGaAsP/InP (100) quantum dots grown by metal organic vapor-phase epitaxy,” Appl. Phys. Lett. 89(7), 073115 (2006).
[CrossRef]

Bimberg, D.

M. Kuntz, G. Fiol, M. Laemmlin, Ch. Meuer, and D. Bimberg, “High-speed mode-locked quantum-dot lasers and optical amplifiers,” Proc. IEEE 95(9), 1767–1778 (2007).
[CrossRef]

M. Kuntz, G. Fiol, M. Lammlin, D. Bimberg, M. G. Thompson, K. T. Tan, C. Marinelli, R. V. Penty, I. H. White, V. M. Ustinov, A. E. Zhukov, Y. M. Shernyakov, and A. R. Kovsh, “35 GHz mode-locking of 1.3 μm quantum dot lasers,” Appl. Phys. Lett. 85(5), 843 (2004).
[CrossRef]

D. Bimberg, M. Grundmann, F. Heinrichsdorff, N. N. Ledentsov, V. M. Ustinov, A. E. Zhukov, A. R. Kovsh, M. V. Maximov, Y. M. Shernyakov, B. V. Volovik, A. F. Tsatsul'nikov, P. S. Kop'ev, and Zh. I. Alferov, “Quantum dot lasers: breakthrough in optoelectronics,” Thin Solid Films 367(1-2), 235–249 (2000).
[CrossRef]

Blache, F.

G. Girault, M. Gay, S. Lobo, L. Bramerie, M. Joindot, J. C. Simon, A. Shen, F. Blache, H. Gariah, F. Mallécot, O. Le Gouezigou, F. Poingt, L. Le Gouezigou, F. Pommereau, B. Rousseau, F. Lelarge, and G.-H. Duan, “Quantum dash actively modelocked Fabry-Perot laser module demonstrated as part of wavelength tunable RZ transmitter,” Electron. Lett. 44(14), 873–874 (2008).
[CrossRef]

Bowers, J. E.

Bramerie, L.

G. Girault, M. Gay, S. Lobo, L. Bramerie, M. Joindot, J. C. Simon, A. Shen, F. Blache, H. Gariah, F. Mallécot, O. Le Gouezigou, F. Poingt, L. Le Gouezigou, F. Pommereau, B. Rousseau, F. Lelarge, and G.-H. Duan, “Quantum dash actively modelocked Fabry-Perot laser module demonstrated as part of wavelength tunable RZ transmitter,” Electron. Lett. 44(14), 873–874 (2008).
[CrossRef]

Brenot, R.

F. Lelarge, B. Dagens, J. Renaudier, R. Brenot, A. Accard, F. van Dijk, D. Make, O. le Gouezigou, J.-G. Provost, F. Poingt, J. Landreau, O. Drisse, E. Derouin, B. Rousseau, F. Pommereau, and G.-H. Duan, “Recent advances on InAs/InP quantum dash based semiconductor lasers and optical amplifiers operating at 1.55 μm,” IEEE J. Sel. Top. Quant. Electron. 13, 111–124 (2007).
[CrossRef]

Broeke, R. G.

R. G. Broeke, J. Cao, C. Ji, S.-W. Seo, Y. Du, N. K. Fontaine, J.-H. Baek, J. Yan, F. M. Soares, F. Olsson, S. Lourdudoss, A.-V. H. Pham, M. Shearn, A. Scherer, and S. J. B. Yoo, “Optical-CDMA in InP,” IEEE J. Sel. Top. Quant. Electron. 13, 1497–1507 (2007).
[CrossRef]

Cao, J.

R. G. Broeke, J. Cao, C. Ji, S.-W. Seo, Y. Du, N. K. Fontaine, J.-H. Baek, J. Yan, F. M. Soares, F. Olsson, S. Lourdudoss, A.-V. H. Pham, M. Shearn, A. Scherer, and S. J. B. Yoo, “Optical-CDMA in InP,” IEEE J. Sel. Top. Quant. Electron. 13, 1497–1507 (2007).
[CrossRef]

N. K. Fontaine, R. P. Scott, J. Cao, A. Karalar, W. Jiang, K. Okamoto, J. P. Heritage, B. H. Kolner, and S. J. B. Yoo, “32 Phase X 32 amplitude optical arbitrary waveform generation,” Opt. Lett. 32(7), 865–867 (2007).
[CrossRef] [PubMed]

Cataluna, M. A.

E. U. Rafailov, M. A. Cataluna, and W. Sibbett, “Mode-locked quantum-dot lasers,” Nat. Photonics 1(7), 395–401 (2007).
[CrossRef]

E. U. Rafailov, M. A. Cataluna, W. Sibbett, N. D. Il’inskaya, Y. M. Zadiranov, A. E. Zhukov, V. M. Ustinov, D. A. Livshits, A. R. Kovsh, and N. N. Ledentsov, “High-power picosecond and femtosecond pulse generation from a two-section mode-locked quantum-dot laser,” Appl. Phys. Lett. 87(8), 081107 (2005).
[CrossRef]

Cohen, O.

Dagens, B.

F. Lelarge, B. Dagens, J. Renaudier, R. Brenot, A. Accard, F. van Dijk, D. Make, O. le Gouezigou, J.-G. Provost, F. Poingt, J. Landreau, O. Drisse, E. Derouin, B. Rousseau, F. Pommereau, and G.-H. Duan, “Recent advances on InAs/InP quantum dash based semiconductor lasers and optical amplifiers operating at 1.55 μm,” IEEE J. Sel. Top. Quant. Electron. 13, 111–124 (2007).
[CrossRef]

de Vries, T.

S. Anantathanasarn, R. Nötzel, P. J. van Veldhoven, F. W. M. van Otten, Y. Barbarin, G. Servanton, T. de Vries, E. Smalbrugge, E. J. Geluk, T. J. Eijkemans, E. A. J. M. Bente, Y. S. Oei, M. K. Smit, and J. H. Wolter, “Lasing of wavelength-tunable (1.55-μm region) InAs/InGaAsP/InP (100) quantum dots grown by metal organic vapor-phase epitaxy,” Appl. Phys. Lett. 89(7), 073115 (2006).
[CrossRef]

Derouin, E.

F. Lelarge, B. Dagens, J. Renaudier, R. Brenot, A. Accard, F. van Dijk, D. Make, O. le Gouezigou, J.-G. Provost, F. Poingt, J. Landreau, O. Drisse, E. Derouin, B. Rousseau, F. Pommereau, and G.-H. Duan, “Recent advances on InAs/InP quantum dash based semiconductor lasers and optical amplifiers operating at 1.55 μm,” IEEE J. Sel. Top. Quant. Electron. 13, 111–124 (2007).
[CrossRef]

Drisse, O.

F. Lelarge, B. Dagens, J. Renaudier, R. Brenot, A. Accard, F. van Dijk, D. Make, O. le Gouezigou, J.-G. Provost, F. Poingt, J. Landreau, O. Drisse, E. Derouin, B. Rousseau, F. Pommereau, and G.-H. Duan, “Recent advances on InAs/InP quantum dash based semiconductor lasers and optical amplifiers operating at 1.55 μm,” IEEE J. Sel. Top. Quant. Electron. 13, 111–124 (2007).
[CrossRef]

Du, Y.

R. G. Broeke, J. Cao, C. Ji, S.-W. Seo, Y. Du, N. K. Fontaine, J.-H. Baek, J. Yan, F. M. Soares, F. Olsson, S. Lourdudoss, A.-V. H. Pham, M. Shearn, A. Scherer, and S. J. B. Yoo, “Optical-CDMA in InP,” IEEE J. Sel. Top. Quant. Electron. 13, 1497–1507 (2007).
[CrossRef]

Duan, G. H.

Duan, G.-H.

G. Girault, M. Gay, S. Lobo, L. Bramerie, M. Joindot, J. C. Simon, A. Shen, F. Blache, H. Gariah, F. Mallécot, O. Le Gouezigou, F. Poingt, L. Le Gouezigou, F. Pommereau, B. Rousseau, F. Lelarge, and G.-H. Duan, “Quantum dash actively modelocked Fabry-Perot laser module demonstrated as part of wavelength tunable RZ transmitter,” Electron. Lett. 44(14), 873–874 (2008).
[CrossRef]

F. Lelarge, B. Dagens, J. Renaudier, R. Brenot, A. Accard, F. van Dijk, D. Make, O. le Gouezigou, J.-G. Provost, F. Poingt, J. Landreau, O. Drisse, E. Derouin, B. Rousseau, F. Pommereau, and G.-H. Duan, “Recent advances on InAs/InP quantum dash based semiconductor lasers and optical amplifiers operating at 1.55 μm,” IEEE J. Sel. Top. Quant. Electron. 13, 111–124 (2007).
[CrossRef]

Eijkemans, T. J.

S. Anantathanasarn, R. Nötzel, P. J. van Veldhoven, F. W. M. van Otten, Y. Barbarin, G. Servanton, T. de Vries, E. Smalbrugge, E. J. Geluk, T. J. Eijkemans, E. A. J. M. Bente, Y. S. Oei, M. K. Smit, and J. H. Wolter, “Lasing of wavelength-tunable (1.55-μm region) InAs/InGaAsP/InP (100) quantum dots grown by metal organic vapor-phase epitaxy,” Appl. Phys. Lett. 89(7), 073115 (2006).
[CrossRef]

Eikema, K. S. E.

