Abstract

We synthesized Ti-bearing bazirite (BaZr1- xTixSi3O9, x=0-0.2) and examined their spectroscopic features comprehensively, in order to elucidate the photoluminescent properties in the bazirite phase. Strong emission around 2.79 eV was observed in the synthetic bazirite phase with x=0.01 by UV excitation, which exhibited an internal quantum yield of 72% at room temperature. In addition, the bazirite phases also showed clear afterglow with peak around 2.62 eV in the range of x=0.005-0.03, whereas no afterglow property was confirmed in Ti-bearing pabstite (BaSnSi3O9) phases, in spite of being isostructural of bazirite. It was demonstrated that presence of Zr-related center is a necessary condition for evolution of the afterglow property in the bazirite structure.

©2009 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Structure characteristics and afterglow of BaZr4(PO4)6 phosphor

Ruijin Yu, Maosen Yuan, Yonghua Xiong, Junbo Li, and Jinyi Wang
Opt. Mater. Express 6(4) 1049-1055 (2016)

Tunable white-light emission in single-phased K2Y1-xEuxZr(PO4)3 phosphor

Liang Shi and Hyo Jin Seo
Opt. Express 19(8) 7147-7152 (2011)

Versatile phosphors BaY2Si3O10:RE (RE=Ce3+, Tb3+, Eu3+) for light-emitting diodes

Wei-Ren Liu, Chun Che Lin, Yi-Chen Chiu, Yao-Tsung Yeh, Shyue-Ming Jang, Ru-Shi Liu, and Bing-Ming Cheng
Opt. Express 17(20) 18103-18109 (2009)

References

  • View by:
  • |
  • |
  • |

  1. Y. Ito, A. Komeno, K. Uematsu, K. Toda, and M. Sato, “Luminescence properties of long-persistence silicate phosphors,” J. Alloy. Comp. 408–412, 907–910 (2006).
    [Crossref]
  2. H. C. Yang, G. Lakshminarayana, S. F. Zhou, Y. Teng, and J. R. Qiu, “Cyan-white-red luminescence from europium doped Al2O3-La2O3-SiO2 glasses,” Opt. Express 16(9), 6731–6735 (2008).
    [Crossref] [PubMed]
  3. Y. Kanazawa and M. Kamitani, “Rare earth minerals and resources in the world,” J. Alloy. Comp. 408–412, 1339–1343 (2006).
    [Crossref]
  4. G. Blasse, Structure and Bonding 42 (Springer, 1980).
  5. J. F. Sarver, “Preparation and luminescent properties of Ti-activated zirconia,” J. Electrochem. Soc. 113(2), 124–128 (1966).
    [Crossref]
  6. B. Bouma and G. Blasse, “Dependence of luminescence of titanates on their crystal structure,” J. Phys. Chem. Solids 56(2), 261–265 (1995).
    [Crossref]
  7. Y. Takahashi, K. Kitamura, Y. Benino, T. Fujiwara, and T. Komatsu, “Second-order optical nonlinear and luminescent properties of Ba2TiSi2O8 nanocrystallized glass,” Appl. Phys. Lett. 86(9), 091110 (2005).
    [Crossref]
  8. Y. Takahashi, K. Kitamura, N. Iyi, and S. Inoue, “Phase-stability and photoluminescence of BaTi(Si,Ge)3O9,” J. Ceram. Soc. Jpn. 114(1328), 313–317 (2006).
    [Crossref]
  9. Y. Takahashi, K. Kitamura, N. Iyi, and S. Inoue, “Visible orange photoluminescence in a barium titanosilicate BaTiSi2O7,” Appl. Phys. Lett. 88(15), 151903 (2006).
    [Crossref]
  10. M. Kaneyoshi, “Luminescence of some zirconium-containing compounds under vacuum ultraviolet excitation,” J. Lumin. 121(1), 102–108 (2006).
    [Crossref]
  11. X. G. Meng, K. Tanaka, K. Fujita, and S. Murai, “Intense greenish emission from d0 transition metal ion Ti4+ in oxide glass,” Appl. Phys. Lett. 90(5), 051917 (2007).
    [Crossref]
  12. H. Hijiya, T. Kishi, and A. Yasumori, “Photoluminescent properties of fresnoite phosphors prepared from phase-separated BaO-TiO2-SiO2 glasses,” J. Ceram. Soc. Jpn. 116(1360), 1255–1259 (2008).
    [Crossref]
  13. C. C. Kang, R. S. Liu, J. C. Chang, and B. J. Lee, “Synthesis and luminescent properties of a new yellowish-orange afterglow phosphor Y2O2S:Ti,Mg,” Chem. Mater. 15(21), 3966–3968 (2003).
    [Crossref]
  14. P. Zhang, Z. Hong, M. Wang, X. Fang, G. Qian, and Z. Wang, “Luminescence characterization of a new long afterglow phosphor of single Ti-doped Y2O2S,” J. Lumin. 113(1-2), 89–93 (2005).
    [Crossref]
  15. Y. Takahashi, H. Masai, T. Fujiwara, K. Kitamura, and S. Inoue, “Afterglow in synthetic bazirite, BaZrSi3O9,” J. Ceram. Soc. Jpn. 116(1350), 357–360 (2008).
    [Crossref]
  16. C. Moon, M. Nishi, K. Miura, and K. Hirao, “Blue long-lasting phosphorescence of Ti-doped BaZrO3 perovskites,” J. Lumin. 129(8), 817–819 (2009).
    [Crossref]
  17. F. C. Hawthorne, “The crystal-chemistry of the benitoite group minerals and structural relations in (Si3O9) ring structures,” N. Jb. Miner. Mh.16–30 (1987).
  18. K. Momma and F. Izumi, “VESTA: a three-dimensional visualization system for electronic and structural analysis,” J. Appl. Cryst. 41(3), 653–658 (2008).
    [Crossref]
  19. G. M. Phatak, K. Gangadharan, H. Pal, and J. P. Mittal, “Luminescence properties of Ti-doped gem-grade zirconia powders,” Bull. Mater. Sci. 17(2), 163–169 (1994).
    [Crossref]
  20. R. D. Shannon, “Revised effective ionic-radii and systematic studies of interatomic distances in halides and chalcogenides,” Acta Crystallogr. A 32(5), 751–767 (1976).
    [Crossref]
  21. Y. Takahashi, K. Kitamura, N. Iyi, S. Inoue, and T. Fujiwara, “Blue photoluminescence of germania-stabilized benitoite,” J. Ceram. Soc. Jpn. 116(1358), 1143–1146 (2008).
    [Crossref]
  22. M. Gaft, L. Nagli, G. Waychunas, and D. Weiss, “The nature of blue luminescence from natural benitoite BaTiSi3O9,” Phys. Chem. Miner. 31(6), 365–373 (2004).
    [Crossref]
  23. W. L. Konijnendijk, “Luminescence of BaSnSi3O9:Ti4+ compared to BaZrSi3O9:Ti4+,” Inorg. Nucl. Chem. Lett. 17(5-6), 129–132 (1981).
    [Crossref]
  24. T. Yamashita and K. Ueda, “Blue photoluminescence in Ti-doped alkaline-earth stannates,” J. Solid State Chem. 180(4), 1410–1413 (2007).
    [Crossref]
  25. G. Blasse, W. J. Schipper, M. E. Huntelaar, and D. J. W. Ijdo, “Luminescence of SrZrSi2O7,” J. Phys. Chem. Solids 54(9), 1001–1003 (1993).
    [Crossref]
  26. S. E. Paje and J. Llopis, “Temperature-dependence of the photoluminescence and phosphorescence time decay of magnesia-stabilized zirconia,” Appl. Phys., A Mater. Sci. Process. 55(6), 523–528 (1992).
    [Crossref]
  27. T. Ito, M. Maeda, K. Nakamura, H. Kato, and Y. Ohki, “Similarities in photoluminescence in hafnia and zirconia induced by ultraviolet photons,” J. Appl. Phys. 97(5), 054104 (2005).
    [Crossref]
  28. G. Blasse and A. Bril, “Fluorescence and structure of barium zirconium trisilicate,” J. Solid State Chem. 2(1), 105–108 (1970).
    [Crossref]