M. J. R. Heck, A. Renault, E. A. J. M. Bente, Y.-S. Oei, M. K. Smit, K. S. E. Eikema, W. Ubachs, S. Anantathanasarn, and R. Nötzel, “Passively mode-locked 4.6 GHz and 10.5 GHz quantum dot laser diodes around 1.55 μm with large operating regime,” IEEE J. Sel. Top. Quant. Electron. 15, 634–643 (2009).
[CrossRef]

Fang, A. W.

Fathpour, S.

B. Jalali and S. Fathpour, “Silicon Photonics,” IEEE J. Lightwave Technol. 24(12), 4600–4615 (2006).
[CrossRef]

Fiol, G.

M. Kuntz, G. Fiol, M. Laemmlin, Ch. Meuer, and D. Bimberg, “High-speed mode-locked quantum-dot lasers and optical amplifiers,” Proc. IEEE 95(9), 1767–1778 (2007).
[CrossRef]

M. Kuntz, G. Fiol, M. Lammlin, D. Bimberg, M. G. Thompson, K. T. Tan, C. Marinelli, R. V. Penty, I. H. White, V. M. Ustinov, A. E. Zhukov, Y. M. Shernyakov, and A. R. Kovsh, “35 GHz mode-locking of 1.3 μm quantum dot lasers,” Appl. Phys. Lett. 85(5), 843 (2004).
[CrossRef]

Fontaine, N. K.

N. K. Fontaine, R. P. Scott, J. Cao, A. Karalar, W. Jiang, K. Okamoto, J. P. Heritage, B. H. Kolner, and S. J. B. Yoo, “32 Phase X 32 amplitude optical arbitrary waveform generation,” Opt. Lett. 32(7), 865–867 (2007).
[CrossRef] [PubMed]

R. G. Broeke, J. Cao, C. Ji, S.-W. Seo, Y. Du, N. K. Fontaine, J.-H. Baek, J. Yan, F. M. Soares, F. Olsson, S. Lourdudoss, A.-V. H. Pham, M. Shearn, A. Scherer, and S. J. B. Yoo, “Optical-CDMA in InP,” IEEE J. Sel. Top. Quant. Electron. 13, 1497–1507 (2007).
[CrossRef]

Gariah, H.

G. Girault, M. Gay, S. Lobo, L. Bramerie, M. Joindot, J. C. Simon, A. Shen, F. Blache, H. Gariah, F. Mallécot, O. Le Gouezigou, F. Poingt, L. Le Gouezigou, F. Pommereau, B. Rousseau, F. Lelarge, and G.-H. Duan, “Quantum dash actively modelocked Fabry-Perot laser module demonstrated as part of wavelength tunable RZ transmitter,” Electron. Lett. 44(14), 873–874 (2008).
[CrossRef]

Gay, M.

G. Girault, M. Gay, S. Lobo, L. Bramerie, M. Joindot, J. C. Simon, A. Shen, F. Blache, H. Gariah, F. Mallécot, O. Le Gouezigou, F. Poingt, L. Le Gouezigou, F. Pommereau, B. Rousseau, F. Lelarge, and G.-H. Duan, “Quantum dash actively modelocked Fabry-Perot laser module demonstrated as part of wavelength tunable RZ transmitter,” Electron. Lett. 44(14), 873–874 (2008).
[CrossRef]

Geluk, E. J.

S. Anantathanasarn, R. Nötzel, P. J. van Veldhoven, F. W. M. van Otten, Y. Barbarin, G. Servanton, T. de Vries, E. Smalbrugge, E. J. Geluk, T. J. Eijkemans, E. A. J. M. Bente, Y. S. Oei, M. K. Smit, and J. H. Wolter, “Lasing of wavelength-tunable (1.55-μm region) InAs/InGaAsP/InP (100) quantum dots grown by metal organic vapor-phase epitaxy,” Appl. Phys. Lett. 89(7), 073115 (2006).
[CrossRef]

Girault, G.

G. Girault, M. Gay, S. Lobo, L. Bramerie, M. Joindot, J. C. Simon, A. Shen, F. Blache, H. Gariah, F. Mallécot, O. Le Gouezigou, F. Poingt, L. Le Gouezigou, F. Pommereau, B. Rousseau, F. Lelarge, and G.-H. Duan, “Quantum dash actively modelocked Fabry-Perot laser module demonstrated as part of wavelength tunable RZ transmitter,” Electron. Lett. 44(14), 873–874 (2008).
[CrossRef]

Gosset, C.

C. Gosset, K. Merghem, A. Martinez, G. Moreau, G. Patriarche, G. Aubin, A. Ramdane, J. Landreau, and F. Lelarge, “Subpicosecond pulse generation at 134 GHz using a quantum-dash-based Fabry-Perot laser emitting at 1.56 μm,” Appl. Phys. Lett. 88(24), 241105 (2006).
[CrossRef]

Grundmann, M.

D. Bimberg, M. Grundmann, F. Heinrichsdorff, N. N. Ledentsov, V. M. Ustinov, A. E. Zhukov, A. R. Kovsh, M. V. Maximov, Y. M. Shernyakov, B. V. Volovik, A. F. Tsatsul'nikov, P. S. Kop'ev, and Zh. I. Alferov, “Quantum dot lasers: breakthrough in optoelectronics,” Thin Solid Films 367(1-2), 235–249 (2000).
[CrossRef]

Heck, M. J. R.

M. J. R. Heck, A. Renault, E. A. J. M. Bente, Y.-S. Oei, M. K. Smit, K. S. E. Eikema, W. Ubachs, S. Anantathanasarn, and R. Nötzel, “Passively mode-locked 4.6 GHz and 10.5 GHz quantum dot laser diodes around 1.55 μm with large operating regime,” IEEE J. Sel. Top. Quant. Electron. 15, 634–643 (2009).
[CrossRef]

M. J. R. Heck, E. A. J. M. Bente, B. Smalbrugge, Y.-S. Oei, M. K. Smit, S. Anantathanasarn, and R. Nötzel, “Observation of Q-switching and mode-locking in two-section InAs/InP (100) quantum dot lasers around 1.55 mum,” Opt. Express 15(25), 16292–16301 (2007).
[CrossRef] [PubMed]

Heinrichsdorff, F.

D. Bimberg, M. Grundmann, F. Heinrichsdorff, N. N. Ledentsov, V. M. Ustinov, A. E. Zhukov, A. R. Kovsh, M. V. Maximov, Y. M. Shernyakov, B. V. Volovik, A. F. Tsatsul'nikov, P. S. Kop'ev, and Zh. I. Alferov, “Quantum dot lasers: breakthrough in optoelectronics,” Thin Solid Films 367(1-2), 235–249 (2000).
[CrossRef]

Heritage, J. P.

Holman, K. W.

Hüttl, B.

R. Kaiser and B. Hüttl, “Monolithic 40-GHz mode-locked MQW DBR lasers for high-speed optical communication systems,” IEEE J. Sel. Top. Quant. Electron. 13, 125–135 (2007).
[CrossRef]

Il’inskaya, N. D.

E. U. Rafailov, M. A. Cataluna, W. Sibbett, N. D. Il’inskaya, Y. M. Zadiranov, A. E. Zhukov, V. M. Ustinov, D. A. Livshits, A. R. Kovsh, and N. N. Ledentsov, “High-power picosecond and femtosecond pulse generation from a two-section mode-locked quantum-dot laser,” Appl. Phys. Lett. 87(8), 081107 (2005).
[CrossRef]

Ippen, E. P.

Jalali, B.

B. Jalali and S. Fathpour, “Silicon Photonics,” IEEE J. Lightwave Technol. 24(12), 4600–4615 (2006).
[CrossRef]

Ji, C.

R. G. Broeke, J. Cao, C. Ji, S.-W. Seo, Y. Du, N. K. Fontaine, J.-H. Baek, J. Yan, F. M. Soares, F. Olsson, S. Lourdudoss, A.-V. H. Pham, M. Shearn, A. Scherer, and S. J. B. Yoo, “Optical-CDMA in InP,” IEEE J. Sel. Top. Quant. Electron. 13, 1497–1507 (2007).
[CrossRef]

Jiang, W.

Joindot, M.

G. Girault, M. Gay, S. Lobo, L. Bramerie, M. Joindot, J. C. Simon, A. Shen, F. Blache, H. Gariah, F. Mallécot, O. Le Gouezigou, F. Poingt, L. Le Gouezigou, F. Pommereau, B. Rousseau, F. Lelarge, and G.-H. Duan, “Quantum dash actively modelocked Fabry-Perot laser module demonstrated as part of wavelength tunable RZ transmitter,” Electron. Lett. 44(14), 873–874 (2008).
[CrossRef]

Jones, D. J.

Kaiser, R.

R. Kaiser and B. Hüttl, “Monolithic 40-GHz mode-locked MQW DBR lasers for high-speed optical communication systems,” IEEE J. Sel. Top. Quant. Electron. 13, 125–135 (2007).
[CrossRef]

Karalar, A.

Koch, B. R.

Kolner, B. H.

Kop'ev, P. S.

D. Bimberg, M. Grundmann, F. Heinrichsdorff, N. N. Ledentsov, V. M. Ustinov, A. E. Zhukov, A. R. Kovsh, M. V. Maximov, Y. M. Shernyakov, B. V. Volovik, A. F. Tsatsul'nikov, P. S. Kop'ev, and Zh. I. Alferov, “Quantum dot lasers: breakthrough in optoelectronics,” Thin Solid Films 367(1-2), 235–249 (2000).
[CrossRef]

Kovsh, A. R.

E. U. Rafailov, M. A. Cataluna, W. Sibbett, N. D. Il’inskaya, Y. M. Zadiranov, A. E. Zhukov, V. M. Ustinov, D. A. Livshits, A. R. Kovsh, and N. N. Ledentsov, “High-power picosecond and femtosecond pulse generation from a two-section mode-locked quantum-dot laser,” Appl. Phys. Lett. 87(8), 081107 (2005).
[CrossRef]

M. Kuntz, G. Fiol, M. Lammlin, D. Bimberg, M. G. Thompson, K. T. Tan, C. Marinelli, R. V. Penty, I. H. White, V. M. Ustinov, A. E. Zhukov, Y. M. Shernyakov, and A. R. Kovsh, “35 GHz mode-locking of 1.3 μm quantum dot lasers,” Appl. Phys. Lett. 85(5), 843 (2004).
[CrossRef]

D. Bimberg, M. Grundmann, F. Heinrichsdorff, N. N. Ledentsov, V. M. Ustinov, A. E. Zhukov, A. R. Kovsh, M. V. Maximov, Y. M. Shernyakov, B. V. Volovik, A. F. Tsatsul'nikov, P. S. Kop'ev, and Zh. I. Alferov, “Quantum dot lasers: breakthrough in optoelectronics,” Thin Solid Films 367(1-2), 235–249 (2000).
[CrossRef]

Kuntz, M.

M. Kuntz, G. Fiol, M. Laemmlin, Ch. Meuer, and D. Bimberg, “High-speed mode-locked quantum-dot lasers and optical amplifiers,” Proc. IEEE 95(9), 1767–1778 (2007).
[CrossRef]

M. Kuntz, G. Fiol, M. Lammlin, D. Bimberg, M. G. Thompson, K. T. Tan, C. Marinelli, R. V. Penty, I. H. White, V. M. Ustinov, A. E. Zhukov, Y. M. Shernyakov, and A. R. Kovsh, “35 GHz mode-locking of 1.3 μm quantum dot lasers,” Appl. Phys. Lett. 85(5), 843 (2004).
[CrossRef]

Laemmlin, M.

M. Kuntz, G. Fiol, M. Laemmlin, Ch. Meuer, and D. Bimberg, “High-speed mode-locked quantum-dot lasers and optical amplifiers,” Proc. IEEE 95(9), 1767–1778 (2007).
[CrossRef]

Lammlin, M.

M. Kuntz, G. Fiol, M. Lammlin, D. Bimberg, M. G. Thompson, K. T. Tan, C. Marinelli, R. V. Penty, I. H. White, V. M. Ustinov, A. E. Zhukov, Y. M. Shernyakov, and A. R. Kovsh, “35 GHz mode-locking of 1.3 μm quantum dot lasers,” Appl. Phys. Lett. 85(5), 843 (2004).
[CrossRef]

Landreau, J.

F. Lelarge, B. Dagens, J. Renaudier, R. Brenot, A. Accard, F. van Dijk, D. Make, O. le Gouezigou, J.-G. Provost, F. Poingt, J. Landreau, O. Drisse, E. Derouin, B. Rousseau, F. Pommereau, and G.-H. Duan, “Recent advances on InAs/InP quantum dash based semiconductor lasers and optical amplifiers operating at 1.55 μm,” IEEE J. Sel. Top. Quant. Electron. 13, 111–124 (2007).
[CrossRef]

C. Gosset, K. Merghem, A. Martinez, G. Moreau, G. Patriarche, G. Aubin, A. Ramdane, J. Landreau, and F. Lelarge, “Subpicosecond pulse generation at 134 GHz using a quantum-dash-based Fabry-Perot laser emitting at 1.56 μm,” Appl. Phys. Lett. 88(24), 241105 (2006).
[CrossRef]

Le Gouezigou, L.

G. Girault, M. Gay, S. Lobo, L. Bramerie, M. Joindot, J. C. Simon, A. Shen, F. Blache, H. Gariah, F. Mallécot, O. Le Gouezigou, F. Poingt, L. Le Gouezigou, F. Pommereau, B. Rousseau, F. Lelarge, and G.-H. Duan, “Quantum dash actively modelocked Fabry-Perot laser module demonstrated as part of wavelength tunable RZ transmitter,” Electron. Lett. 44(14), 873–874 (2008).
[CrossRef]

Le Gouezigou, O.

G. Girault, M. Gay, S. Lobo, L. Bramerie, M. Joindot, J. C. Simon, A. Shen, F. Blache, H. Gariah, F. Mallécot, O. Le Gouezigou, F. Poingt, L. Le Gouezigou, F. Pommereau, B. Rousseau, F. Lelarge, and G.-H. Duan, “Quantum dash actively modelocked Fabry-Perot laser module demonstrated as part of wavelength tunable RZ transmitter,” Electron. Lett. 44(14), 873–874 (2008).
[CrossRef]

F. Lelarge, B. Dagens, J. Renaudier, R. Brenot, A. Accard, F. van Dijk, D. Make, O. le Gouezigou, J.-G. Provost, F. Poingt, J. Landreau, O. Drisse, E. Derouin, B. Rousseau, F. Pommereau, and G.-H. Duan, “Recent advances on InAs/InP quantum dash based semiconductor lasers and optical amplifiers operating at 1.55 μm,” IEEE J. Sel. Top. Quant. Electron. 13, 111–124 (2007).
[CrossRef]

Ledentsov, N. N.

E. U. Rafailov, M. A. Cataluna, W. Sibbett, N. D. Il’inskaya, Y. M. Zadiranov, A. E. Zhukov, V. M. Ustinov, D. A. Livshits, A. R. Kovsh, and N. N. Ledentsov, “High-power picosecond and femtosecond pulse generation from a two-section mode-locked quantum-dot laser,” Appl. Phys. Lett. 87(8), 081107 (2005).
[CrossRef]

D. Bimberg, M. Grundmann, F. Heinrichsdorff, N. N. Ledentsov, V. M. Ustinov, A. E. Zhukov, A. R. Kovsh, M. V. Maximov, Y. M. Shernyakov, B. V. Volovik, A. F. Tsatsul'nikov, P. S. Kop'ev, and Zh. I. Alferov, “Quantum dot lasers: breakthrough in optoelectronics,” Thin Solid Films 367(1-2), 235–249 (2000).
[CrossRef]

Lelarge, F.

G. Girault, M. Gay, S. Lobo, L. Bramerie, M. Joindot, J. C. Simon, A. Shen, F. Blache, H. Gariah, F. Mallécot, O. Le Gouezigou, F. Poingt, L. Le Gouezigou, F. Pommereau, B. Rousseau, F. Lelarge, and G.-H. Duan, “Quantum dash actively modelocked Fabry-Perot laser module demonstrated as part of wavelength tunable RZ transmitter,” Electron. Lett. 44(14), 873–874 (2008).
[CrossRef]

J. P. Tourrenc, A. Akrout, K. Merghem, A. Martinez, F. Lelarge, A. Shen, G. H. Duan, and A. Ramdane, “Experimental investigation of the timing jitter in self-pulsating quantum-dash lasers operating at155 µm,” Opt. Express 16(22), 17706–17713 (2008).
[CrossRef] [PubMed]

F. Lelarge, B. Dagens, J. Renaudier, R. Brenot, A. Accard, F. van Dijk, D. Make, O. le Gouezigou, J.-G. Provost, F. Poingt, J. Landreau, O. Drisse, E. Derouin, B. Rousseau, F. Pommereau, and G.-H. Duan, “Recent advances on InAs/InP quantum dash based semiconductor lasers and optical amplifiers operating at 1.55 μm,” IEEE J. Sel. Top. Quant. Electron. 13, 111–124 (2007).
[CrossRef]

C. Gosset, K. Merghem, A. Martinez, G. Moreau, G. Patriarche, G. Aubin, A. Ramdane, J. Landreau, and F. Lelarge, “Subpicosecond pulse generation at 134 GHz using a quantum-dash-based Fabry-Perot laser emitting at 1.56 μm,” Appl. Phys. Lett. 88(24), 241105 (2006).
[CrossRef]

Liu, J. R.

Livshits, D. A.

E. U. Rafailov, M. A. Cataluna, W. Sibbett, N. D. Il’inskaya, Y. M. Zadiranov, A. E. Zhukov, V. M. Ustinov, D. A. Livshits, A. R. Kovsh, and N. N. Ledentsov, “High-power picosecond and femtosecond pulse generation from a two-section mode-locked quantum-dot laser,” Appl. Phys. Lett. 87(8), 081107 (2005).
[CrossRef]

Lobo, S.

G. Girault, M. Gay, S. Lobo, L. Bramerie, M. Joindot, J. C. Simon, A. Shen, F. Blache, H. Gariah, F. Mallécot, O. Le Gouezigou, F. Poingt, L. Le Gouezigou, F. Pommereau, B. Rousseau, F. Lelarge, and G.-H. Duan, “Quantum dash actively modelocked Fabry-Perot laser module demonstrated as part of wavelength tunable RZ transmitter,” Electron. Lett. 44(14), 873–874 (2008).
[CrossRef]

Lourdudoss, S.