2009 (1)

C. Moon, M. Nishi, K. Miura, and K. Hirao, “Blue long-lasting phosphorescence of Ti-doped BaZrO3 perovskites,” J. Lumin. 129(8), 817–819 (2009).
[Crossref]

2008 (5)

K. Momma and F. Izumi, “VESTA: a three-dimensional visualization system for electronic and structural analysis,” J. Appl. Cryst. 41(3), 653–658 (2008).
[Crossref]

H. Hijiya, T. Kishi, and A. Yasumori, “Photoluminescent properties of fresnoite phosphors prepared from phase-separated BaO-TiO2-SiO2 glasses,” J. Ceram. Soc. Jpn. 116(1360), 1255–1259 (2008).
[Crossref]

Y. Takahashi, H. Masai, T. Fujiwara, K. Kitamura, and S. Inoue, “Afterglow in synthetic bazirite, BaZrSi3O9,” J. Ceram. Soc. Jpn. 116(1350), 357–360 (2008).
[Crossref]

H. C. Yang, G. Lakshminarayana, S. F. Zhou, Y. Teng, and J. R. Qiu, “Cyan-white-red luminescence from europium doped Al2O3-La2O3-SiO2 glasses,” Opt. Express 16(9), 6731–6735 (2008).
[Crossref] [PubMed]

Y. Takahashi, K. Kitamura, N. Iyi, S. Inoue, and T. Fujiwara, “Blue photoluminescence of germania-stabilized benitoite,” J. Ceram. Soc. Jpn. 116(1358), 1143–1146 (2008).
[Crossref]

2007 (2)

T. Yamashita and K. Ueda, “Blue photoluminescence in Ti-doped alkaline-earth stannates,” J. Solid State Chem. 180(4), 1410–1413 (2007).
[Crossref]

X. G. Meng, K. Tanaka, K. Fujita, and S. Murai, “Intense greenish emission from d0 transition metal ion Ti4+ in oxide glass,” Appl. Phys. Lett. 90(5), 051917 (2007).
[Crossref]

2006 (5)

Y. Takahashi, K. Kitamura, N. Iyi, and S. Inoue, “Phase-stability and photoluminescence of BaTi(Si,Ge)3O9,” J. Ceram. Soc. Jpn. 114(1328), 313–317 (2006).
[Crossref]

Y. Takahashi, K. Kitamura, N. Iyi, and S. Inoue, “Visible orange photoluminescence in a barium titanosilicate BaTiSi2O7,” Appl. Phys. Lett. 88(15), 151903 (2006).
[Crossref]

M. Kaneyoshi, “Luminescence of some zirconium-containing compounds under vacuum ultraviolet excitation,” J. Lumin. 121(1), 102–108 (2006).
[Crossref]

Y. Kanazawa and M. Kamitani, “Rare earth minerals and resources in the world,” J. Alloy. Comp. 408–412, 1339–1343 (2006).
[Crossref]

Y. Ito, A. Komeno, K. Uematsu, K. Toda, and M. Sato, “Luminescence properties of long-persistence silicate phosphors,” J. Alloy. Comp. 408–412, 907–910 (2006).
[Crossref]

2005 (3)