R. G. Broeke, J. Cao, C. Ji, S.-W. Seo, Y. Du, N. K. Fontaine, J.-H. Baek, J. Yan, F. M. Soares, F. Olsson, S. Lourdudoss, A.-V. H. Pham, M. Shearn, A. Scherer, and S. J. B. Yoo, “Optical-CDMA in InP,” IEEE J. Sel. Top. Quant. Electron. 13, 1497–1507 (2007).
[CrossRef]

Lowery, A. J.

A. J. Lowery, N. Onodera, and R. S. Tucker, “Stability and spectral behavior of grating-controlled actively mode-locked lasers,” IEEE J. Quantum Electron. 27(11), 2422–2430 (1991).
[CrossRef]

Lu, Z. G.

Make, D.

F. Lelarge, B. Dagens, J. Renaudier, R. Brenot, A. Accard, F. van Dijk, D. Make, O. le Gouezigou, J.-G. Provost, F. Poingt, J. Landreau, O. Drisse, E. Derouin, B. Rousseau, F. Pommereau, and G.-H. Duan, “Recent advances on InAs/InP quantum dash based semiconductor lasers and optical amplifiers operating at 1.55 μm,” IEEE J. Sel. Top. Quant. Electron. 13, 111–124 (2007).
[CrossRef]

Mallécot, F.

G. Girault, M. Gay, S. Lobo, L. Bramerie, M. Joindot, J. C. Simon, A. Shen, F. Blache, H. Gariah, F. Mallécot, O. Le Gouezigou, F. Poingt, L. Le Gouezigou, F. Pommereau, B. Rousseau, F. Lelarge, and G.-H. Duan, “Quantum dash actively modelocked Fabry-Perot laser module demonstrated as part of wavelength tunable RZ transmitter,” Electron. Lett. 44(14), 873–874 (2008).
[CrossRef]

Marinelli, C.

M. Kuntz, G. Fiol, M. Lammlin, D. Bimberg, M. G. Thompson, K. T. Tan, C. Marinelli, R. V. Penty, I. H. White, V. M. Ustinov, A. E. Zhukov, Y. M. Shernyakov, and A. R. Kovsh, “35 GHz mode-locking of 1.3 μm quantum dot lasers,” Appl. Phys. Lett. 85(5), 843 (2004).
[CrossRef]

Martinez, A.

J. P. Tourrenc, A. Akrout, K. Merghem, A. Martinez, F. Lelarge, A. Shen, G. H. Duan, and A. Ramdane, “Experimental investigation of the timing jitter in self-pulsating quantum-dash lasers operating at155 µm,” Opt. Express 16(22), 17706–17713 (2008).
[CrossRef] [PubMed]

C. Gosset, K. Merghem, A. Martinez, G. Moreau, G. Patriarche, G. Aubin, A. Ramdane, J. Landreau, and F. Lelarge, “Subpicosecond pulse generation at 134 GHz using a quantum-dash-based Fabry-Perot laser emitting at 1.56 μm,” Appl. Phys. Lett. 88(24), 241105 (2006).
[CrossRef]

Maximov, M. V.

D. Bimberg, M. Grundmann, F. Heinrichsdorff, N. N. Ledentsov, V. M. Ustinov, A. E. Zhukov, A. R. Kovsh, M. V. Maximov, Y. M. Shernyakov, B. V. Volovik, A. F. Tsatsul'nikov, P. S. Kop'ev, and Zh. I. Alferov, “Quantum dot lasers: breakthrough in optoelectronics,” Thin Solid Films 367(1-2), 235–249 (2000).
[CrossRef]

Merghem, K.

J. P. Tourrenc, A. Akrout, K. Merghem, A. Martinez, F. Lelarge, A. Shen, G. H. Duan, and A. Ramdane, “Experimental investigation of the timing jitter in self-pulsating quantum-dash lasers operating at155 µm,” Opt. Express 16(22), 17706–17713 (2008).
[CrossRef] [PubMed]

C. Gosset, K. Merghem, A. Martinez, G. Moreau, G. Patriarche, G. Aubin, A. Ramdane, J. Landreau, and F. Lelarge, “Subpicosecond pulse generation at 134 GHz using a quantum-dash-based Fabry-Perot laser emitting at 1.56 μm,” Appl. Phys. Lett. 88(24), 241105 (2006).
[CrossRef]

Meuer, Ch.

M. Kuntz, G. Fiol, M. Laemmlin, Ch. Meuer, and D. Bimberg, “High-speed mode-locked quantum-dot lasers and optical amplifiers,” Proc. IEEE 95(9), 1767–1778 (2007).
[CrossRef]

Moreau, G.

C. Gosset, K. Merghem, A. Martinez, G. Moreau, G. Patriarche, G. Aubin, A. Ramdane, J. Landreau, and F. Lelarge, “Subpicosecond pulse generation at 134 GHz using a quantum-dash-based Fabry-Perot laser emitting at 1.56 μm,” Appl. Phys. Lett. 88(24), 241105 (2006).
[CrossRef]

Nötzel, R.

M. J. R. Heck, A. Renault, E. A. J. M. Bente, Y.-S. Oei, M. K. Smit, K. S. E. Eikema, W. Ubachs, S. Anantathanasarn, and R. Nötzel, “Passively mode-locked 4.6 GHz and 10.5 GHz quantum dot laser diodes around 1.55 μm with large operating regime,” IEEE J. Sel. Top. Quant. Electron. 15, 634–643 (2009).
[CrossRef]

M. J. R. Heck, E. A. J. M. Bente, B. Smalbrugge, Y.-S. Oei, M. K. Smit, S. Anantathanasarn, and R. Nötzel, “Observation of Q-switching and mode-locking in two-section InAs/InP (100) quantum dot lasers around 1.55 mum,” Opt. Express 15(25), 16292–16301 (2007).
[CrossRef] [PubMed]

S. Anantathanasarn, R. Nötzel, P. J. van Veldhoven, F. W. M. van Otten, Y. Barbarin, G. Servanton, T. de Vries, E. Smalbrugge, E. J. Geluk, T. J. Eijkemans, E. A. J. M. Bente, Y. S. Oei, M. K. Smit, and J. H. Wolter, “Lasing of wavelength-tunable (1.55-μm region) InAs/InGaAsP/InP (100) quantum dots grown by metal organic vapor-phase epitaxy,” Appl. Phys. Lett. 89(7), 073115 (2006).
[CrossRef]

Oei, Y. S.

S. Anantathanasarn, R. Nötzel, P. J. van Veldhoven, F. W. M. van Otten, Y. Barbarin, G. Servanton, T. de Vries, E. Smalbrugge, E. J. Geluk, T. J. Eijkemans, E. A. J. M. Bente, Y. S. Oei, M. K. Smit, and J. H. Wolter, “Lasing of wavelength-tunable (1.55-μm region) InAs/InGaAsP/InP (100) quantum dots grown by metal organic vapor-phase epitaxy,” Appl. Phys. Lett. 89(7), 073115 (2006).
[CrossRef]

Oei, Y.-S.

M. J. R. Heck, A. Renault, E. A. J. M. Bente, Y.-S. Oei, M. K. Smit, K. S. E. Eikema, W. Ubachs, S. Anantathanasarn, and R. Nötzel, “Passively mode-locked 4.6 GHz and 10.5 GHz quantum dot laser diodes around 1.55 μm with large operating regime,” IEEE J. Sel. Top. Quant. Electron. 15, 634–643 (2009).
[CrossRef]

M. J. R. Heck, E. A. J. M. Bente, B. Smalbrugge, Y.-S. Oei, M. K. Smit, S. Anantathanasarn, and R. Nötzel, “Observation of Q-switching and mode-locking in two-section InAs/InP (100) quantum dot lasers around 1.55 mum,” Opt. Express 15(25), 16292–16301 (2007).
[CrossRef] [PubMed]

Okamoto, K.

Olsson, F.

R. G. Broeke, J. Cao, C. Ji, S.-W. Seo, Y. Du, N. K. Fontaine, J.-H. Baek, J. Yan, F. M. Soares, F. Olsson, S. Lourdudoss, A.-V. H. Pham, M. Shearn, A. Scherer, and S. J. B. Yoo, “Optical-CDMA in InP,” IEEE J. Sel. Top. Quant. Electron. 13, 1497–1507 (2007).
[CrossRef]

Onodera, N.

A. J. Lowery, N. Onodera, and R. S. Tucker, “Stability and spectral behavior of grating-controlled actively mode-locked lasers,” IEEE J. Quantum Electron. 27(11), 2422–2430 (1991).
[CrossRef]

Patriarche, G.

C. Gosset, K. Merghem, A. Martinez, G. Moreau, G. Patriarche, G. Aubin, A. Ramdane, J. Landreau, and F. Lelarge, “Subpicosecond pulse generation at 134 GHz using a quantum-dash-based Fabry-Perot laser emitting at 1.56 μm,” Appl. Phys. Lett. 88(24), 241105 (2006).
[CrossRef]

Penty, R. V.

M. Kuntz, G. Fiol, M. Lammlin, D. Bimberg, M. G. Thompson, K. T. Tan, C. Marinelli, R. V. Penty, I. H. White, V. M. Ustinov, A. E. Zhukov, Y. M. Shernyakov, and A. R. Kovsh, “35 GHz mode-locking of 1.3 μm quantum dot lasers,” Appl. Phys. Lett. 85(5), 843 (2004).
[CrossRef]

Pham, A.-V. H.

R. G. Broeke, J. Cao, C. Ji, S.-W. Seo, Y. Du, N. K. Fontaine, J.-H. Baek, J. Yan, F. M. Soares, F. Olsson, S. Lourdudoss, A.-V. H. Pham, M. Shearn, A. Scherer, and S. J. B. Yoo, “Optical-CDMA in InP,” IEEE J. Sel. Top. Quant. Electron. 13, 1497–1507 (2007).
[CrossRef]

Poingt, F.

G. Girault, M. Gay, S. Lobo, L. Bramerie, M. Joindot, J. C. Simon, A. Shen, F. Blache, H. Gariah, F. Mallécot, O. Le Gouezigou, F. Poingt, L. Le Gouezigou, F. Pommereau, B. Rousseau, F. Lelarge, and G.-H. Duan, “Quantum dash actively modelocked Fabry-Perot laser module demonstrated as part of wavelength tunable RZ transmitter,” Electron. Lett. 44(14), 873–874 (2008).
[CrossRef]

F. Lelarge, B. Dagens, J. Renaudier, R. Brenot, A. Accard, F. van Dijk, D. Make, O. le Gouezigou, J.-G. Provost, F. Poingt, J. Landreau, O. Drisse, E. Derouin, B. Rousseau, F. Pommereau, and G.-H. Duan, “Recent advances on InAs/InP quantum dash based semiconductor lasers and optical amplifiers operating at 1.55 μm,” IEEE J. Sel. Top. Quant. Electron. 13, 111–124 (2007).
[CrossRef]

Poitras, D.

Pommereau, F.

G. Girault, M. Gay, S. Lobo, L. Bramerie, M. Joindot, J. C. Simon, A. Shen, F. Blache, H. Gariah, F. Mallécot, O. Le Gouezigou, F. Poingt, L. Le Gouezigou, F. Pommereau, B. Rousseau, F. Lelarge, and G.-H. Duan, “Quantum dash actively modelocked Fabry-Perot laser module demonstrated as part of wavelength tunable RZ transmitter,” Electron. Lett. 44(14), 873–874 (2008).
[CrossRef]

F. Lelarge, B. Dagens, J. Renaudier, R. Brenot, A. Accard, F. van Dijk, D. Make, O. le Gouezigou, J.-G. Provost, F. Poingt, J. Landreau, O. Drisse, E. Derouin, B. Rousseau, F. Pommereau, and G.-H. Duan, “Recent advances on InAs/InP quantum dash based semiconductor lasers and optical amplifiers operating at 1.55 μm,” IEEE J. Sel. Top. Quant. Electron. 13, 111–124 (2007).
[CrossRef]

Poole, P. J.

Provost, J.-G.

F. Lelarge, B. Dagens, J. Renaudier, R. Brenot, A. Accard, F. van Dijk, D. Make, O. le Gouezigou, J.-G. Provost, F. Poingt, J. Landreau, O. Drisse, E. Derouin, B. Rousseau, F. Pommereau, and G.-H. Duan, “Recent advances on InAs/InP quantum dash based semiconductor lasers and optical amplifiers operating at 1.55 μm,” IEEE J. Sel. Top. Quant. Electron. 13, 111–124 (2007).
[CrossRef]

Rafailov, E. U.

E. U. Rafailov, M. A. Cataluna, and W. Sibbett, “Mode-locked quantum-dot lasers,” Nat. Photonics 1(7), 395–401 (2007).
[CrossRef]

E. U. Rafailov, M. A. Cataluna, W. Sibbett, N. D. Il’inskaya, Y. M. Zadiranov, A. E. Zhukov, V. M. Ustinov, D. A. Livshits, A. R. Kovsh, and N. N. Ledentsov, “High-power picosecond and femtosecond pulse generation from a two-section mode-locked quantum-dot laser,” Appl. Phys. Lett. 87(8), 081107 (2005).
[CrossRef]

Ramdane, A.

J. P. Tourrenc, A. Akrout, K. Merghem, A. Martinez, F. Lelarge, A. Shen, G. H. Duan, and A. Ramdane, “Experimental investigation of the timing jitter in self-pulsating quantum-dash lasers operating at155 µm,” Opt. Express 16(22), 17706–17713 (2008).
[CrossRef] [PubMed]

C. Gosset, K. Merghem, A. Martinez, G. Moreau, G. Patriarche, G. Aubin, A. Ramdane, J. Landreau, and F. Lelarge, “Subpicosecond pulse generation at 134 GHz using a quantum-dash-based Fabry-Perot laser emitting at 1.56 μm,” Appl. Phys. Lett. 88(24), 241105 (2006).
[CrossRef]

Rana, F.

F. R. Ahmad and F. Rana, “Fundamental and subharmonic hybrid mode-locking of a high-power (220 mW) monolithic semiconductor laser,” IEEE Photon. Technol. Lett. 20(15), 1308–1310 (2008).
[CrossRef]

Raymond, S.

Renaudier, J.

F. Lelarge, B. Dagens, J. Renaudier, R. Brenot, A. Accard, F. van Dijk, D. Make, O. le Gouezigou, J.-G. Provost, F. Poingt, J. Landreau, O. Drisse, E. Derouin, B. Rousseau, F. Pommereau, and G.-H. Duan, “Recent advances on InAs/InP quantum dash based semiconductor lasers and optical amplifiers operating at 1.55 μm,” IEEE J. Sel. Top. Quant. Electron. 13, 111–124 (2007).
[CrossRef]

Renault, A.

M. J. R. Heck, A. Renault, E. A. J. M. Bente, Y.-S. Oei, M. K. Smit, K. S. E. Eikema, W. Ubachs, S. Anantathanasarn, and R. Nötzel, “Passively mode-locked 4.6 GHz and 10.5 GHz quantum dot laser diodes around 1.55 μm with large operating regime,” IEEE J. Sel. Top. Quant. Electron. 15, 634–643 (2009).
[CrossRef]

Rousseau, B.

G. Girault, M. Gay, S. Lobo, L. Bramerie, M. Joindot, J. C. Simon, A. Shen, F. Blache, H. Gariah, F. Mallécot, O. Le Gouezigou, F. Poingt, L. Le Gouezigou, F. Pommereau, B. Rousseau, F. Lelarge, and G.-H. Duan, “Quantum dash actively modelocked Fabry-Perot laser module demonstrated as part of wavelength tunable RZ transmitter,” Electron. Lett. 44(14), 873–874 (2008).
[CrossRef]

F. Lelarge, B. Dagens, J. Renaudier, R. Brenot, A. Accard, F. van Dijk, D. Make, O. le Gouezigou, J.-G. Provost, F. Poingt, J. Landreau, O. Drisse, E. Derouin, B. Rousseau, F. Pommereau, and G.-H. Duan, “Recent advances on InAs/InP quantum dash based semiconductor lasers and optical amplifiers operating at 1.55 μm,” IEEE J. Sel. Top. Quant. Electron. 13, 111–124 (2007).
[CrossRef]

Scherer, A.

R. G. Broeke, J. Cao, C. Ji, S.-W. Seo, Y. Du, N. K. Fontaine, J.-H. Baek, J. Yan, F. M. Soares, F. Olsson, S. Lourdudoss, A.-V. H. Pham, M. Shearn, A. Scherer, and S. J. B. Yoo, “Optical-CDMA in InP,” IEEE J. Sel. Top. Quant. Electron. 13, 1497–1507 (2007).
[CrossRef]

Scott, R. P.

Seo, S.-W.

R. G. Broeke, J. Cao, C. Ji, S.-W. Seo, Y. Du, N. K. Fontaine, J.-H. Baek, J. Yan, F. M. Soares, F. Olsson, S. Lourdudoss, A.-V. H. Pham, M. Shearn, A. Scherer, and S. J. B. Yoo, “Optical-CDMA in InP,” IEEE J. Sel. Top. Quant. Electron. 13, 1497–1507 (2007).
[CrossRef]

Servanton, G.

S. Anantathanasarn, R. Nötzel, P. J. van Veldhoven, F. W. M. van Otten, Y. Barbarin, G. Servanton, T. de Vries, E. Smalbrugge, E. J. Geluk, T. J. Eijkemans, E. A. J. M. Bente, Y. S. Oei, M. K. Smit, and J. H. Wolter, “Lasing of wavelength-tunable (1.55-μm region) InAs/InGaAsP/InP (100) quantum dots grown by metal organic vapor-phase epitaxy,” Appl. Phys. Lett. 89(7), 073115 (2006).
[CrossRef]

Shearn, M.

R. G. Broeke, J. Cao, C. Ji, S.-W. Seo, Y. Du, N. K. Fontaine, J.-H. Baek, J. Yan, F. M. Soares, F. Olsson, S. Lourdudoss, A.-V. H. Pham, M. Shearn, A. Scherer, and S. J. B. Yoo, “Optical-CDMA in InP,” IEEE J. Sel. Top. Quant. Electron. 13, 1497–1507 (2007).
[CrossRef]

Shen, A.