Y. Takahashi, K. Kitamura, Y. Benino, T. Fujiwara, and T. Komatsu, “Second-order optical nonlinear and luminescent properties of Ba2TiSi2O8 nanocrystallized glass,” Appl. Phys. Lett. 86(9), 091110 (2005).
[Crossref]

P. Zhang, Z. Hong, M. Wang, X. Fang, G. Qian, and Z. Wang, “Luminescence characterization of a new long afterglow phosphor of single Ti-doped Y2O2S,” J. Lumin. 113(1-2), 89–93 (2005).
[Crossref]

T. Ito, M. Maeda, K. Nakamura, H. Kato, and Y. Ohki, “Similarities in photoluminescence in hafnia and zirconia induced by ultraviolet photons,” J. Appl. Phys. 97(5), 054104 (2005).
[Crossref]

2004 (1)

M. Gaft, L. Nagli, G. Waychunas, and D. Weiss, “The nature of blue luminescence from natural benitoite BaTiSi3O9,” Phys. Chem. Miner. 31(6), 365–373 (2004).
[Crossref]

2003 (1)

C. C. Kang, R. S. Liu, J. C. Chang, and B. J. Lee, “Synthesis and luminescent properties of a new yellowish-orange afterglow phosphor Y2O2S:Ti,Mg,” Chem. Mater. 15(21), 3966–3968 (2003).
[Crossref]

1995 (1)

B. Bouma and G. Blasse, “Dependence of luminescence of titanates on their crystal structure,” J. Phys. Chem. Solids 56(2), 261–265 (1995).
[Crossref]

1994 (1)

G. M. Phatak, K. Gangadharan, H. Pal, and J. P. Mittal, “Luminescence properties of Ti-doped gem-grade zirconia powders,” Bull. Mater. Sci. 17(2), 163–169 (1994).
[Crossref]

1993 (1)

G. Blasse, W. J. Schipper, M. E. Huntelaar, and D. J. W. Ijdo, “Luminescence of SrZrSi2O7,” J. Phys. Chem. Solids 54(9), 1001–1003 (1993).
[Crossref]

1992 (1)

S. E. Paje and J. Llopis, “Temperature-dependence of the photoluminescence and phosphorescence time decay of magnesia-stabilized zirconia,” Appl. Phys., A Mater. Sci. Process. 55(6), 523–528 (1992).
[Crossref]

1987 (1)

F. C. Hawthorne, “The crystal-chemistry of the benitoite group minerals and structural relations in (Si3O9) ring structures,” N. Jb. Miner. Mh.16–30 (1987).

1981 (1)

W. L. Konijnendijk, “Luminescence of BaSnSi3O9:Ti4+ compared to BaZrSi3O9:Ti4+,” Inorg. Nucl. Chem. Lett. 17(5-6), 129–132 (1981).
[Crossref]

1976 (1)

R. D. Shannon, “Revised effective ionic-radii and systematic studies of interatomic distances in halides and chalcogenides,” Acta Crystallogr. A 32(5), 751–767 (1976).
[Crossref]

1970 (1)

G. Blasse and A. Bril, “Fluorescence and structure of barium zirconium trisilicate,” J. Solid State Chem. 2(1), 105–108 (1970).
[Crossref]

1966 (1)

J. F. Sarver, “Preparation and luminescent properties of Ti-activated zirconia,” J. Electrochem. Soc. 113(2), 124–128 (1966).
[Crossref]

Benino, Y.

Y. Takahashi, K. Kitamura, Y. Benino, T. Fujiwara, and T. Komatsu, “Second-order optical nonlinear and luminescent properties of Ba2TiSi2O8 nanocrystallized glass,” Appl. Phys. Lett. 86(9), 091110 (2005).
[Crossref]

Blasse, G.

B. Bouma and G. Blasse, “Dependence of luminescence of titanates on their crystal structure,” J. Phys. Chem. Solids 56(2), 261–265 (1995).
[Crossref]

G. Blasse, W. J. Schipper, M. E. Huntelaar, and D. J. W. Ijdo, “Luminescence of SrZrSi2O7,” J. Phys. Chem. Solids 54(9), 1001–1003 (1993).
[Crossref]

G. Blasse and A. Bril, “Fluorescence and structure of barium zirconium trisilicate,” J. Solid State Chem. 2(1), 105–108 (1970).
[Crossref]

Bouma, B.

B. Bouma and G. Blasse, “Dependence of luminescence of titanates on their crystal structure,” J. Phys. Chem. Solids 56(2), 261–265 (1995).
[Crossref]

Bril, A.

G. Blasse and A. Bril, “Fluorescence and structure of barium zirconium trisilicate,” J. Solid State Chem. 2(1), 105–108 (1970).
[Crossref]

Chang, J. C.

C. C. Kang, R. S. Liu, J. C. Chang, and B. J. Lee, “Synthesis and luminescent properties of a new yellowish-orange afterglow phosphor Y2O2S:Ti,Mg,” Chem. Mater. 15(21), 3966–3968 (2003).
[Crossref]

Fang, X.

P. Zhang, Z. Hong, M. Wang, X. Fang, G. Qian, and Z. Wang, “Luminescence characterization of a new long afterglow phosphor of single Ti-doped Y2O2S,” J. Lumin. 113(1-2), 89–93 (2005).
[Crossref]

Fujita, K.

X. G. Meng, K. Tanaka, K. Fujita, and S. Murai, “Intense greenish emission from d0 transition metal ion Ti4+ in oxide glass,” Appl. Phys. Lett. 90(5), 051917 (2007).
[Crossref]

Fujiwara, T.

Y. Takahashi, K. Kitamura, N. Iyi, S. Inoue, and T. Fujiwara, “Blue photoluminescence of germania-stabilized benitoite,” J. Ceram. Soc. Jpn. 116(1358), 1143–1146 (2008).
[Crossref]

Y. Takahashi, H. Masai, T. Fujiwara, K. Kitamura, and S. Inoue, “Afterglow in synthetic bazirite, BaZrSi3O9,” J. Ceram. Soc. Jpn. 116(1350), 357–360 (2008).
[Crossref]

Y. Takahashi, K. Kitamura, Y. Benino, T. Fujiwara, and T. Komatsu, “Second-order optical nonlinear and luminescent properties of Ba2TiSi2O8 nanocrystallized glass,” Appl. Phys. Lett. 86(9), 091110 (2005).
[Crossref]

Gaft, M.

M. Gaft, L. Nagli, G. Waychunas, and D. Weiss, “The nature of blue luminescence from natural benitoite BaTiSi3O9,” Phys. Chem. Miner. 31(6), 365–373 (2004).
[Crossref]

Gangadharan, K.

G. M. Phatak, K. Gangadharan, H. Pal, and J. P. Mittal, “Luminescence properties of Ti-doped gem-grade zirconia powders,” Bull. Mater. Sci. 17(2), 163–169 (1994).
[Crossref]

Hawthorne, F. C.

F. C. Hawthorne, “The crystal-chemistry of the benitoite group minerals and structural relations in (Si3O9) ring structures,” N. Jb. Miner. Mh.16–30 (1987).

Hijiya, H.

H. Hijiya, T. Kishi, and A. Yasumori, “Photoluminescent properties of fresnoite phosphors prepared from phase-separated BaO-TiO2-SiO2 glasses,” J. Ceram. Soc. Jpn. 116(1360), 1255–1259 (2008).
[Crossref]

Hirao, K.

C. Moon, M. Nishi, K. Miura, and K. Hirao, “Blue long-lasting phosphorescence of Ti-doped BaZrO3 perovskites,” J. Lumin. 129(8), 817–819 (2009).
[Crossref]

Hong, Z.

P. Zhang, Z. Hong, M. Wang, X. Fang, G. Qian, and Z. Wang, “Luminescence characterization of a new long afterglow phosphor of single Ti-doped Y2O2S,” J. Lumin. 113(1-2), 89–93 (2005).
[Crossref]

Huntelaar, M. E.

G. Blasse, W. J. Schipper, M. E. Huntelaar, and D. J. W. Ijdo, “Luminescence of SrZrSi2O7,” J. Phys. Chem. Solids 54(9), 1001–1003 (1993).
[Crossref]

Ijdo, D. J. W.

G. Blasse, W. J. Schipper, M. E. Huntelaar, and D. J. W. Ijdo, “Luminescence of SrZrSi2O7,” J. Phys. Chem. Solids 54(9), 1001–1003 (1993).
[Crossref]

Inoue, S.

Y. Takahashi, K. Kitamura, N. Iyi, S. Inoue, and T. Fujiwara, “Blue photoluminescence of germania-stabilized benitoite,” J. Ceram. Soc. Jpn. 116(1358), 1143–1146 (2008).
[Crossref]

Y. Takahashi, H. Masai, T. Fujiwara, K. Kitamura, and S. Inoue, “Afterglow in synthetic bazirite, BaZrSi3O9,” J. Ceram. Soc. Jpn. 116(1350), 357–360 (2008).
[Crossref]

Y. Takahashi, K. Kitamura, N. Iyi, and S. Inoue, “Visible orange photoluminescence in a barium titanosilicate BaTiSi2O7,” Appl. Phys. Lett. 88(15), 151903 (2006).
[Crossref]

Y. Takahashi, K. Kitamura, N. Iyi, and S. Inoue, “Phase-stability and photoluminescence of BaTi(Si,Ge)3O9,” J. Ceram. Soc. Jpn. 114(1328), 313–317 (2006).
[Crossref]

Ito, T.

T. Ito, M. Maeda, K. Nakamura, H. Kato, and Y. Ohki, “Similarities in photoluminescence in hafnia and zirconia induced by ultraviolet photons,” J. Appl. Phys. 97(5), 054104 (2005).
[Crossref]

Ito, Y.

Y. Ito, A. Komeno, K. Uematsu, K. Toda, and M. Sato, “Luminescence properties of long-persistence silicate phosphors,” J. Alloy. Comp. 408–412, 907–910 (2006).
[Crossref]

Iyi, N.

Y. Takahashi, K. Kitamura, N. Iyi, S. Inoue, and T. Fujiwara, “Blue photoluminescence of germania-stabilized benitoite,” J. Ceram. Soc. Jpn. 116(1358), 1143–1146 (2008).
[Crossref]

Y. Takahashi, K. Kitamura, N. Iyi, and S. Inoue, “Visible orange photoluminescence in a barium titanosilicate BaTiSi2O7,” Appl. Phys. Lett. 88(15), 151903 (2006).
[Crossref]

Y. Takahashi, K. Kitamura, N. Iyi, and S. Inoue, “Phase-stability and photoluminescence of BaTi(Si,Ge)3O9,” J. Ceram. Soc. Jpn. 114(1328), 313–317 (2006).
[Crossref]

Izumi, F.

K. Momma and F. Izumi, “VESTA: a three-dimensional visualization system for electronic and structural analysis,” J. Appl. Cryst. 41(3), 653–658 (2008).
[Crossref]

Kamitani, M.

Y. Kanazawa and M. Kamitani, “Rare earth minerals and resources in the world,” J. Alloy. Comp. 408–412, 1339–1343 (2006).
[Crossref]

Kanazawa, Y.

Y. Kanazawa and M. Kamitani, “Rare earth minerals and resources in the world,” J. Alloy. Comp. 408–412, 1339–1343 (2006).
[Crossref]

Kaneyoshi, M.