G. Girault, M. Gay, S. Lobo, L. Bramerie, M. Joindot, J. C. Simon, A. Shen, F. Blache, H. Gariah, F. Mallécot, O. Le Gouezigou, F. Poingt, L. Le Gouezigou, F. Pommereau, B. Rousseau, F. Lelarge, and G.-H. Duan, “Quantum dash actively modelocked Fabry-Perot laser module demonstrated as part of wavelength tunable RZ transmitter,” Electron. Lett. 44(14), 873–874 (2008).
[CrossRef]

J. P. Tourrenc, A. Akrout, K. Merghem, A. Martinez, F. Lelarge, A. Shen, G. H. Duan, and A. Ramdane, “Experimental investigation of the timing jitter in self-pulsating quantum-dash lasers operating at155 µm,” Opt. Express 16(22), 17706–17713 (2008).
[CrossRef] [PubMed]

Shernyakov, Y. M.

M. Kuntz, G. Fiol, M. Lammlin, D. Bimberg, M. G. Thompson, K. T. Tan, C. Marinelli, R. V. Penty, I. H. White, V. M. Ustinov, A. E. Zhukov, Y. M. Shernyakov, and A. R. Kovsh, “35 GHz mode-locking of 1.3 μm quantum dot lasers,” Appl. Phys. Lett. 85(5), 843 (2004).
[CrossRef]

D. Bimberg, M. Grundmann, F. Heinrichsdorff, N. N. Ledentsov, V. M. Ustinov, A. E. Zhukov, A. R. Kovsh, M. V. Maximov, Y. M. Shernyakov, B. V. Volovik, A. F. Tsatsul'nikov, P. S. Kop'ev, and Zh. I. Alferov, “Quantum dot lasers: breakthrough in optoelectronics,” Thin Solid Films 367(1-2), 235–249 (2000).
[CrossRef]

Sibbett, W.

E. U. Rafailov, M. A. Cataluna, and W. Sibbett, “Mode-locked quantum-dot lasers,” Nat. Photonics 1(7), 395–401 (2007).
[CrossRef]

E. U. Rafailov, M. A. Cataluna, W. Sibbett, N. D. Il’inskaya, Y. M. Zadiranov, A. E. Zhukov, V. M. Ustinov, D. A. Livshits, A. R. Kovsh, and N. N. Ledentsov, “High-power picosecond and femtosecond pulse generation from a two-section mode-locked quantum-dot laser,” Appl. Phys. Lett. 87(8), 081107 (2005).
[CrossRef]

Simon, J. C.

G. Girault, M. Gay, S. Lobo, L. Bramerie, M. Joindot, J. C. Simon, A. Shen, F. Blache, H. Gariah, F. Mallécot, O. Le Gouezigou, F. Poingt, L. Le Gouezigou, F. Pommereau, B. Rousseau, F. Lelarge, and G.-H. Duan, “Quantum dash actively modelocked Fabry-Perot laser module demonstrated as part of wavelength tunable RZ transmitter,” Electron. Lett. 44(14), 873–874 (2008).
[CrossRef]

Smalbrugge, B.

Smalbrugge, E.

S. Anantathanasarn, R. Nötzel, P. J. van Veldhoven, F. W. M. van Otten, Y. Barbarin, G. Servanton, T. de Vries, E. Smalbrugge, E. J. Geluk, T. J. Eijkemans, E. A. J. M. Bente, Y. S. Oei, M. K. Smit, and J. H. Wolter, “Lasing of wavelength-tunable (1.55-μm region) InAs/InGaAsP/InP (100) quantum dots grown by metal organic vapor-phase epitaxy,” Appl. Phys. Lett. 89(7), 073115 (2006).
[CrossRef]

Smit, M. K.

M. J. R. Heck, A. Renault, E. A. J. M. Bente, Y.-S. Oei, M. K. Smit, K. S. E. Eikema, W. Ubachs, S. Anantathanasarn, and R. Nötzel, “Passively mode-locked 4.6 GHz and 10.5 GHz quantum dot laser diodes around 1.55 μm with large operating regime,” IEEE J. Sel. Top. Quant. Electron. 15, 634–643 (2009).
[CrossRef]

M. J. R. Heck, E. A. J. M. Bente, B. Smalbrugge, Y.-S. Oei, M. K. Smit, S. Anantathanasarn, and R. Nötzel, “Observation of Q-switching and mode-locking in two-section InAs/InP (100) quantum dot lasers around 1.55 mum,” Opt. Express 15(25), 16292–16301 (2007).
[CrossRef] [PubMed]

S. Anantathanasarn, R. Nötzel, P. J. van Veldhoven, F. W. M. van Otten, Y. Barbarin, G. Servanton, T. de Vries, E. Smalbrugge, E. J. Geluk, T. J. Eijkemans, E. A. J. M. Bente, Y. S. Oei, M. K. Smit, and J. H. Wolter, “Lasing of wavelength-tunable (1.55-μm region) InAs/InGaAsP/InP (100) quantum dots grown by metal organic vapor-phase epitaxy,” Appl. Phys. Lett. 89(7), 073115 (2006).
[CrossRef]

Soares, F. M.

R. G. Broeke, J. Cao, C. Ji, S.-W. Seo, Y. Du, N. K. Fontaine, J.-H. Baek, J. Yan, F. M. Soares, F. Olsson, S. Lourdudoss, A.-V. H. Pham, M. Shearn, A. Scherer, and S. J. B. Yoo, “Optical-CDMA in InP,” IEEE J. Sel. Top. Quant. Electron. 13, 1497–1507 (2007).
[CrossRef]

Tan, K. T.

M. Kuntz, G. Fiol, M. Lammlin, D. Bimberg, M. G. Thompson, K. T. Tan, C. Marinelli, R. V. Penty, I. H. White, V. M. Ustinov, A. E. Zhukov, Y. M. Shernyakov, and A. R. Kovsh, “35 GHz mode-locking of 1.3 μm quantum dot lasers,” Appl. Phys. Lett. 85(5), 843 (2004).
[CrossRef]

Thompson, M. G.

M. Kuntz, G. Fiol, M. Lammlin, D. Bimberg, M. G. Thompson, K. T. Tan, C. Marinelli, R. V. Penty, I. H. White, V. M. Ustinov, A. E. Zhukov, Y. M. Shernyakov, and A. R. Kovsh, “35 GHz mode-locking of 1.3 μm quantum dot lasers,” Appl. Phys. Lett. 85(5), 843 (2004).
[CrossRef]

K. A. Williams, M. G. Thompson, and I. H. White, “Long-wavelength monolithic mode-locked diode lasers,” N. J. Phys. 6, 179 (2004).
[CrossRef]

Tourrenc, J. P.

Tsatsul'nikov, A. F.

D. Bimberg, M. Grundmann, F. Heinrichsdorff, N. N. Ledentsov, V. M. Ustinov, A. E. Zhukov, A. R. Kovsh, M. V. Maximov, Y. M. Shernyakov, B. V. Volovik, A. F. Tsatsul'nikov, P. S. Kop'ev, and Zh. I. Alferov, “Quantum dot lasers: breakthrough in optoelectronics,” Thin Solid Films 367(1-2), 235–249 (2000).
[CrossRef]

Tucker, R. S.

A. J. Lowery, N. Onodera, and R. S. Tucker, “Stability and spectral behavior of grating-controlled actively mode-locked lasers,” IEEE J. Quantum Electron. 27(11), 2422–2430 (1991).
[CrossRef]

Ubachs, W.

M. J. R. Heck, A. Renault, E. A. J. M. Bente, Y.-S. Oei, M. K. Smit, K. S. E. Eikema, W. Ubachs, S. Anantathanasarn, and R. Nötzel, “Passively mode-locked 4.6 GHz and 10.5 GHz quantum dot laser diodes around 1.55 μm with large operating regime,” IEEE J. Sel. Top. Quant. Electron. 15, 634–643 (2009).
[CrossRef]

Ustinov, V. M.

E. U. Rafailov, M. A. Cataluna, W. Sibbett, N. D. Il’inskaya, Y. M. Zadiranov, A. E. Zhukov, V. M. Ustinov, D. A. Livshits, A. R. Kovsh, and N. N. Ledentsov, “High-power picosecond and femtosecond pulse generation from a two-section mode-locked quantum-dot laser,” Appl. Phys. Lett. 87(8), 081107 (2005).
[CrossRef]

M. Kuntz, G. Fiol, M. Lammlin, D. Bimberg, M. G. Thompson, K. T. Tan, C. Marinelli, R. V. Penty, I. H. White, V. M. Ustinov, A. E. Zhukov, Y. M. Shernyakov, and A. R. Kovsh, “35 GHz mode-locking of 1.3 μm quantum dot lasers,” Appl. Phys. Lett. 85(5), 843 (2004).
[CrossRef]

D. Bimberg, M. Grundmann, F. Heinrichsdorff, N. N. Ledentsov, V. M. Ustinov, A. E. Zhukov, A. R. Kovsh, M. V. Maximov, Y. M. Shernyakov, B. V. Volovik, A. F. Tsatsul'nikov, P. S. Kop'ev, and Zh. I. Alferov, “Quantum dot lasers: breakthrough in optoelectronics,” Thin Solid Films 367(1-2), 235–249 (2000).
[CrossRef]

van Dijk, F.

F. Lelarge, B. Dagens, J. Renaudier, R. Brenot, A. Accard, F. van Dijk, D. Make, O. le Gouezigou, J.-G. Provost, F. Poingt, J. Landreau, O. Drisse, E. Derouin, B. Rousseau, F. Pommereau, and G.-H. Duan, “Recent advances on InAs/InP quantum dash based semiconductor lasers and optical amplifiers operating at 1.55 μm,” IEEE J. Sel. Top. Quant. Electron. 13, 111–124 (2007).
[CrossRef]

van Otten, F. W. M.