M. Kaneyoshi, “Luminescence of some zirconium-containing compounds under vacuum ultraviolet excitation,” J. Lumin. 121(1), 102–108 (2006).
[Crossref]

Kang, C. C.

C. C. Kang, R. S. Liu, J. C. Chang, and B. J. Lee, “Synthesis and luminescent properties of a new yellowish-orange afterglow phosphor Y2O2S:Ti,Mg,” Chem. Mater. 15(21), 3966–3968 (2003).
[Crossref]

Kato, H.

T. Ito, M. Maeda, K. Nakamura, H. Kato, and Y. Ohki, “Similarities in photoluminescence in hafnia and zirconia induced by ultraviolet photons,” J. Appl. Phys. 97(5), 054104 (2005).
[Crossref]

Kishi, T.

H. Hijiya, T. Kishi, and A. Yasumori, “Photoluminescent properties of fresnoite phosphors prepared from phase-separated BaO-TiO2-SiO2 glasses,” J. Ceram. Soc. Jpn. 116(1360), 1255–1259 (2008).
[Crossref]

Kitamura, K.

Y. Takahashi, H. Masai, T. Fujiwara, K. Kitamura, and S. Inoue, “Afterglow in synthetic bazirite, BaZrSi3O9,” J. Ceram. Soc. Jpn. 116(1350), 357–360 (2008).
[Crossref]

Y. Takahashi, K. Kitamura, N. Iyi, S. Inoue, and T. Fujiwara, “Blue photoluminescence of germania-stabilized benitoite,” J. Ceram. Soc. Jpn. 116(1358), 1143–1146 (2008).
[Crossref]

Y. Takahashi, K. Kitamura, N. Iyi, and S. Inoue, “Visible orange photoluminescence in a barium titanosilicate BaTiSi2O7,” Appl. Phys. Lett. 88(15), 151903 (2006).
[Crossref]

Y. Takahashi, K. Kitamura, N. Iyi, and S. Inoue, “Phase-stability and photoluminescence of BaTi(Si,Ge)3O9,” J. Ceram. Soc. Jpn. 114(1328), 313–317 (2006).
[Crossref]

Y. Takahashi, K. Kitamura, Y. Benino, T. Fujiwara, and T. Komatsu, “Second-order optical nonlinear and luminescent properties of Ba2TiSi2O8 nanocrystallized glass,” Appl. Phys. Lett. 86(9), 091110 (2005).
[Crossref]

Komatsu, T.

Y. Takahashi, K. Kitamura, Y. Benino, T. Fujiwara, and T. Komatsu, “Second-order optical nonlinear and luminescent properties of Ba2TiSi2O8 nanocrystallized glass,” Appl. Phys. Lett. 86(9), 091110 (2005).
[Crossref]

Komeno, A.

Y. Ito, A. Komeno, K. Uematsu, K. Toda, and M. Sato, “Luminescence properties of long-persistence silicate phosphors,” J. Alloy. Comp. 408–412, 907–910 (2006).
[Crossref]

Konijnendijk, W. L.

W. L. Konijnendijk, “Luminescence of BaSnSi3O9:Ti4+ compared to BaZrSi3O9:Ti4+,” Inorg. Nucl. Chem. Lett. 17(5-6), 129–132 (1981).
[Crossref]

Lakshminarayana, G.

Lee, B. J.

C. C. Kang, R. S. Liu, J. C. Chang, and B. J. Lee, “Synthesis and luminescent properties of a new yellowish-orange afterglow phosphor Y2O2S:Ti,Mg,” Chem. Mater. 15(21), 3966–3968 (2003).
[Crossref]

Liu, R. S.

C. C. Kang, R. S. Liu, J. C. Chang, and B. J. Lee, “Synthesis and luminescent properties of a new yellowish-orange afterglow phosphor Y2O2S:Ti,Mg,” Chem. Mater. 15(21), 3966–3968 (2003).
[Crossref]

Llopis, J.

S. E. Paje and J. Llopis, “Temperature-dependence of the photoluminescence and phosphorescence time decay of magnesia-stabilized zirconia,” Appl. Phys., A Mater. Sci. Process. 55(6), 523–528 (1992).
[Crossref]

Maeda, M.

T. Ito, M. Maeda, K. Nakamura, H. Kato, and Y. Ohki, “Similarities in photoluminescence in hafnia and zirconia induced by ultraviolet photons,” J. Appl. Phys. 97(5), 054104 (2005).
[Crossref]

Masai, H.

Y. Takahashi, H. Masai, T. Fujiwara, K. Kitamura, and S. Inoue, “Afterglow in synthetic bazirite, BaZrSi3O9,” J. Ceram. Soc. Jpn. 116(1350), 357–360 (2008).
[Crossref]

Meng, X. G.

X. G. Meng, K. Tanaka, K. Fujita, and S. Murai, “Intense greenish emission from d0 transition metal ion Ti4+ in oxide glass,” Appl. Phys. Lett. 90(5), 051917 (2007).
[Crossref]

Mittal, J. P.

G. M. Phatak, K. Gangadharan, H. Pal, and J. P. Mittal, “Luminescence properties of Ti-doped gem-grade zirconia powders,” Bull. Mater. Sci. 17(2), 163–169 (1994).
[Crossref]

Miura, K.

C. Moon, M. Nishi, K. Miura, and K. Hirao, “Blue long-lasting phosphorescence of Ti-doped BaZrO3 perovskites,” J. Lumin. 129(8), 817–819 (2009).
[Crossref]

Momma, K.

K. Momma and F. Izumi, “VESTA: a three-dimensional visualization system for electronic and structural analysis,” J. Appl. Cryst. 41(3), 653–658 (2008).
[Crossref]

Moon, C.

C. Moon, M. Nishi, K. Miura, and K. Hirao, “Blue long-lasting phosphorescence of Ti-doped BaZrO3 perovskites,” J. Lumin. 129(8), 817–819 (2009).
[Crossref]

Murai, S.

X. G. Meng, K. Tanaka, K. Fujita, and S. Murai, “Intense greenish emission from d0 transition metal ion Ti4+ in oxide glass,” Appl. Phys. Lett. 90(5), 051917 (2007).
[Crossref]

Nagli, L.

M. Gaft, L. Nagli, G. Waychunas, and D. Weiss, “The nature of blue luminescence from natural benitoite BaTiSi3O9,” Phys. Chem. Miner. 31(6), 365–373 (2004).
[Crossref]

Nakamura, K.

T. Ito, M. Maeda, K. Nakamura, H. Kato, and Y. Ohki, “Similarities in photoluminescence in hafnia and zirconia induced by ultraviolet photons,” J. Appl. Phys. 97(5), 054104 (2005).
[Crossref]

Nishi, M.

C. Moon, M. Nishi, K. Miura, and K. Hirao, “Blue long-lasting phosphorescence of Ti-doped BaZrO3 perovskites,” J. Lumin. 129(8), 817–819 (2009).
[Crossref]

Ohki, Y.

T. Ito, M. Maeda, K. Nakamura, H. Kato, and Y. Ohki, “Similarities in photoluminescence in hafnia and zirconia induced by ultraviolet photons,” J. Appl. Phys. 97(5), 054104 (2005).
[Crossref]

Paje, S. E.

S. E. Paje and J. Llopis, “Temperature-dependence of the photoluminescence and phosphorescence time decay of magnesia-stabilized zirconia,” Appl. Phys., A Mater. Sci. Process. 55(6), 523–528 (1992).
[Crossref]

Pal, H.

G. M. Phatak, K. Gangadharan, H. Pal, and J. P. Mittal, “Luminescence properties of Ti-doped gem-grade zirconia powders,” Bull. Mater. Sci. 17(2), 163–169 (1994).
[Crossref]

Phatak, G. M.

G. M. Phatak, K. Gangadharan, H. Pal, and J. P. Mittal, “Luminescence properties of Ti-doped gem-grade zirconia powders,” Bull. Mater. Sci. 17(2), 163–169 (1994).
[Crossref]

Qian, G.

P. Zhang, Z. Hong, M. Wang, X. Fang, G. Qian, and Z. Wang, “Luminescence characterization of a new long afterglow phosphor of single Ti-doped Y2O2S,” J. Lumin. 113(1-2), 89–93 (2005).
[Crossref]

Qiu, J. R.

Sarver, J. F.

J. F. Sarver, “Preparation and luminescent properties of Ti-activated zirconia,” J. Electrochem. Soc. 113(2), 124–128 (1966).
[Crossref]

Sato, M.

Y. Ito, A. Komeno, K. Uematsu, K. Toda, and M. Sato, “Luminescence properties of long-persistence silicate phosphors,” J. Alloy. Comp. 408–412, 907–910 (2006).
[Crossref]

Schipper, W. J.

G. Blasse, W. J. Schipper, M. E. Huntelaar, and D. J. W. Ijdo, “Luminescence of SrZrSi2O7,” J. Phys. Chem. Solids 54(9), 1001–1003 (1993).
[Crossref]

Shannon, R. D.

R. D. Shannon, “Revised effective ionic-radii and systematic studies of interatomic distances in halides and chalcogenides,” Acta Crystallogr. A 32(5), 751–767 (1976).
[Crossref]

Takahashi, Y.

Y. Takahashi, K. Kitamura, N. Iyi, S. Inoue, and T. Fujiwara, “Blue photoluminescence of germania-stabilized benitoite,” J. Ceram. Soc. Jpn. 116(1358), 1143–1146 (2008).
[Crossref]

Y. Takahashi, H. Masai, T. Fujiwara, K. Kitamura, and S. Inoue, “Afterglow in synthetic bazirite, BaZrSi3O9,” J. Ceram. Soc. Jpn. 116(1350), 357–360 (2008).
[Crossref]

Y. Takahashi, K. Kitamura, N. Iyi, and S. Inoue, “Phase-stability and photoluminescence of BaTi(Si,Ge)3O9,” J. Ceram. Soc. Jpn. 114(1328), 313–317 (2006).
[Crossref]

Y. Takahashi, K. Kitamura, N. Iyi, and S. Inoue, “Visible orange photoluminescence in a barium titanosilicate BaTiSi2O7,” Appl. Phys. Lett. 88(15), 151903 (2006).
[Crossref]

Y. Takahashi, K. Kitamura, Y. Benino, T. Fujiwara, and T. Komatsu, “Second-order optical nonlinear and luminescent properties of Ba2TiSi2O8 nanocrystallized glass,” Appl. Phys. Lett. 86(9), 091110 (2005).
[Crossref]

Tanaka, K.

X. G. Meng, K. Tanaka, K. Fujita, and S. Murai, “Intense greenish emission from d0 transition metal ion Ti4+ in oxide glass,” Appl. Phys. Lett. 90(5), 051917 (2007).
[Crossref]

Teng, Y.

Toda, K.

Y. Ito, A. Komeno, K. Uematsu, K. Toda, and M. Sato, “Luminescence properties of long-persistence silicate phosphors,” J. Alloy. Comp. 408–412, 907–910 (2006).
[Crossref]

Ueda, K.

T. Yamashita and K. Ueda, “Blue photoluminescence in Ti-doped alkaline-earth stannates,” J. Solid State Chem. 180(4), 1410–1413 (2007).
[Crossref]

Uematsu, K.