S. Anantathanasarn, R. Nötzel, P. J. van Veldhoven, F. W. M. van Otten, Y. Barbarin, G. Servanton, T. de Vries, E. Smalbrugge, E. J. Geluk, T. J. Eijkemans, E. A. J. M. Bente, Y. S. Oei, M. K. Smit, and J. H. Wolter, “Lasing of wavelength-tunable (1.55-μm region) InAs/InGaAsP/InP (100) quantum dots grown by metal organic vapor-phase epitaxy,” Appl. Phys. Lett. 89(7), 073115 (2006).
[CrossRef]

van Veldhoven, P. J.

S. Anantathanasarn, R. Nötzel, P. J. van Veldhoven, F. W. M. van Otten, Y. Barbarin, G. Servanton, T. de Vries, E. Smalbrugge, E. J. Geluk, T. J. Eijkemans, E. A. J. M. Bente, Y. S. Oei, M. K. Smit, and J. H. Wolter, “Lasing of wavelength-tunable (1.55-μm region) InAs/InGaAsP/InP (100) quantum dots grown by metal organic vapor-phase epitaxy,” Appl. Phys. Lett. 89(7), 073115 (2006).
[CrossRef]

Volovik, B. V.

D. Bimberg, M. Grundmann, F. Heinrichsdorff, N. N. Ledentsov, V. M. Ustinov, A. E. Zhukov, A. R. Kovsh, M. V. Maximov, Y. M. Shernyakov, B. V. Volovik, A. F. Tsatsul'nikov, P. S. Kop'ev, and Zh. I. Alferov, “Quantum dot lasers: breakthrough in optoelectronics,” Thin Solid Films 367(1-2), 235–249 (2000).
[CrossRef]

von der Linde, D.

D. von der Linde, “Characterization of the noise in continuously operating mode-locked lasers,” Appl. Phys. B 39(4), 201–217 (1986).
[CrossRef]

White, I. H.

K. A. Williams, M. G. Thompson, and I. H. White, “Long-wavelength monolithic mode-locked diode lasers,” N. J. Phys. 6, 179 (2004).
[CrossRef]

M. Kuntz, G. Fiol, M. Lammlin, D. Bimberg, M. G. Thompson, K. T. Tan, C. Marinelli, R. V. Penty, I. H. White, V. M. Ustinov, A. E. Zhukov, Y. M. Shernyakov, and A. R. Kovsh, “35 GHz mode-locking of 1.3 μm quantum dot lasers,” Appl. Phys. Lett. 85(5), 843 (2004).
[CrossRef]

Williams, K. A.

K. A. Williams, M. G. Thompson, and I. H. White, “Long-wavelength monolithic mode-locked diode lasers,” N. J. Phys. 6, 179 (2004).
[CrossRef]

Wolter, J. H.

S. Anantathanasarn, R. Nötzel, P. J. van Veldhoven, F. W. M. van Otten, Y. Barbarin, G. Servanton, T. de Vries, E. Smalbrugge, E. J. Geluk, T. J. Eijkemans, E. A. J. M. Bente, Y. S. Oei, M. K. Smit, and J. H. Wolter, “Lasing of wavelength-tunable (1.55-μm region) InAs/InGaAsP/InP (100) quantum dots grown by metal organic vapor-phase epitaxy,” Appl. Phys. Lett. 89(7), 073115 (2006).
[CrossRef]

Yan, J.

R. G. Broeke, J. Cao, C. Ji, S.-W. Seo, Y. Du, N. K. Fontaine, J.-H. Baek, J. Yan, F. M. Soares, F. Olsson, S. Lourdudoss, A.-V. H. Pham, M. Shearn, A. Scherer, and S. J. B. Yoo, “Optical-CDMA in InP,” IEEE J. Sel. Top. Quant. Electron. 13, 1497–1507 (2007).
[CrossRef]

Ye, J.

Yoo, S. J. B.

R. G. Broeke, J. Cao, C. Ji, S.-W. Seo, Y. Du, N. K. Fontaine, J.-H. Baek, J. Yan, F. M. Soares, F. Olsson, S. Lourdudoss, A.-V. H. Pham, M. Shearn, A. Scherer, and S. J. B. Yoo, “Optical-CDMA in InP,” IEEE J. Sel. Top. Quant. Electron. 13, 1497–1507 (2007).
[CrossRef]

N. K. Fontaine, R. P. Scott, J. Cao, A. Karalar, W. Jiang, K. Okamoto, J. P. Heritage, B. H. Kolner, and S. J. B. Yoo, “32 Phase X 32 amplitude optical arbitrary waveform generation,” Opt. Lett. 32(7), 865–867 (2007).
[CrossRef] [PubMed]

Zadiranov, Y. M.

E. U. Rafailov, M. A. Cataluna, W. Sibbett, N. D. Il’inskaya, Y. M. Zadiranov, A. E. Zhukov, V. M. Ustinov, D. A. Livshits, A. R. Kovsh, and N. N. Ledentsov, “High-power picosecond and femtosecond pulse generation from a two-section mode-locked quantum-dot laser,” Appl. Phys. Lett. 87(8), 081107 (2005).
[CrossRef]

Zhukov, A. E.

E. U. Rafailov, M. A. Cataluna, W. Sibbett, N. D. Il’inskaya, Y. M. Zadiranov, A. E. Zhukov, V. M. Ustinov, D. A. Livshits, A. R. Kovsh, and N. N. Ledentsov, “High-power picosecond and femtosecond pulse generation from a two-section mode-locked quantum-dot laser,” Appl. Phys. Lett. 87(8), 081107 (2005).
[CrossRef]

M. Kuntz, G. Fiol, M. Lammlin, D. Bimberg, M. G. Thompson, K. T. Tan, C. Marinelli, R. V. Penty, I. H. White, V. M. Ustinov, A. E. Zhukov, Y. M. Shernyakov, and A. R. Kovsh, “35 GHz mode-locking of 1.3 μm quantum dot lasers,” Appl. Phys. Lett. 85(5), 843 (2004).
[CrossRef]

D. Bimberg, M. Grundmann, F. Heinrichsdorff, N. N. Ledentsov, V. M. Ustinov, A. E. Zhukov, A. R. Kovsh, M. V. Maximov, Y. M. Shernyakov, B. V. Volovik, A. F. Tsatsul'nikov, P. S. Kop'ev, and Zh. I. Alferov, “Quantum dot lasers: breakthrough in optoelectronics,” Thin Solid Films 367(1-2), 235–249 (2000).
[CrossRef]

Appl. Phys. B

D. von der Linde, “Characterization of the noise in continuously operating mode-locked lasers,” Appl. Phys. B 39(4), 201–217 (1986).
[CrossRef]

Appl. Phys. Lett.

E. U. Rafailov, M. A. Cataluna, W. Sibbett, N. D. Il’inskaya, Y. M. Zadiranov, A. E. Zhukov, V. M. Ustinov, D. A. Livshits, A. R. Kovsh, and N. N. Ledentsov, “High-power picosecond and femtosecond pulse generation from a two-section mode-locked quantum-dot laser,” Appl. Phys. Lett. 87(8), 081107 (2005).
[CrossRef]

M. Kuntz, G. Fiol, M. Lammlin, D. Bimberg, M. G. Thompson, K. T. Tan, C. Marinelli, R. V. Penty, I. H. White, V. M. Ustinov, A. E. Zhukov, Y. M. Shernyakov, and A. R. Kovsh, “35 GHz mode-locking of 1.3 μm quantum dot lasers,” Appl. Phys. Lett. 85(5), 843 (2004).
[CrossRef]

C. Gosset, K. Merghem, A. Martinez, G. Moreau, G. Patriarche, G. Aubin, A. Ramdane, J. Landreau, and F. Lelarge, “Subpicosecond pulse generation at 134 GHz using a quantum-dash-based Fabry-Perot laser emitting at 1.56 μm,” Appl. Phys. Lett. 88(24), 241105 (2006).
[CrossRef]

S. Anantathanasarn, R. Nötzel, P. J. van Veldhoven, F. W. M. van Otten, Y. Barbarin, G. Servanton, T. de Vries, E. Smalbrugge, E. J. Geluk, T. J. Eijkemans, E. A. J. M. Bente, Y. S. Oei, M. K. Smit, and J. H. Wolter, “Lasing of wavelength-tunable (1.55-μm region) InAs/InGaAsP/InP (100) quantum dots grown by metal organic vapor-phase epitaxy,” Appl. Phys. Lett. 89(7), 073115 (2006).
[CrossRef]

Electron. Lett.

G. Girault, M. Gay, S. Lobo, L. Bramerie, M. Joindot, J. C. Simon, A. Shen, F. Blache, H. Gariah, F. Mallécot, O. Le Gouezigou, F. Poingt, L. Le Gouezigou, F. Pommereau, B. Rousseau, F. Lelarge, and G.-H. Duan, “Quantum dash actively modelocked Fabry-Perot laser module demonstrated as part of wavelength tunable RZ transmitter,” Electron. Lett. 44(14), 873–874 (2008).
[CrossRef]

IEEE J. Lightwave Technol.