Y. Ito, A. Komeno, K. Uematsu, K. Toda, and M. Sato, “Luminescence properties of long-persistence silicate phosphors,” J. Alloy. Comp. 408–412, 907–910 (2006).
[Crossref]

Wang, M.

P. Zhang, Z. Hong, M. Wang, X. Fang, G. Qian, and Z. Wang, “Luminescence characterization of a new long afterglow phosphor of single Ti-doped Y2O2S,” J. Lumin. 113(1-2), 89–93 (2005).
[Crossref]

Wang, Z.

P. Zhang, Z. Hong, M. Wang, X. Fang, G. Qian, and Z. Wang, “Luminescence characterization of a new long afterglow phosphor of single Ti-doped Y2O2S,” J. Lumin. 113(1-2), 89–93 (2005).
[Crossref]

Waychunas, G.

M. Gaft, L. Nagli, G. Waychunas, and D. Weiss, “The nature of blue luminescence from natural benitoite BaTiSi3O9,” Phys. Chem. Miner. 31(6), 365–373 (2004).
[Crossref]

Weiss, D.

M. Gaft, L. Nagli, G. Waychunas, and D. Weiss, “The nature of blue luminescence from natural benitoite BaTiSi3O9,” Phys. Chem. Miner. 31(6), 365–373 (2004).
[Crossref]

Yamashita, T.

T. Yamashita and K. Ueda, “Blue photoluminescence in Ti-doped alkaline-earth stannates,” J. Solid State Chem. 180(4), 1410–1413 (2007).
[Crossref]

Yang, H. C.

Yasumori, A.

H. Hijiya, T. Kishi, and A. Yasumori, “Photoluminescent properties of fresnoite phosphors prepared from phase-separated BaO-TiO2-SiO2 glasses,” J. Ceram. Soc. Jpn. 116(1360), 1255–1259 (2008).
[Crossref]

Zhang, P.

P. Zhang, Z. Hong, M. Wang, X. Fang, G. Qian, and Z. Wang, “Luminescence characterization of a new long afterglow phosphor of single Ti-doped Y2O2S,” J. Lumin. 113(1-2), 89–93 (2005).
[Crossref]

Zhou, S. F.

Acta Crystallogr. A (1)

R. D. Shannon, “Revised effective ionic-radii and systematic studies of interatomic distances in halides and chalcogenides,” Acta Crystallogr. A 32(5), 751–767 (1976).
[Crossref]

Appl. Phys. Lett. (3)

Y. Takahashi, K. Kitamura, Y. Benino, T. Fujiwara, and T. Komatsu, “Second-order optical nonlinear and luminescent properties of Ba2TiSi2O8 nanocrystallized glass,” Appl. Phys. Lett. 86(9), 091110 (2005).
[Crossref]

Y. Takahashi, K. Kitamura, N. Iyi, and S. Inoue, “Visible orange photoluminescence in a barium titanosilicate BaTiSi2O7,” Appl. Phys. Lett. 88(15), 151903 (2006).
[Crossref]

X. G. Meng, K. Tanaka, K. Fujita, and S. Murai, “Intense greenish emission from d0 transition metal ion Ti4+ in oxide glass,” Appl. Phys. Lett. 90(5), 051917 (2007).
[Crossref]

Appl. Phys., A Mater. Sci. Process. (1)

S. E. Paje and J. Llopis, “Temperature-dependence of the photoluminescence and phosphorescence time decay of magnesia-stabilized zirconia,” Appl. Phys., A Mater. Sci. Process. 55(6), 523–528 (1992).
[Crossref]

Bull. Mater. Sci. (1)

G. M. Phatak, K. Gangadharan, H. Pal, and J. P. Mittal, “Luminescence properties of Ti-doped gem-grade zirconia powders,” Bull. Mater. Sci. 17(2), 163–169 (1994).
[Crossref]

Chem. Mater. (1)

C. C. Kang, R. S. Liu, J. C. Chang, and B. J. Lee, “Synthesis and luminescent properties of a new yellowish-orange afterglow phosphor Y2O2S:Ti,Mg,” Chem. Mater. 15(21), 3966–3968 (2003).
[Crossref]

Inorg. Nucl. Chem. Lett. (1)

W. L. Konijnendijk, “Luminescence of BaSnSi3O9:Ti4+ compared to BaZrSi3O9:Ti4+,” Inorg. Nucl. Chem. Lett. 17(5-6), 129–132 (1981).
[Crossref]

J. Alloy. Comp. (2)

Y. Ito, A. Komeno, K. Uematsu, K. Toda, and M. Sato, “Luminescence properties of long-persistence silicate phosphors,” J. Alloy. Comp. 408–412, 907–910 (2006).
[Crossref]

Y. Kanazawa and M. Kamitani, “Rare earth minerals and resources in the world,” J. Alloy. Comp. 408–412, 1339–1343 (2006).
[Crossref]

J. Appl. Cryst. (1)

K. Momma and F. Izumi, “VESTA: a three-dimensional visualization system for electronic and structural analysis,” J. Appl. Cryst. 41(3), 653–658 (2008).
[Crossref]

J. Appl. Phys. (1)

T. Ito, M. Maeda, K. Nakamura, H. Kato, and Y. Ohki, “Similarities in photoluminescence in hafnia and zirconia induced by ultraviolet photons,” J. Appl. Phys. 97(5), 054104 (2005).
[Crossref]

J. Ceram. Soc. Jpn. (4)

Y. Takahashi, K. Kitamura, N. Iyi, S. Inoue, and T. Fujiwara, “Blue photoluminescence of germania-stabilized benitoite,” J. Ceram. Soc. Jpn. 116(1358), 1143–1146 (2008).
[Crossref]