B. Jalali and S. Fathpour, “Silicon Photonics,” IEEE J. Lightwave Technol. 24(12), 4600–4615 (2006).
[CrossRef]

IEEE J. Quantum Electron.

A. J. Lowery, N. Onodera, and R. S. Tucker, “Stability and spectral behavior of grating-controlled actively mode-locked lasers,” IEEE J. Quantum Electron. 27(11), 2422–2430 (1991).
[CrossRef]

IEEE J. Sel. Top. Quant. Electron.

M. J. R. Heck, A. Renault, E. A. J. M. Bente, Y.-S. Oei, M. K. Smit, K. S. E. Eikema, W. Ubachs, S. Anantathanasarn, and R. Nötzel, “Passively mode-locked 4.6 GHz and 10.5 GHz quantum dot laser diodes around 1.55 μm with large operating regime,” IEEE J. Sel. Top. Quant. Electron. 15, 634–643 (2009).
[CrossRef]

R. Kaiser and B. Hüttl, “Monolithic 40-GHz mode-locked MQW DBR lasers for high-speed optical communication systems,” IEEE J. Sel. Top. Quant. Electron. 13, 125–135 (2007).
[CrossRef]

R. G. Broeke, J. Cao, C. Ji, S.-W. Seo, Y. Du, N. K. Fontaine, J.-H. Baek, J. Yan, F. M. Soares, F. Olsson, S. Lourdudoss, A.-V. H. Pham, M. Shearn, A. Scherer, and S. J. B. Yoo, “Optical-CDMA in InP,” IEEE J. Sel. Top. Quant. Electron. 13, 1497–1507 (2007).
[CrossRef]

F. Lelarge, B. Dagens, J. Renaudier, R. Brenot, A. Accard, F. van Dijk, D. Make, O. le Gouezigou, J.-G. Provost, F. Poingt, J. Landreau, O. Drisse, E. Derouin, B. Rousseau, F. Pommereau, and G.-H. Duan, “Recent advances on InAs/InP quantum dash based semiconductor lasers and optical amplifiers operating at 1.55 μm,” IEEE J. Sel. Top. Quant. Electron. 13, 111–124 (2007).
[CrossRef]

IEEE Photon. Technol. Lett.

F. R. Ahmad and F. Rana, “Fundamental and subharmonic hybrid mode-locking of a high-power (220 mW) monolithic semiconductor laser,” IEEE Photon. Technol. Lett. 20(15), 1308–1310 (2008).
[CrossRef]

N. J. Phys.

K. A. Williams, M. G. Thompson, and I. H. White, “Long-wavelength monolithic mode-locked diode lasers,” N. J. Phys. 6, 179 (2004).
[CrossRef]

Nat. Photonics

E. U. Rafailov, M. A. Cataluna, and W. Sibbett, “Mode-locked quantum-dot lasers,” Nat. Photonics 1(7), 395–401 (2007).
[CrossRef]

Opt. Express

Opt. Lett.

Proc. IEEE

M. Kuntz, G. Fiol, M. Laemmlin, Ch. Meuer, and D. Bimberg, “High-speed mode-locked quantum-dot lasers and optical amplifiers,” Proc. IEEE 95(9), 1767–1778 (2007).
[CrossRef]

Thin Solid Films

D. Bimberg, M. Grundmann, F. Heinrichsdorff, N. N. Ledentsov, V. M. Ustinov, A. E. Zhukov, A. R. Kovsh, M. V. Maximov, Y. M. Shernyakov, B. V. Volovik, A. F. Tsatsul'nikov, P. S. Kop'ev, and Zh. I. Alferov, “Quantum dot lasers: breakthrough in optoelectronics,” Thin Solid Films 367(1-2), 235–249 (2000).
[CrossRef]

Other

M. G. Thompson, D. Larson, A. R. Rae, K. Yvind, R. V. Penty, I. H. White, J. Hvam, A. R. Kovsh, S. S. Mikhrin, D. A. Livshits, and I. L. Krestnikov, “Monolithic hybrid and passive mode-locked 40 GHz quantum dot laser diodes,” in Proceedings of the European Conference on Optical Communication ECOC, (Cannes, France, 2006) paper We4.6.3.

L. A. Jiang, “Ultralow-noise modelocked lasers,” (Ph.D. diss., Massachusetts Institute of Technology, 2002).

A. Shen, F. van Dijk, J. Renaudier, G. H. Duan, F. Lelarge, F. Pommereau, F. Poingt, L. Le Gouezigou, and O. Le Gouezigou, “Active mode-locking of quantum dot Fabry-Perot laser diode,” in Proceedings IEEE 20th International Semiconductor Laser Conference (2006) pp. 153–154, paper ThB6.

H. Guo, K. Sato, K. Takashima, and H. Yokoyama, “Two-photon bio-imaging with a mode-locked semiconductor laser,” in Proceedings of 15th Internat. Conf. on Ultrafast Phenomena (2006) paper TuE8.

K. Yvind, “Semiconductor mode-locked lasers for optical communication systems,” (Ph.D. diss., Technical University of Denmark, 2003).

A. Akrout, A. Shen, R. Brenot, F. Van Dijk, O. Lelouezigou, F. Pommerau, F. Lelarge, A. Ramdane, and G.-H. Duan, “Error-free transmission of 8 WDM channels at 10 Gbit/s using comb generation in a quantum dash based mode-locked laser,” in Proceedings 34th European Conference on Optical Communication ECOC (Brussels, Belgium, 2008) paper Th3D4.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Overview of the used setup. RF: Agilent N5181A generator; 50/50: signal splitter; ×2: frequency doubler; BP: 3.0 – 4.3 GHz bandpass filter; Amp: electrical RF-amplifier, T: bias tee, -V: DC voltage source; GSG: ground-signal-ground probe; I: DC current source; Iso: optical isolator; SOA: semiconductor optical (booster) amplifier; PM: optical power meter; ESA: 26-GHz electrical spectrum analyzer with 12.5-GHz fast photodiode; OSA: 0.05-nm bandwidth optical spectrum analyzer; Osc.: Digital communications analyzer (digital sampling oscilloscope) with a 30-GHz optical module; PC: polarization controller; AC: autocorrelator. All equipment is fiber pigtailed or has fiber input or output connectors, except for the (free-space) fast photodiode.

Fig. 2
Fig. 2

(a) RF-spectrum obtained for the 4.5-GHz laser with 270-μm SA length. Injection current is 386 mA and SA bias voltage is −4.6 V. (b) Detailed view of the spectrum around the first RF-peak in (a). Inset (c) shows the comparison with the passively mode-locked RF peak (blue). The electrical bandwidths used to obtain the spectra are 3 MHz, 100 kHz and 50 kHz for (a), (b) and (c) respectively. RF-power is 18 dBm and RF driving frequency is 4.496 GHz.

Fig. 3
Fig. 3

Single side-band phase noise plot (left and right sideband overlaid) around the first harmonic at 4.5 GHz in Fig. 2 (red). The generator noise (blue) and the analyzer noise floor (green) are also shown. Operating conditions are as in Fig. 2. In the analysis of the generator noise, the power of the first harmonic was maximized for optimum signal-to-noise ratio, hence the lower noise floor.

Fig. 4
Fig. 4

(a) Optimized plateau suppression (diamonds) as a function of the RF driving power at the frequencies indicated (squares) and (b) as a function of the RF driving frequency at a power of 18 dBm. Further operating conditions are as in Fig. 2.

Fig. 5
Fig. 5

(a) Optical spectra as a function of the RF driving power at a frequency of 4.496 GHz and (b) as a function of the RF driving frequency at a power of 18 dBm, corresponding to the datapoints in Fig. 4. For reference the spectra under passive mode-locking are given (black).

Fig. 6
Fig. 6

(a) Setup to measure the delay of the different spectral components. The 4-GHz oscilloscope is triggered on the signal from the RF-generator and the pulse position is monitored as a function of its wavelength, as determined by the 1.2-nm optical bandpass filter (BP) (b) Measured delay (blue diamonds) of the filtered signal as compared to the filtered signal at 1503 nm. The optical spectrum is shown for reference (grey solid line).

Fig. 7
Fig. 7

(a) Autocorrelator traces obtained with different lengths of SMF at the MLLD output, ranging from 0 m to 840 m, as indicated in the legend. The traces have been normalized. The duration of the SHG signals as a function of the SMF lengths is plotted in (b). (c) 30-GHz digital sampling oscilloscope trace of the pulse without compression (red) and with 840 m of SMF (blue).

Fig. 8
Fig. 8

Close up of the first four harmonics from Fig. 2(a), normalized to the respective carrier peak. Spectra have been obtained with a 200-kHz resolution. The same operating conditions were used as in Fig. 2. The higher harmonics have been shifted in frequency and have been centered around the first harmonic.

Fig. 9
Fig. 9

RF-spectra obtained after filtering the output with a 1.2-nm optical bandpass filter centered at the spectral positions as indicated in the legend and representing (a) the DC-peak and (b – d) the first three harmonics respectively. The resolution used was 100 kHz. The same operating conditions were used as in Fig. 3.

Fig. 10
Fig. 10

RF spectra normalized with respect to the carrier peak. The spectra have been obtained for the optical output after a length of SMF, as indicated in the plot. The electrical bandwidth used was 50 kHz. Operation conditions are VSA = −4.9 V, I = 380 mA. RF-power is 18 dBm and RF driving frequency is 4.496 GHz.

Metrics