Y. Takahashi, H. Masai, T. Fujiwara, K. Kitamura, and S. Inoue, “Afterglow in synthetic bazirite, BaZrSi3O9,” J. Ceram. Soc. Jpn. 116(1350), 357–360 (2008).
[Crossref]

H. Hijiya, T. Kishi, and A. Yasumori, “Photoluminescent properties of fresnoite phosphors prepared from phase-separated BaO-TiO2-SiO2 glasses,” J. Ceram. Soc. Jpn. 116(1360), 1255–1259 (2008).
[Crossref]

Y. Takahashi, K. Kitamura, N. Iyi, and S. Inoue, “Phase-stability and photoluminescence of BaTi(Si,Ge)3O9,” J. Ceram. Soc. Jpn. 114(1328), 313–317 (2006).
[Crossref]

J. Electrochem. Soc. (1)

J. F. Sarver, “Preparation and luminescent properties of Ti-activated zirconia,” J. Electrochem. Soc. 113(2), 124–128 (1966).
[Crossref]

J. Lumin. (3)

M. Kaneyoshi, “Luminescence of some zirconium-containing compounds under vacuum ultraviolet excitation,” J. Lumin. 121(1), 102–108 (2006).
[Crossref]

P. Zhang, Z. Hong, M. Wang, X. Fang, G. Qian, and Z. Wang, “Luminescence characterization of a new long afterglow phosphor of single Ti-doped Y2O2S,” J. Lumin. 113(1-2), 89–93 (2005).
[Crossref]

C. Moon, M. Nishi, K. Miura, and K. Hirao, “Blue long-lasting phosphorescence of Ti-doped BaZrO3 perovskites,” J. Lumin. 129(8), 817–819 (2009).
[Crossref]

J. Phys. Chem. Solids (2)

B. Bouma and G. Blasse, “Dependence of luminescence of titanates on their crystal structure,” J. Phys. Chem. Solids 56(2), 261–265 (1995).
[Crossref]

G. Blasse, W. J. Schipper, M. E. Huntelaar, and D. J. W. Ijdo, “Luminescence of SrZrSi2O7,” J. Phys. Chem. Solids 54(9), 1001–1003 (1993).
[Crossref]

J. Solid State Chem. (2)

T. Yamashita and K. Ueda, “Blue photoluminescence in Ti-doped alkaline-earth stannates,” J. Solid State Chem. 180(4), 1410–1413 (2007).
[Crossref]

G. Blasse and A. Bril, “Fluorescence and structure of barium zirconium trisilicate,” J. Solid State Chem. 2(1), 105–108 (1970).
[Crossref]

N. Jb. Miner. Mh. (1)

F. C. Hawthorne, “The crystal-chemistry of the benitoite group minerals and structural relations in (Si3O9) ring structures,” N. Jb. Miner. Mh.16–30 (1987).

Opt. Express (1)

Phys. Chem. Miner. (1)

M. Gaft, L. Nagli, G. Waychunas, and D. Weiss, “The nature of blue luminescence from natural benitoite BaTiSi3O9,” Phys. Chem. Miner. 31(6), 365–373 (2004).
[Crossref]

Other (1)

G. Blasse, Structure and Bonding 42 (Springer, 1980).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Crystal structure of bazirite/pabstite; A view of [001] direction. Sphere, blue tetrahedron and green octahedron correspond to Ba2+, SiO4 and ZrO6/SnO6 units, respectively.
Fig. 2
Fig. 2 (a) Powder XRD patterns of polycrystalline sample synthesized by sintering the nominal composition of BaZr1- x Ti x Si3O9 and BaSn1- y Ti y Si3O9 (x,y=0.2), together with an ICDD of BaZrSi3O9 (29-0214), and (b) relation between lattice constants and Ti-concentration in the benitoite and pabstite phases.
Fig. 3
Fig. 3 (a) PL spectra of bazirite and pabstite phases with x,y=0.01 and relation between internal quantum yield and x in the benitoite (circle) and pabstite (triangle) phases (inset). Excitation energy was ~4.77 eV (260 nm). The PL band is fitted by Gaussian function. (b) Polycrystalline sample of bazirite phase with x=0.01 under UV light (254 nm)
Fig. 4
Fig. 4 PLE spectra of the bazirite and pabstite phases with x,y=0.01. Diffuse-reflectance spectrum of pure bazirite (dashed curve) is also included. A-D bands correspond to deconvoluted components of the PLE band in the bazirite phase.
Fig. 5
Fig. 5 Bazirite-type polycrystalline samples with x=0, 0.005, 0.01, 0.03 and 0.2 after irradiation of UV lamps with wavelength of 254 nm (~4.9 eV) nm and 312 nm (~4.0 eV), together with a pabstite sample with y=0.01 as representative. Middle and bottom photos were taken after the exposure to the UV lamp for 10 s.
Fig. 6
Fig. 6 (a) Decay curve of afterglow in bazirite phase with x=0.001-0.1 after excitation at 5.39 eV. Monitored photon energy of afterglow was ~2.62 eV, corresponding to the peak of afterglow PL spectrum. Solids lines correspond to the fitting curves by the equation of I(t)=I 0/(1+γt) n . (b) Dependence of the initial afterglow intensity (I 0) on Ti-concentration (x) in the bazirite phases.
Fig. 7
Fig. 7 Afterglow PL and PLE spectra in the bazirite phase with x=0.01. These spectra correspond to the afterglow emission after ~1 s.
Fig. 8
Fig. 8 Proposed schematic configuration-coordination model in Ti-bearing bazirite phase; a: ground state, b: trap level (Zr-related), c 1: 3T1 state of Ti4+, c 2: 3T2 state of Ti4+, d: 1T1 of Ti4+ (at which electrons are excited by charge-transfer transition).

Metrics